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Abstract

This paper deals with the algebraic structure of the sequence of harmonics when combined with equal
temperaments. Fractals and the golden ratio appear surprisingly on the way.

The sequence of physical harmonics is an increasingly enumerable submonoid of (R+,+) whose pairs
of consecutive terms get arbitrarily close as they grow. These properties suggest the definition of a new
mathematical object which we denote a tempered monoid. Mapping the elements of the tempered monoid
of physical harmonics from R to N may be considered tantamount to defining equal temperaments. The
number of equal parts of the octave in an equal temperament corresponds to the multiplicity of the related
numerical semigroup.

Analyzing the sequence of musical harmonics we derive two important properties that tempered monoids
may have: that of being product-compatible and that of being fractal. We demonstrate that, up to normal-
ization, there is only one product-compatible tempered monoid, which is the logarithmic monoid, and
there is only one nonbisectional fractal monoid which is generated by the golden ratio.

The example of half-closed cylindrical pipes imposes a third property to the sequence of musical har-
monics, the so-called odd-filterability property.

We prove that the maximum number of equal divisions of the octave such that the discretizations of
the golden fractal monoid and the logarithmic monoid coincide, and such that the discretization is odd-
filterable is 12. This is nothing else but the number of equal divisions of the octave in classical Western
music.

Keywords: musical harmonics; equal temperament; monoids; increasing enumeration; numerical semi-
group; tempered monoid; logarithm; fractal; golden ratio
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1 Introduction

The science of acoustics describes how harmonics of a given fundamental tone appear together with the
fundamental tone when this one is played by a mechanical musical instrument. The way harmonics arise
in each instrument describes its timbre. This paper deals with the algebraic structure of the sequence of
harmonics when combined with equal temperaments. Fractals and the golden ratio appear surprisingly on
the way.

Hidden fractal patterns in music

Fractal geometry, coined by Mandelbrot [19, 20], studies self-similarity, appearing when each small piece
of a shape contains a scaled copy of the whole shape, and, in turn, each small piece of this scaled copy
contains an even smaller scaled copy of the whole shape, and so on. This self-similarity pattern has then
been observed in many other fields apart from geometry. Music has not been an exception [24, 15, 9, 18, 3].
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Figure 1: Three models for standing waves and their harmonics: a string, a cylindrical open pipe, and
cylindrical half-closed pipe.

Brothers, among his vast literature (see [5] and all the references in the chapter) identifies several ways of
scaling in music: duration, pitch, melodic intervals, melodic moments, harmonic intervals, structure, and
melodic or rhythmic motivic scaling. This way, fractal patterns are identified in scores by Bach, Mozart,
Ravel, Chopin, Beethoven, Strauss, Debussy, and even The Beatles. Wuorinen [25] relaxes the notion of
self-similarity to self-affinity and specifies three levels at which the fractal characteristics of music seem to
manifest themselves: the acoustic signal, pitch and rhythm, and structure. The three levels form a progres-
sion from the concrete-physical to the metaphorical-structural, and thus, increasing in artistic significance
while diminishing in specificity. On his side, Madden [18] points at fractal behaviour of the harmonic se-
quence but reducing it to its logarithmic behaviour. Our discussion starts there. Wuorinen [25] postulates
that although the musical sound has been traditionally divided into pitch, rhythm, timbre and loudness,
only pitch and rhythm can be organized in a fractal way. He asserts that “timbre and loudness seem not to have
fractal characteristics as they figure in music”. Frame and Urry [8], state that “fractal aspects of music are patterns
hidden by our sequential perception of music. What other fractal patterns will music reveal?” We can say that in
this paper we reveal one of such fractal patterns mentioned by Frame and Urry [8]. Our pattern is related
to the algebraic structure of the sequence of harmonics when combined with equal temperaments, and so,
indirectly related to timbre as addressed by Wuorinen.

The golden ratio

The golden ratio is, if not the most, one of the most popular irrational numbers. It appears in nature and in
art and it is strongly related to the equally popular Fibonacci numbers. The literature about the golden ratio,
also called the divine proportion, is enormous and it is not our aim to be exhaustive. We just mention the
book [17] and refer the reader to all the references therein. Music analysts speculate about the presence of
the divine proportion in many compositions of several authors such as Bach and Mozart, or more insistently
in Béla Bartók’s scores. Certainly, many 20th and 21st century composers have used it consciously in their
compositions. Our fractal patterns will be indeed generated by the golden ratio.

The harmonic sequence

Let us return to the phenomenon of harmonics. Tones are essentially wave frequencies and the harmonics
of a fundamental tone correspond to integer multiples of that frequency. Figure 1 illustrates three different
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(a) (b)

Figure 2: (a) Approximation of the harmonics produced in a string with fixed ends, when translated to
twelve-tone equal temperament. (b) Approximation of the harmonics produced in a pipe with one open
end and one closed end, when translated to the twelve-tone equal temperament.

models of standing waves. The first one corresponds to the vibration of a string with fixed ends, the second
one corresponds to the motion of the air inside a cylindrical pipe with two open ends such as a flute, and the
third one corresponds to the motion of the air inside a cylindrical pipe with one open end and one closed
end, such as a clarinet or an organ pipe. In the three cases, the first wave represents a fundamental tone
and the subsequent waves represent the harmonics associated with the fundamental tone. In the example
of the string and the open pipe, the frequencies of the harmonics are all integer multiples of the frequency
of the fundamental, while in the example of a pipe with one open end and one closed end, the frequencies
of the harmonics are all odd multiples of the frequency of the fundamental. The octave corresponds to a
ratio of frequencies equal to 2.

Equal temperaments

In twelve-tone equal temperament the octave is divided into 12 equal semitones and the scale is tuned
so that the ratio of the frequencies of consecutive semitones is 12

√
2. Thus, the ratio of the frequencies

corresponding to a tone (i.e. two semitones) is ( 12
√

2)2, the ratio of frequencies corresponding to a minor
third (a tone plus a semitone) is ( 12

√
2)3, and so on. In particular, the ratio of the frequencies corresponding

to an octave is ( 12
√

2)12 = 2. Conversely, the number of semitones between notes of frequencies f1 and f2
is log 12√2(f1/f2) = 12 log2(f1/f2). If another number, say n, of equal divisions of the octave is used, then
the frequencies of consecutive notes differ by a factor of n

√
2, so that the number of n-th divisions between

notes with frequencies f1 and f2 is n log2(f1/f2).

Matching the harmonic sequence and equal temperaments

The frequencies of any equal temperament do not match the frequencies of the pure notes in the harmonic
series, since the frequencies of pure harmonic notes correspond to integer multiples of the frequency of
the fundamental note while the frequencies in equal temperament correspond, except for the octaves, to
nonrational multiples of the frequency of the fundamental. In this paper we deal with the properties of the
harmonic series when matched to equal temperaments, that is, when the pure-harmonic tones are approxi-
mated by their neighboring counterparts in equal temperament.

If one focuses on the example of the string with fixed ends, the notes corresponding to the harmonic
series of C2 are approximately the ones in Figure 2 (a), when approximated by the twelve-tone equal tem-
perament. The same notes appear in cylindrical open pipes. In the example of cylindrical pipes with one
open end and one closed end, only half of these harmonics appear, namely, the ones in Figure 2 (b).

For each note in the harmonic sequence of Figure 2 (a), take its distance in semitones to the fundamental
tone. We get the following set.

H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43} ∪ {i ∈ N : i > 45}. (1)
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These semitone intervals collapse at some point, since there is not a one-to-one correspondence from pure
harmonics to semitone intervals.

The discrete model of numerical semigroups

The setH is the result of amplifying the set of logarithms {log2 1, log2 2, log2 3, . . . } by a factor of 12 and then
rounding the obtained real numbers to integer numbers. The logarithms, as is vastly known, and as will be
expained later, appear when one thinks of the values of notes as their relative interval with respect to the
fundamental and when one requires the intervals between notes to behave like a proper distance. This is
related to what we call the product-compatibility property. Notice that 12 log2(13) = 44.4 approximately and
so, depending on the rounding criterion, the 13th harmonic can be considered to be at 44 semitones or at
45 semitones of the fundamental. We chose to consider the 13th harmonic at 45 semitones of fundamental
tone, as it has been preferred by traditional authors. This will be justified later. More recently, though,
composers influenced by “spectral music” have often represented this harmonic by the pitch 44 semitones
above the fundamental. See [23] for another mathematical justification of representing the 13th harmonic
as 45 semitones above the fundamental.

The procedure of amplifying a sequence of real numbers and then mapping them to integer numbers is
what we call a discretization of the initial sequence of real numbers. This way, H is a discretization of the
sequence of logarithms with amplifying factor 12 and rounding threshold 0.4.

The sequence of logarithm-related real numbers is an ideal physical model while its discretization is a
feasible realization of it. Natural properties of the discretization, in the context of harmonics, are: (i) it is a
subset of non-negative integers containing 0, (ii) only finitely many non-negative integers are missing, and
(iii) it is closed under addition. The addition closure amounts to the fact that the harmonics of a harmonic
of a fundamental tone should be harmonics of that fundamental tone. These three properties are exactly the
properties defining a numerical semigroup (see Section 2). Hence, we call the set H the well-tempered harmonic
semigroup.

Discretizing the sequence of physical harmonics into numerical semigroups may be considered tanta-
mount to setting equal temperaments. The number of equal parts of the octave in an equal temperament
is the amplifying factor in the discretization and it corresponds to the multiplicity of the related numerical
semigroup, i.e. its smallest non-zero element. The present paper treats special ideal sequences of real num-
bers and their discretizations into numerical semigroups, using a variety of multiplicities to discretize, so
obtaining different numerical semigroups.

The R model of tempered monoids

The ideal sets of real numbers that we want to discretize must be an increasing sequence of non-negative
real numbers. Other natural properties of these sequences, paralleling what has been said in the previous
paragraphs, are that (i) they must contain 0, (ii) the limit of the differences of consecutive elements is zero,
and (iii) the sequences must be closed under addition. We say that an increasing sequence satisfying (i), (ii),
and (iii) is a tempered monoid (see Section 2).

Let us concentrate on two additional properties that tempered monoids can have, which have a trans-
lation into the harmonic series. The first one is the product-compatibility, arising when one tries to fit the
multiplicative nature of harmonics and frequency ratios in the additive environment of pitch and interval
distances. Indeed, suppose that the pitch difference of each harmonic with respect to the fundamental tone
is represented by the increasing sequence ρ1 = 0, ρ2, ρ3, . . . . Now, the difference between the pitch of the
third harmonic and the pitch of the fundamental tone must be the same as the difference between the pitch
of the third harmonic of the fifth harmonic and the pitch of the fifth harmonic itself (see Figure 3). This
means that ρ15 − ρ5 = ρ3. In general, for any positive integers i, j, it is required that ρij − ρi = ρj or,
equivalently, ρij = ρi + ρj . The tempered monoids satisfying this equality for any positive integers i, j will
be called product-compatible tempered monoids.
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Figure 3: The difference between the pitch of the third harmonic and the pitch of the fundamental, as
marked above, must be the same as the difference between the pitch of the third harmonic of the fifth
harmonic and the pitch of the fifth harmonic itself, as marked below.

(a) (b)

Figure 4: (a) Fractal division of an interval (bisectional). (b) Fractal division of an interval (nonbisectional).

The second additional property of interest of a tempered monoid is that of being fractal. We can divide
a segment in a fractal way as follows. First we halve it. We call this a bisection of the interval since the
two parts in which we divide the interval are equal. Then we halve each half and so on, indefinitely (see
Figure 4 (a)). The same idea can be applied by dividing the interval into two parts in a given proportion, not
necessarily into two equal parts, and so, not necessarily a bisection. Next, divide each of the parts following
the same proportions as in the first cut. Divide again each of the parts in the same proportions and so on.
We obtain an apparently chaotic but strictly fractal partition (see Figure 4 (b)).

Similarly, take the octave as the segment to be divided and restrict to the twelve-tone equal temperament
approximation of harmonics. We can observe that in each next octave in the harmonic series, the intervals
appearing in the previous octave are divided always into two parts with the same portions (see Figure 5).
Observe that the octave between the second and fourth harmonics is divided by the third harmonic leaving
7/12 of the octave on the left and 5/12 on the right. The two intervals obtained now, C-G, G-C, are then
repeated within the octave comprised between the fourth and eighth harmonics and subsequently divided
leaving the best possible approximation (restricted to the twelve-tone equal temperament) of 7/12 of the
interval on the left and the best possible approximation of 5/12 of the interval on the right, thus obtaining
C-E, E-G and G-B[, B[-C. Each black note in Figure 5 is a new note that did not appear in any previous
octave, and which divides an interval of two notes appearing in the previous octave in the same portions
of approximately 7/12 of the interval on the left and 5/12 of the interval on the right. The division of
the octave into 12 equal parts is used here in the introduction for simplicity. In the following sections all
possible divisions of the octave are considered a priori.

Lastly, the frequencies of the harmonics of cylindrical pipes with one open end and one closed end
suggest to analyze the so-called odd-filterable tempered monoids and odd-filterable numerical semigroups.
For tempered monoids, odd-filterable means that the subsequence of elements with odd index is closed under
addition. The discretization of a tempered monoid into a numerical semigroup collapses at some point, in
the sense that two different real elements of the tempered monoid map to the same integer element of
the numerical semigroup. Now, we say that a numerical semigroup is odd-filterable if the subsequence of
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Figure 5: Each black note in the figure is a new note that did not appear in any previous octave, and which
divides an interval of two notes appearing in the previous octave in the same portions of approximately
7/12 of the interval on the left and 5/12 of the interval on the right.

elements with odd index is closed under addition before collapse. That is, the sums of pairs in it that are
smaller than the collapse are either in the subsequence or are larger than the collapse.

Our results

In this paper we prove that there is only one product-compatible tempered monoid up to normalization,
and that there is only one nonbisectional fractal monoid, up to normalization. Furthermore we will prove
that the unique nonbisectional division for fractal monoids is nothing else but the inverse of the golden
ratio. The quotient 7/12 used in the previous paragraph is an approximation of it. Notice that although
there are much better rational approximations to the golden ratio, 7/12 is its closest fraction when restricted
to denominator 12.

Then we will show that the discretization of the unique product-compatible tempered monoid and the
discretization of the unique nonbisectional fractal monoid coincide only when we divide the octave into 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, or 18 parts. We finally will prove that when dividing the octave into 13 or
18 equal parts, the related numerical semigroups are not odd-filterable, but when dividing it into 12 equal
parts, it keeps the odd-filterability property.

This allows us to conclude that the maximum number of equal divisions of the octave such that the dis-
cretization of the unique product-compatible tempered monoid is simultaneously fractal and odd-filterable
is 12. The resulting numerical semigroup is the well-tempered harmonic semigroup H in (1). This gives an
alternative justification for the choice of number 12 in the division of the octave into equal parts.

For a mathematical explanation of different stationary waves produced in different instruments and
temperaments see [13], [14], and [22]. Other references treating the number of equal divisions of the octave
are [2], [7], and [16]. For a general reference on numerical semigroups see [21].

2 Numerical semigroups and tempered monoids

In this section we introduce the two main mathematical objects of this paper. They are numerical semigroups
and the newly defined tempered monoids. Both are examples of increasingly enumerable submonoids of
(R+,+), called ω-monoids in [4]. Different results related to submonoids of (R+,+) can be found in [6, 12,
1, 10, 11].

Definition 2.1. A numerical semigroup is an additive submonoid of N0 with finite complement in N0. The
second element of S, i.e., the smallest non-zero element of S, is its multiplicity, denoted m(S).

The set H in equation (1) is a numerical semigroup of multiplicity 12.
In this paper we introduce the notion of tempered monoid.
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Definition 2.2. A tempered monoid is a strictly increasing sequence M = {µ1, µ2, µ3, . . . } of non-negative
real numbers such that (i) µ1 = 0, (ii) limn→∞(µn+1 − µn) = 0, (iii) M is closed under addition, that is, for
any i, j ∈ N, there exists k ∈ N such that µk = µi + µj .

A tempered monoid is called normalized if its smallest non-zero element is 1. If a tempered monoid M
is normalized, for i > 0 we define its i-th period, denoted πi(M), as the set of elements in M that are at least
as large as i and that are strictly smaller than i+ 1. The granularity of M is the cardinality of its first period.

Example 2.3. The following set is a tempered monoid.

Q = {0} ∪ {n+
k

2n+1
: n ∈ N and 0 6 k 6 2n+1 − 1}.

Its granularity is 4. Its first period is

{1, 1 +
1

4
, 1 +

1

2
, 1 +

3

4
}.

Example 2.4. The following set is a tempered monoid.

D = {0} ∪ {n+
k

10n
: n ∈ N and 0 6 k 6 10n − 1}

Its granularity is 10 and its i-th period has cardinality 10i.

3 Discretization of tempered monoids to obtain numerical semigroups

In this section we explain how we can obtain numerical semigroups by discretizing the elements of tem-
pered monoids.

For a real number r let [r] be its integer rounding by the nearest integer, let brc be its integer floor, and let
dre be its integer ceiling. More generally, given r ∈ R and α ∈ R with 0 6 α 6 1, let

brcα =

{
brc if r − brc < α,
dre otherwise

In particular, b·c = b·c1, d·e = b·c0, [·] = b·c0.5.
For a tempered monoid M and a positive integer m we can similarly apply the operations to the tem-

pered monoid elementwise:

[mM ] := {[mr] : r ∈M}, bmMc := {bmrc : r ∈M}, dmMe := {dmre : r ∈M}.

More generally, bmMcα := {bmrcα : r ∈M}.
The first and second condition, respectively, in the definition of a tempered monoid imply that the set

bmMcα satisfies the first and second condition, respectively, in the definition of a numerical semigroup,
for any α. However, the third condition in the definition of a tempered monoid M does not guarantee in
general the third condition for the set bmMcα to be a numerical semigroup for a general positive integer m
and a real number in the unit interval α.
Example 3.1. Let Q be the set in Example 2.3 and let m = 19. Then,

19Q = {0, 19, 23.75, 28.5, 33.25, 38, 40.375, 42.75, 45.125, 47.5, 49.875, 52.25,

54.625, 57, 58.1875, 59.375, 60.5625, 61.75, 62.9375, 64.125, 65.3125,

66.5, 67.6875, 68.875, 70.0625, 71.25, 72.4375, 73.625, 74.8125, 76,

76.59375, 77.1875, 77.78125, 78.375, 78.96875, 79.5625, 80.15625, . . . }[
19Q

]
= {0, 19, 24, 29, 33, 38, 40, 43, 45, 48, 50, 52, 55, 57, 58, 59, 61, 62, 63,

64, 65, 67, 68, 69, 70, 71, 72} ∪ {i ∈ N : i > 74}
b19Qc = {0, 19, 23, 28, 33, 38, 40, 42, 45, 47, 49, 52, 54, 57, 58, 59, 60, 61, 62,

64, 65, 66, 67, 68, 70, 71, 72, 73, 74} ∪ {i ∈ N : i > 76}
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Notice that 33, 40 ∈ [19Q], but 33 + 40 = 73 6∈ [19Q], while 28 ∈ b19Qc, but 28 + 28 = 56 6∈ b19Qc. Hence,
neither [19Q] nor b19Qc are numerical semigroups.

We say that a normalized tempered monoid M is discretizable by a multiplicity m under rounding, under
flooring, under ceiling or, more generally, under rounding by α, if [mM ], bmMc, dmMe, or bmMcα, respectively,
is a numerical semigroup. Notice that if the resulting integer set is a numerical semigroup, then m is the
multiplicity of the resulting numerical semigroup, in each case. It is easy to check that every normalized
tempered monoid is discretizable at least by m = 1. When m = 1 the semigroup obtained is the semigroup
of the naturals with the zero.

Example 3.2. Let Q be the set in Example 2.3 and let m = 16. Then,

16Q = {0, 16, 20, 24, 28, 32, 34, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 64.5, 65, 65.5, 66, 66.5, 67, 67.5, 68, 68.5, 69, . . . }[
16Q

]
= {0, 16, 20, 24, 28, 32, 34, 36, 38, 40, 42, 44, 46} ∪ {i ∈ N : i > 48}

b16Qc = [16Q]

Since both [16Q] and b16Qc are numerical semigroups, Q is discretizable by 16 either by rounding or by
flooring.

4 Product-compatible tempered monoids

In this section we introduce the property of product-compatibility and prove that there is only one normalized
product-compatible tempered monoid. We call it the logarithmic monoid.

Definition 4.1. We say the tempered monoid M = {µ1, µ2, µ3, . . . } with µi < µi+1 is product-compatible if
µij = µi + µj for any i, j ∈ N. For a justification of this definition, see the introduction and Figure 3.

Example 4.2. The logarithmic monoid is the set L = {log2(i) : i ∈ N}. Denote λ1 = log2(1), λ2 = log2(2), . . .
See next the (rounded) smallest elements in L:

L = {0, 1, 1.5849, 2, 2.3219, 2.5849, 2.8073, 3, 3.1699, 3.3219, 3.4594, 3.5849,

3.7004, 3.8073, 3.9068, 4, 4.0874, 4.1699, 4.2479, 4.3219, 4.3923, 4.4594,

4.5235, 4.5849, 4.6438, 4.7004, 4.7548, 4.8073, 4.8579, 4.9068, 4.9541, 5,

5.0443, 5.0874, 5.1292, 5.1699, 5.2094, 5.2479, 5.2854, 5.3219, 5.3575, . . . }

It is left to the reader to check that L is a product-compatible tempered monoid. It follows from the
well-known property of logarithms stating that the logarithm of a product is the sum of logarithms.

Theorem 4.3. The logarithmic monoid L is the unique product-compatible normalized tempered monoid.

Proof. Suppose that M = {µ1, µ2, µ3, . . . } with µi < µi+1 is a normalized product-compatible tempered
monoid. One can check by induction that µjk = kµj for any k ∈ N, j ∈ N. Now, it is claimed that
µi = log2(i) for any i ∈ N. Indeed, suppose that this does not hold for some i ∈ N. Then µi < log2(i) or
µi > log2(i). Suppose first that µi < log2(i). There exist p, q ∈ N such that µi < p/q < log2(i). In particular,
qµi < p while q log2(i) > p. This, together with equality µjk = kµj implies that µiq = qµi < p = pµ2 = µ2p ,
while iq = 2q log2(i) > 2p, a contradiction since the sequence µ1, µ2, µ3, . . . is supposed to be increasing. An
analogous contradiction is found for the case µi > log2(i).
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5 Fractal monoids

In this section we define fractal monoids and we prove that there is only one nonbisectional fractal monoid
of granularity 2. It is generated by the golden ratio and it is hence called the golden fractal monoid.

Definition 5.1. LetM = {µ1, µ2, µ3, . . . }with µi < µi+1 be a normalized tempered monoid with granularity
`. For any i ∈ N, let `i be the cardinality of the ith period of M and suppose that

πi(M) = {i+ τ
(i)
0 , i+ τ

(i)
1 , . . . , i+ τ

(i)
`i−1},

with τ (i)0 = 0 < τ
(i)
1 < τ

(i)
2 < · · · < τ

(i)
`i−1 < τ

(i)
`i

= 1. We say that M is fractal if for any i ∈ N,

πi+1(M) =

r<`i⋃
r=0

s<⋃̀
s=0

{(i+ 1) + τ (i)r + τ (1)s (τ
(i)
r+1 − τ (i)r )}. (2)

Roughly speaking, we say that a tempered monoid is a fractal monoid if for any i ∈ N and for any interval
between consecutive elements in the ith period, the same interval appears in the next period (just adding 1
to each end) divided exactly in the same portions as the interval from 1 to 2 is divided in the first period.

It is obvious that for each first period there exists exactly one such construction. So, for a fixed first
period, there is at most one fractal monoid. Whether it exists or not will depend on whether the construction
in (2) gives a set closed under addition or not. If this is the case, we say that the first period generates the
tempered monoid as a fractal monoid.

Example 5.2. The tempered monoid D = {0} ∪ {n+ k
10n : n ∈ N and 0 6 k 6 10n − 1} from Example 2.4 is a

fractal monoid. It is generated by the period

{1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9}.

Example 5.3. Let us parallel the observation in Figure 5, analyzing the period {1, 1 + 7/12}. If this period
generated a fractal monoid, the monoid should be

M = {0, 1, 1 + 7/12, 2, 2 + (7/12)2, 2 + (7/12), 2 + (7/12) + 5 · 7/122,

3, 3 + (7/12)3, 3 + (7/12)2, 3 + (7/12)2 + 72 · 5/123, 3 + (7/12),

3 + (7/12) + 5 · 72/123, 3 + (7/12) + 5 · 7/122,

3 + (7/12) + 5 · 7/122 + 52 · 7/123,

. . . }
= {0, 1, 19/12, 2, 337/144, 31/12, 407/144, 3, 5527/1728,

481/144, 6017/1728, 43/12, 6437/1728, 551/144, 6787/1728, . . . }

However, this is not a tempered monoid since it is not closed under addition. Indeed, 2(1 + 7/12) =
3 + 2/12 6∈M . Thus, {1, 1 + 7/12} does not generate a fractal monoid.

Example 5.4. The tempered monoid L = {λi = log2(i) : i ∈ N} in Example 4.2 is not fractal. Indeed, since
its granularity is 2, for it to be fractal it should satisfy

λ3 − λ2
λ4 − λ2

=
λ5 − λ4
λ6 − λ4

.

In that case one would have
log2(3/2)

log2(4/2)
=

log2(5/4)

log2(6/4)
,

implying that (log2(1.5))2 = log2(1.25), which is false.
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Lemma 5.5. The cardinality of the ith period of a fractal monoid of granularity ` is `i, for any i ∈ N.

Example 5.6. For any integer ` > 2, the period {1, 1+1/`, . . . , 1+(`−1)/`} generates a fractal monoid whose
ith period is πi = {i, 1 + 1/`i, 1 + 2/`i, . . . , 1 + (`i − 1)/`i}.

This example leads to the next definition.

Definition 5.7. We say that the tempered monoid generated by the period {1, 1 + 1/`, . . . , 1 + (` − 1)/`},
for ` > 2 is the perfect fractal monoid of granularity `. The perfect fractal monoid of granularity 2 is called the
bisectional fractal monoid.

Example 5.8. The fractal monoid D in Example 2.4 is a perfect fractal monoid.

We denote the golden ratio 1+
√
5

2 by φ. The proof of the next theorem requires some lemmas and the
whole set has been moved to the end of the section.

Theorem 5.9. 1. The period {1, φ} generates a fractal monoid.

2. The unique nonbisectional normalized fractal monoid of granularity 2 is exactly the fractal monoid generated
by the period {1, φ}.

Definition 5.10. The golden fractal monoid is the fractal monoid generated by the period {1, φ}. It is denoted
by F and its terms are written ϕ1, ϕ2, ϕ3, . . . The first (rounded) terms are listed below.

F = {0, 1, 1.6180, 2, 2.3820, 2.6180, 2.8541, 3, 3.2361, 3.3820, 3.5279, 3.6180,

3.7639, 3.8541, 3.9443, 4, 4.1459, 4.2361, 4.3262, 4.3820, 4.4721, 4.5279,

4.5836, 4.6180, 4.7082, 4.7639, 4.8197, 4.8541, 4.9098, 4.9443, 4.9787, 5,

5.0902, 5.1459, 5.2016, 5.2361, 5.2918, 5.3262, 5.3607, 5.3820, 5.4377,

5.4721, 5.5066, 5.5279, 5.5623, 5.5836, 5.6049, 5.6180, 5.6738, 5.7082,

5.7426, 5.7639, 5.7984, 5.8197, 5.8409, 5.8541, 5.8885, 5.9098, 5.9311,

5.9443, 5.9656, 5.9787, 5.9919, 6, . . . }

The proof of Theorem 5.9 will be preceded by three lemmas. For the lemmas we need some notation.
Given p ∈ (0, 1), let q = 1− p and define

f0 : {0} → [0, 1)
0 7→ 0

f` : N0 ∩ [0, 2`) → [0, 1)

n 7→
{
pf`−1(n) if n < 2`−1,
p+ qf`−1(n− 2`−1) if n > 2`−1,

for ` ∈ N. Notice that f` depends on the choice of p. The next lemma is a consequence of the definitions and
describes the relationship between the maps f` and fractal monoids.

Lemma 5.11. If a tempered monoid M = {µ1, µ2, µ3, . . . } with µi < µi+1 is fractal and has {1, 1 + p} as its first
period, then

• the elements of M are exactly µi = blog2(i)c+ fblog2(i)c(i− 2blog2(i)c),

• the `th period of F is {`+f`(0), `+f`(1), `+f`(2), `+f`(3), . . . , `+f`(2
`−1)}, with `+f`(0) < `+f`(1) <

`+ f`(2) < `+ f`(3) < · · · < `+ f`(2
` − 1).

The next lemma states a simple result that will be used several times in the proofs of the following
lemmas. It can be proved by induction.
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Lemma 5.12. If `, n ∈ N0 with ` > 1 and n < 2`−1, then f`−1(n) = f`(2n).

In the next lemma we take p = φ − 1 = −1+
√
5

2 = 0.618033 . . . . We use that, in this case, p2 = 1 − p,
1 = p+ p2 and 2p = 1 + p3.

Lemma 5.13. Let p = φ− 1, q = 1− p, and let `, n ∈ N0 with ` > 0 and n < 2`. The sum p+ f`(n) is one of

• f`+1(c) for some 0 6 c < 2`+1,

• 1 + pf`+1(d) for some 0 6 d < 2`+1.

Proof. If ` = 1 then n is either 0 or 1 and p+ f1(0) = p+ 0 = p = f1(1), while p+ f1(1) = p+ p = 1 + p3 =
1 + pf2(1). Suppose that ` > 1 and assume that the lemma is true for `− 1.

If n < 2`−2, then p + f`(n) = p + pf`−1(n) = p + p2f`−2(n) = f`−1(n + 2`−2) = f`+1(22n + 2`), with
0 6 22n+ 2` < 2`+1.

If 2`−2 6 n < 2`−1, then p+ f`(n) = p+ pf`−1(n) = p+ p2 + p3f`−2(n− 2`−2) = 1 + p3f`−2(n− 2`−2) =
1 + pf`(n− 2`−2) = 1 + pf`+1(2n− 2`−1), with 0 6 2n− 2`−1 < 2`+1.

If n > 2`−1, then p+f`(n) = 2p+p2f`−1(n−2`−1) = 1+p3+p2f`−1(n−2`−1) = 1+p2(p+f`−1(n−2`−1))
with n−2`−1 < 2`−1. By the induction hypothesis, this either equals 1+p2f`(c

′) = 1+pf`+1(c′) with c′ < 2`,
and hence, with c′ < 2`+1, or 1 + p2(1 + pf`(d

′)) = 1 + p(p+ p2f`(d
′)) = 1 + pf`+1(d′ + 2`) with d′ < 2`, and

thus, with d′ + 2` < 2`+1.

Lemma 5.14. Let p = φ− 1 and q = 1− p. If i, j, a, b ∈ N0, with 0 6 a < 2i and 0 6 b < 2j , then fi(a) + fj(b) is
one of

• fi+j(c) for some 0 6 c < 2i+j ,

• 1 + fi+j+1(d) for some 0 6 d < 2i+j+1.

Proof. We proceed by induction on i+ j. If i+ j equals 0 then the result is obvious. Suppose that i+ j > 0.
If one of i and j is 0 then the result is also obvious. Therefore, we can assume that both i and j are non-
zero. On one hand, fi(a) = pfi−1(a′) or fi(a) = p + qfi−1(a′) for some a′ < 2i−1. On the other hand,
fj(b) = pfj−1(b′) or fj(b) = p+ qfj−1(b′) for some b′ < 2j−1. Hence, one of the next cases holds.

1. fi(a) + fj(b) = pfi−1(a′) + pfj−1(b′) = p(fi−1(a′) + fj−1(b′)) for some a′ < 2i−1 and some b′ < 2j−1.
By the induction hypothesis, this equals one of

• pfi+j−2(c) for some 0 6 c < 2i+j−2,

• p(1 + fi+j−1(d)) for some 0 6 d < 2i+j−1.

On one hand, pfi+j−2(c) = fi+j−1(c) = fi+j(2c), with 2c < 2i+j . On the other hand, p(1 + fi+j−1(d))
can be either p(1+pfi+j−2(d′)) or p(1+p+qfi+j−2(d′)) for some d′ < 2i+j−2. But p(1+pfi+j−2(d′)) =
p + p2fi+j−2(d′) = fi+j−1(d′ + 2i+j−2) = fi+j(2d

′ + 2i+j−1) with 2d′ + 2i+j−1 < 2i+j , while
p(1 + p+ qfi+j−2(d′)) = p+ p2 + p3fi+j−2(d′) = 1 + fi+j+1(d′), with d′ < 2i+j+1.

2. fi(a) + fj(b) = pfi−1(a′) + p + qfj−1(b′) for some a′ < 2i−1 and some b′ < 2j−1. If i = 1, then a′ = 0
and fi(a) + fj(b) = p + qfj−1(b′) = fj(b

′ + 2j−1) = fi+j(2
ib′ + 2i+j−1), with 2ib′ + 2i+j−1 < 2i+j .

Therefore, we can assume i > 1. Now, by the definition of f , the sum fi(a) + fj(b) equals one of

• p2fi−2(a′) + p+ qfj−1(b′) = p+ p2(fi−2(a′) + fj−1(b′)) if a′ < 2i−2,

• p(p+ qfi−2(a′ − 2i−2)) + p+ qfj−1(b′) = 1 + p2(pfi−2(a′ − 2i−2) + fj−1(b′)) if a′ > 2i−2.
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The first sum, by the induction hypothesis, is either p+q(fi+j−3(c′)) = fi+j−2(c′+2i+j−3) = fi+j(2
2c′+

2i+j−1) with c′ < 2i+j−3 and hence, with 22c′ + 2i+j−1 < 2i+j , or p + q(1 + fi+j−2(d′)) = 1 +
p2fi+j−2(d′) = 1 + fi+j(d

′) = 1 + fi+1+1(2d′), with d′ < 2i+j−2 (and hence with 2d′ < 2i+j+1).

To analyze the second sum, notice that pfi−2(a′−2i−2) < p and, thus, pfi−2(a′−2i−2)+fj−1(b′) < 1+p.
Now, taking this into account, and applying the induction hypothesis, we have that 1 + p2(pfi−2(a′ −
2i−2) + fj−1(b′)) has the form 1 + p2(fi+j−2(c′)) = 1 + fi+j(c

′) = 1 + fi+j+1(2c′) for some c′ < 2i+j−2

(and hence 2c′ < 2i+j+1), or 1+p2(1+pfi+j−2(c′′)) = 1+p(p+qfi+j−2(c′′)) = 1+pfi+j−1(c′′+2i+j−2) =
1+fi+j(c

′′+2i+j−2) = 1+fi+j+1(2c′′+2i+j−1) for some c′′ < 2i+j−2 (and hence 2c′′+2i+j−1 < 2i+j+1).

3. fi(a) + fj(b) = p + qfi−1(a′) + pfj−1(b′) for some a′ < 2i−1 and some b′ < 2j−1. This case can be
proved as the previous one.

4. fi(a) + fj(b) = p+ qfi−1(a′) + p+ qfj−1(b′) = 2p+ q(fi−1(a′) + fj−1(b′)) for some a′ < 2i−1 and some
b′ < 2j−1. By the induction hypothesis, this equals one of

• 2p+ qfi+j−2(c′) for some 0 6 c′ < 2i+j−2,

• 2p+ q(1 + fi+j−1(d′)) for some 0 6 d′ < 2i+j−1.

On one hand, 2p+ qfi+j−2(c′) = p+ fi+j−1(c′ + 2i+j−2) and the result follows by Lemma 5.13.

On the other hand, 2p+q(1+fi+j−1(d′)) = 1+p+qfi+j−1(d′) = 1+fi+j(d
′+2i+j−1) = 1+fi+j+1(2d′+

2i+j) with 2d′ + 2i+j < 2i+j+1.

Now we are ready to prove Theorem 5.9.

Proof. 1. One needs to see that, for the case when p = φ − 1, the set described in Lemma 5.11 is closed
under addition. This is a direct consequence of Lemma 5.14.

2. Suppose that M is a normalized nonbisectional fractal monoid of granularity 2. Then its first period
is {1, 1 + p} for some p with 0 < p < 1. By Lemma 5.11, the second and third periods of the tempered
monoid must be

{2, 2 + p2, 2 + p, 2 + 2p− p2},
{3, 3 + p3, 3 + p2, 3 + 2p2 − p3, 3 + p, 3 + p+ p2 − p3,

3 + 2p− p2, 3 + 3p− 3p2 + p3},

where the elements in each period are presented in increasing order.

If M is nonbisectional then p 6= 0.5. For M to be closed under addition, it must hold that (1 +p) + (1 +
p) = 2 + 2p ∈M .

If p < 0.5, then 2 + p < 2 + 2p < 3. Looking at the elements of the second period, one can deduce that
2 + 2p = 2 + 2p− p2, leading to p = 0, which is out of the range.

Then, p must be larger than 0.5. In this case, 3 < 2 + 2p < 3 + p. Looking at the elements of the third
period, one can deduce that 2 + 2p is either 3 + p3, 3 + p2, or 3 + 2p2 − p3. This leads to the equations
p3−2p+1 = (p2+p−1)(p−1) = 0, p2−2p+1 = (p−1)2 = 0 or p3−2p2+2p−1 = (p2−p+1)(p−1) = 0.
Among these equations, the unique one having a real solution in the range 0.5 < p < 1 is the first one,
being the solution p = −1+

√
5

2 = φ− 1. Hence, 1 + p = φ.
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6 Odd-filterable tempered monoids and odd-filterable numerical semi-
groups

As explained in the introduction and illustrated in Figure 1 and in Figure 2 (b), cylindrical pipes with one
open end and one closed end produce only the harmonics corresponding to odd multiples of the frequency
of the fundamental. This suggests the definitions of odd-filterable tempered monoids and odd-filterable numerical
semigroups.

Definition 6.1. A tempered monoid is odd-filterable if the elements in its ordered sequence with odd index
form a tempered monoid.

Theorem 6.2. The logarithmic monoid L is odd-filterable.

Proof. The logarithmic monoidL is formed by the elements in the increasing sequence (λi)i∈N = (log2(i))i∈N.
We claim that the sequence of its terms with odd index (λ̄i)i∈N = (λ2i−1)i∈N = (log2(2i−1))i∈N is a tempered
monoid. Let us check the three conditions of a tempered monoid.

1. Its smallest element is λ̄1 = log2(1) = 0

2. λ̄n+1 − λ̄n = log2(2n + 1) − log2(2n − 1) = log2( 2n+1
2n−1 ). Since the sequence 2n+1

2n−1 converges to 1, for
any ε > 0 one can take n0 large enough so that 2n+1

2n−1 < 2ε for any n > n0. Then λ̄n+1 − λ̄n < ε for any
n > n0.

3. The third condition follows from the fact that the product of odd integers is again an odd integer.

However, the golden fractal monoid F is not odd-filterable. Indeed, let τ = φ − 1. Then ϕ3 = 1 + τ ,
ϕ5 = 2 + τ2, while the sum of them is ϕ3 + ϕ5 = 3 + τ + τ2 = 3 + 1 = 4 = ϕ16, which has an even index in
F .

The notion of odd-filterability for numerical semigroups is a bit more elaborate. Let S = bmMcα, that is,
S is a numerical semigroup which arises from a tempered monoidM = {Mi}i∈N which has been discretized
by a multiplicity m under rounding by α. Then we define the collapse of S with respect to {M,m,α} as the
smallest integer κ such that κ = bmµicα = bmµi+1cα for some i.

Example 6.3. Consider the unique nonbisectional fractal monoid F of granularity 2. Discretize it by multi-
plicity 12 and by flooring. That is,

b12F c = b0.0000c, b12.0000c, b19.4164c, b24.0000c, b28.5836c, b31.4164c, b34.2492c,
b36.0000c, b38.8328c, b40.5836c, b42.3344c, b43.4164c, b45.1672c, b46.2492c,
b47.3313c, b48.0000c, b49.7508c, b50.8328c, b51.9149c, b52.5836c, b53.6656c,
b54.3344c, b55.0031c, b55.4164c, b56.4984c, b57.1672c, b57.8359c, b58.2492c,
b58.9180c, b59.3313c, b59.7446c, b60.0000c, b61.0820c, b61.7508c, . . .

Notice that the resulting semigroup b12F c is the well-tempered harmonic semigroup H in (1). In this case,
the collapse is 55, since b12µ23c = b55.0031c = b12µ24c = b55.4164c = 55 and b12µic 6= b12µi+1c for any
i < 23.

Definition 6.4. Suppose S is a numerical semigroup of the form S = bmMcα. We say that S is odd-filterable
with respect to M,m,α if the sum of any two elements in the semigroup with odd index is another element
in the semigroup which either has odd index, or is bigger than or equal to the collapse.

Example 6.5. Let us check that the well-tempered harmonic semigroup H from (1), as a discretization of F
by flooring, is odd-filterable. Indeed, let us denote the elements of H as follows: h1 = 0, h2 = 12, h3 = 19,
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h4 = 24, h5 = 28, h6 = 31, h7 = 34, h8 = 36, h9 = 38, h10 = 40, h11 = 42, h12 = 43, h13 = 45, h14 = 46,
h15 = 47, h16 = 48, h17 = 49, h18 = 50, h19 = 51, h20 = 52, h21 = 53, h22 = 54, h23 = 55, h24 = 56, . . .

Now, let us analyze all the sums of two elements with odd index. On one hand, h1 + h2i−1 = h2i−1 for
any i ∈ N. If one of the summands is h3, the options are h3 + h3 = h9, h3 + h5 = h15, h3 + h7 = h21, and
h3 +h2i−1, with 2i−1 > 9, which is larger than the collapse. For any other pair of summands, h2i−1 +h2j−1,
with 2i− 1, 2j − 1 > 5, the sum is larger than the collapse.

7 Emergence of the well tempered harmonic semigroup

In this section we prove that the maximum number of equal divisions of the octave such that the discretiza-
tions of the golden fractal monoid F and the logarithmic monoid L coincide, and such that the discretiza-
tion is odd-filterable is 12. This is nothing else but the number of equal divisions of the octave in classical
Western music.

Theorem 7.1. There exists a numerical semigroup of multiplicitym that is simultaneously a discretization of the log-
arithmic monoidL and a discretization of the golden fractal monoidF if and only ifm ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 18}.

Proof. In Table 1 we give a numerical semigroup of each multiplicity, whenever it exists, such that it is a
simultaneous discretization of L and F .

Let us prove now that there are no αL, αF such that b11LcαL
= b11F cαF

, and b11LcαL
is a numerical

semigroup. Indeed, suppose that, conversely, αL, αF satisfy both conditions. Observe that,

11λ2 = 11 11ϕ2 = 11
11λ3 = 17.4346 11ϕ3 = 17.7984
11λ4 = 22 11ϕ4 = 22

where the real values have been rounded. The fact that b11LcαL
= b11F cαF

implies that b11λ3cαL
=

b17.4346cαL
equals b11ϕ3cαF

= b17.7984cαF
, which in turn must be either 17 or 18. Since 11ϕ8 = 33 and

11ϕ9 = 35.5967, we deduce that 17 + 17 = 34 6∈ b11F cαF
, and so 17 can not be in the discretization. On the

other hand, since
11λ8 = 33 11ϕ8 = 33
11λ9 = 34.8692 11ϕ9 = 35.5967
11λ10 = 36.5412 11ϕ10 = 37.2016

we deduce that 18 + 18 = 36 does not belong to the discretization. So, the discretization is not a numerical
semigroup.

Similar arguments show that for m = 14, 15, 16, 17, and for m > 18, there are no αL, αF such that
bmLcαL

= bmF cαF
, and bmLcαL

is a numerical semigroup. As an example, for m = 34, 34λ5 = 78.9456
while 34ϕ5 = 80.9868. For multiplicities larger than 34, it holds that mϕ4 = mλ4 = 2m, while mϕ5 >
mλ5 + 2 > 2m. So, to have bmLcαL

= bmF cαF
, one needs bmλ5cαL

= bmϕ5cαF
, which is impossible since

mϕ5 > mλ5 + 2.

Theorem 7.2. There exists an odd-filterable numerical semigroup of multiplicity m that is simultaneously a dis-
cretization of the logarithmic monoid L and a discretization of the golden fractal monoid F if and only if m ∈
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12}.

Proof. First of all, we leave to the reader to check that the numerical semigroups in Table 1, except for
b9Lc0.13 = b9F c0.56, b13Lc0.18 = b13F c0.94, and b18Lc0.05 = b18F c0.88, are odd-filterable. The case of
flooring of F with multiplicity 12 is shown in Example 6.5, and the other cases can be shown in a similar
way.

Let us show now that there is no odd-filterable numerical semigroup of multiplicity 9 that is simulta-
neously a discretization of L and a discretization of F . Indeed, suppose that S = b9LcαL

= b9F cαF
is a

numerical semigroup for some αL and some αF . Let S = {s1 = 0, s2, s3, . . . }, with si < si+1 for all i ∈ N.
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• b1Lc0.50 = b1F c1.00 = {0, 1, . . . }
• b2Lc0.50 = b2F c1.00 = {0, 2, 3, . . . }
• b3Lc0.50 = b3F c0.85 = {0, 3, 5, 6, 7, 8, . . . }
• b4Lc0.28 = b4F c0.47 = {0, 4, 7, 8, 10, 11, 12, 13, 14, . . . }
• b5Lc0.50 = b5F c0.90 = {0, 5, 8, 10, 12, 13, 14, 15, 16, 17, . . . }
• b6Lc0.01 = b6F c0.41 = {0, 6, 10, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, . . . }
• b7Lc0.50 = b7F c0.97 = {0, 7, 11, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, . . . }
• b8Lc0.35 = b8F c0.83 = {0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, . . . }
• b9Lc0.13 = b9F c0.56 =

= {0, 9, 15, 18, 21, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, . . . }
• b10Lc0.50 = b10F c1.00 =

= {0, 10, 16, 20, 23, 26, 28, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, . . . }
• b12Lc0.40 = b12F c1.00 =

= {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, . . . }
• b13Lc0.18 = b13F c0.94 =

= {0, 13, 21, 26, 31, 34, 37, 39, 42, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, . . . }
• b18Lc0.05 = b18F c0.88 =

= {0, 18, 29, 36, 42, 47, 51, 54, 58, 60, 63, 65, 67, 69, 71, 72, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, . . . }

Table 1: Numerical semigroups of each multiplicity, whenever they exist, such that they are simultaneous
discretizations of L and F .

We deduce that s3 must be either 14 or 15. Since 28 is not in b9F cα for any α, s3 must be 15. Then 30 must
be in b9F cαF

and the unique option is 30 = b9λ10cαL
= b9ϕ10cαF

, which has even index and is smaller than
the collapse. Then the semigroup can not be odd-filterable.

Similarly, it can be shown that there is no odd-filterable numerical semigroup of multiplicity 13 or 18
that is simultaneously a discretization of L and a discretization of F , and it is left to the reader.

Let us finally check that the numerical semigroup H in the introduction, which equals b12Lc0.40 =
b12F c1.00 in the proof of Theorem 7.1 is, indeed, the unique simultaneous discretization of L and F with
multiplicity 12.

Theorem 7.3. The unique numerical semigroup of multiplicity 12 that is simultaneously a discretization of the
logarithmic monoid L and a discretization of the golden fractal monoid F is the well-tempered numerical semigroup
H .

Proof. Suppose that S = b12LcαL
= b12F cαF

is a numerical semigroup for some αL and some αF . Let
S = {s1 = 0, s2, s3, . . . }, with si < si+1 for all i ∈ N. From s5 = b12λ5cαL

= b12ϕ5cαF
we deduce that

αL 6 0.8631 and that αF > 0.5836. Consequently, s3 = 19. Now, 38 = 19 + 19 must be in S and so
αF > 0.8328. From this bound on αF and the first bound on αL we deduce that S = H .

8 Conclusion

Theorem 7.2 states that multiplicity 12 is the largest value for which the discretization of the logarithmic
monoid keeps the property that every interval is successively divided using the same ratio (in fact, the
golden ratio), and also, it satisfies the property of being half-closed-pipe admissible. The number 12 is
indeed the number of equal divisions of the octave in classical Western music.

Tuning systems dividing the octave in more than 12 parts, like quarters of tone or Holdrian commas
miss at least one of these properties.
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Theorem 7.3 shows that the well-tempered harmonic semigroup H in (1) is the unique simultaneous
discretization of multiplicity 12 of the unique product-compatible tempered monoid and the unique non-
bisectional fractal monoid of granularity 2. In other words, the well-tempered harmonic semigroup H is
the unique simultaneous discretization of multiplicity 12 of the logarithmic monoid and the golden fractal
monoid.

For its importance, we believe H should be given a name and we suggest to call it the well-tempered
harmonic semigroup.
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