Articles producció científica> Enginyeria Informàtica i Matemàtiques

Roman domination in direct product graphs and rooted product graphs1

  • Identification data

    Identifier: imarina:9226407
    Handle: http://hdl.handle.net/20.500.11797/imarina9226407
  • Authors:

    Martinez, Abel Cabrera
    Peterin, Iztok
    Yero, Ismael G.
  • Others:

    Author, as appears in the article.: Martinez, Abel Cabrera; Peterin, Iztok; Yero, Ismael G.;
    Department: Enginyeria Informàtica i Matemàtiques
    URV's Author/s: CABRERA MARTÍNEZ, ABEL
    Keywords: Rooted product graph Roman domination Paths Number Extremal problems Domination Direct product graph Cardinal product
    Abstract: Let G be a graph with vertex set V(G). A function f : V(G) -> {0, 1, 2) is a Roman dominating function on G if every vertex v is an element of V(G) for which f(v) = 0 is adjacent to at least one vertex u is an element of V(G) such that f(u) = 2. The Roman domination number of G is the minimum weight omega(f) = Sigma(x is an element of V(G)) f(x) among all Roman dominating functions f on G. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.
    Thematic Areas: Mathematics, applied Mathematics (miscellaneous) Mathematics General mathematics Ciencias sociales
    licence for use: https://creativecommons.org/licenses/by/3.0/es/
    Author's mail: abel.cabrera@urv.cat
    Author identifier: 0000-0003-2806-4842
    Record's date: 2021-10-10
    Journal volume: 6
    Papper version: info:eu-repo/semantics/publishedVersion
    Link to the original source: http://www.aimspress.com/article/doi/10.3934/math.2021643
    Licence document URL: http://repositori.urv.cat/ca/proteccio-de-dades/
    Papper original source: Aims Mathematics. 6 (10): 11084-11096
    APA: Martinez, Abel Cabrera; Peterin, Iztok; Yero, Ismael G.; (2021). Roman domination in direct product graphs and rooted product graphs1. Aims Mathematics, 6(10), 11084-11096. DOI: 10.3934/math.2021643
    Article's DOI: 10.3934/math.2021643
    Entity: Universitat Rovira i Virgili
    Journal publication year: 2021
    Publication Type: Journal Publications
  • Keywords:

    Mathematics,Mathematics (Miscellaneous),Mathematics, Applied
    Rooted product graph
    Roman domination
    Paths
    Number
    Extremal problems
    Domination
    Direct product graph
    Cardinal product
    Mathematics, applied
    Mathematics (miscellaneous)
    Mathematics
    General mathematics
    Ciencias sociales
  • Documents:

  • Cerca a google

    Search to google scholar