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1. Introduction 16 

The main biochemical change during wine alcoholic fermentation is the transformation of sugars from 17 

grape must into ethanol by the action of yeasts. In order to obtain high quality wines a close monitoring 18 

of this process is of utmost importance [1]. In the wine cellar, simple measurements such as density, pH 19 

and temperature are the main quality control parameters, which are usually measured once or twice a day 20 

to ensure a correct progression of the process and to avoid stuck and sluggish fermentations or 21 

contamination-related processes, which may lead to low quality wines [2]. If unexpected deviations 22 

occur, more exhaustive off-line laboratory analyses are needed, which involve delayed results that may 23 

not allow readjusting the process when it could still be solvable. Process Analytical Technologies (PAT) 24 

are based on the idea that quality of a product should be evaluated throughout the manufacturing process, 25 

by performing real-time measurements during processing instead of carrying out quality control 26 

measurements in the final product. PAT methodologies ensure that if a product operates under Normal 27 

Operation Conditions (NOC) it will probably meet the final quality requirements at the end of the 28 

process. PAT guidelines are founded on process understanding together with the fact that modern process 29 

analyzers can provide non-destructive measurements containing information related to biological, 30 

physical, and chemical attributes of the materials being processed [3]. Despite being developed for the 31 

pharmaceutical manufacturing, PAT have been gaining ground in the food and beverages industries [4]. 32 

In particular, when dealing with wine alcoholic fermentation monitoring and process control, the 33 

implementation of fast analytical tools, such as vibrational spectroscopy, has gained popularity over the 34 

last decades. Vibrational spectroscopy falls into the PAT guidelines as it allows getting real-time 35 

information of the process and taking corrective measures, if necessary, before obtaining the final product 36 

[5]. Among the different vibrational spectroscopy options, attenuated total reflectance mid-infrared 37 

spectroscopy (ATR-MIR) is a very valuable PAT tool for food and beverages analysis, as it is a fast and 38 

easy-to-use technique, which requires little or no sample pre-treatment [6]. 39 

To obtain the useful process information, the use of vibrational spectroscopy involves the acquisition of 40 

multivariate data and so it implies the application of multivariate statistical process control (MSPC) 41 

techniques. Among the different MSPC charts, the ones based on Principal Components Analysis (PCA) 42 

to monitor fed-batch processes are simple to represent and easy to interpret [7]. However, fed-batch 43 

processes naturally present several features, which make the modelling of NOC (Normal Operation 44 

Conditions) batches a difficult task (e.g. time-varying dynamics and uneven batch length), and different 45 



approaches can be adopted depending on the type of process followed and the type of faults sought [8]. In 46 

batch processing, data can be represented as a three-way matrix of dimensions IxJxK (where I is the 47 

number of samples, J refer to number of variables and K is the number of time points of each batch). A 48 

decomposition into a two-way matrix of dimensions IJxK or IxJK can be applied to build multivariate 49 

PCA models. The basis of MSPC is very similar to the traditional univariate SPC methods, where the 50 

confidence limits are built based on data obtained only from NOC batches. To study the evolution of new 51 

batches, the statistical information from the PCA model is used. Particularly, Q residuals and Hotelling’s 52 

T2 values (calculated under normal distribution assumptions) are the most used statistical measures to 53 

detect irregular batches. Q residuals represent the squared perpendicular distance of a sample at a specific 54 

time point from the reduced space defined by the PCA model. They become greater when a batch 55 

deviates over time from NOC batches. Then, the irregular batch, when projected, lies outside the model, 56 

perpendicular to the NOC PCA space. In turn, Hotelling’s T2 values provide information of how far a 57 

batch is from the centre of the NOC reduced space. In this case, an abnormal batch would be positioned 58 

further away from the centre of the model as the deviation becomes more evident [9]. 59 

The combination of vibrational spectroscopy and MSPC tools to detect deviations during fed-batch 60 

processes in the food and beverages industries has already been considered, confirming the growing 61 

interest to integrate fast analytical tools and MSPC techniques into the process control line. Using FT-62 

NIR, disturbances during the coffee roasting process were detected outside the limits of both T2 and Q 63 

residual charts before the end of the process [10]. Similarly, faulty batches during the renneting process of 64 

milk were detected in the Q residuals chart [11]. Also, Q charts were used to detect off-specification 65 

coffee beans during storage in different packaging conditions using Raman spectroscopy [12]. However, 66 

information is very limited on the use of spectroscopic data and MSPC charts for on-line monitoring of 67 

fermentation processes in the agro-food sector to provide early indications of process deviations [13,14]. 68 

It has already been shown that ATR-MIR is suitable for real-time bioprocess monitoring [15] and 69 

particularly for monitoring industrial alcoholic fermentation processes [16,17]. In the winemaking 70 

industry, alcoholic fermentation monitoring using ATR-MIR has been widely studied and a review on the 71 

usefulness of this technique for process control can be found elsewhere [18]. Furthermore, it has been 72 

reported that ATR-MIR can detect deviations from NOC, including sluggish fermentations and 73 

microbiological spoilage [19,20], suggesting that this tool could be used for process control. The 74 



implementation of real-time monitoring in the cellar, together with MSPC charts, could be more efficient 75 

than performing off-line laboratory analyses, which provide delayed results and may not allow taking 76 

corrective measures when a deviation could still be solvable. Yet, the potential of MSPC charts in this 77 

field has not yet been fully investigated [21].  78 

The aim of this study was to develop MSPC control charts as a tool for spoilage detection in the wine 79 

alcoholic fermentation process. This spoilage was promoted by inducing an additional malolactic 80 

fermentation (MLF) in some wine fermentations to evaluate the capability of the MSPC charts to detect 81 

this deviation from the normal process. 82 

 83 

2. Materials and methods  84 

2.1 Samples 85 

The grape must employed to perform the small-scale fermentations (microvinifications) was obtained by 86 

the adequate dilution of a concentrated white grape must from Mostos Españoles S.A. (Ciudad Real, 87 

Spain). The diluted sugar (glucose and fructose) concentrations were 200  10 g L-1, in order to 88 

reproduce natural variability in samples. In addition, yeast assimilable nitrogen was adjusted by 89 

supplementation with 0.30 g L-1 of ENOVIT® (SPINDAL S.A.R.L Gretz Armainvilliers, France) and 90 

0.30 g L-1 of Actimaxbio* (Agrovin, Ciudad Real, Spain). 91 

Microvinifications were conducted in 500 mL conical flasks by adding 350 mL of diluted must. Each 92 

flask was inoculated with the commercial dry yeast strain Saccharomyces cerevisiae “E491” (Vitilevure 93 

Albaflor, YSEO, Danstar Ferment A.G., Denmark), to reach a final concentration of 3·106 CFU mL-1. In 94 

total, 25 NOC microvinifications were carried out in 4 different experiments throughout the year. To 95 

emulate the variability due to a real grape ripening process, each one of the four microvinification 96 

experiments used a must with a slightly different sugar concentration. Simultaneously to the NOC 97 

experiments, 8 additional microvinifications were intentionally contaminated with a freeze-dried blend of 98 

Lactic Acid Bacteria (Lactobacillus plantarum and Oenococcus oeni) in two different concentrations, 4 x 99 

2.5·106 and 4 x 4·106 CFU mL-1, to promote malolactic fermentation at different time points of the 100 

alcoholic fermentation. Samples were coded as MLF1 and MLF2, respectively. Rehydration of the 101 

microorganisms before co-inoculation was done following the suppliers’ indications. 102 



All the microvinifications were kept under constant temperature of 18 ºC until the end of the 103 

fermentations. Both alcoholic and malolactic fermentations were controlled by routine analysis twice a 104 

day until the end of both fermentations in order to ensure the normal progress of both processes (we 105 

considered that alcoholic fermentation ended when density was under 0.995 g L-1 and malolactic 106 

fermentation ended when L-malic acid concentration was under 0.06 g L-1). Alcoholic fermentations were 107 

controlled with density measurements with a portable densimeter (Densito2Go, Mettler Toledo, United 108 

States). Regarding to the malolactic fermentations, these were controlled by determining the L-malic acid 109 

concentration using a Y15 Analyser (Biosystems, Barcelona, Spain). pH was also continuously measured 110 

in both fermentations using a portable pH-meter with a 201 T portable electrode (7+ series portable pH-111 

meter, XS Instruments, Italy). All the analyses were performed right after sample collection. 112 

2.2 ATR-MIR analysis 113 

After homogenization, 1,5 mL were collected at least once a day and centrifuged at 10000 rpm for 10 114 

minutes, to avoid the scattering effect produced by the microorganisms present in the sample. The pellet 115 

was discarded, and the supernatant was kept in 1.5 mL eppendorfs for further analysis. Infrared 116 

measurements were performed with a portable 4100 ExoScan FTIR instrument (Agilent, California, 117 

USA), equipped with an interchangeable spherical ATR sampling interface, consisting on a diamond 118 

crystal window. Spectra were collected using our previously optimized methodology [14] over the range 119 

4000 to 650 cm-1 (resolution 8 cm-1; 32 scans; triplicate per sample; air-background before sample). A 120 

drop of the sample was placed on top of the crystal and the spectrum was recorded immediately 121 

afterwards. Spectra were obtained using Microlab PC software (Agilent, California, USA) and data was 122 

saved as .spc files. The mean of the triplicates was used in subsequent data analysis.  123 

2.3 Multivariate statistical process control 124 

The spectral region selected to proceed with the study was from 1309 to 1082 cm-1, which according to 125 

our previous studies is the region related to the malolactic fermentation [20]. The collected data consisted 126 

of a three-way matrix containing the absorbance values at different wavenumbers (J=62), for NOC and 127 

MLF samples (I=33) and at different sampling times (K) depending on the batch. Sampling times ranged 128 

from 0 to 210 hours, when the completion of both alcoholic and malolactic fermentations was achieved. 129 

Then, a time-wise unfolding of the three-way array was performed, resulting in a matrix with dimension 130 



IKxJ. After that, different pre-processing strategies where tested and optimized, including first and second 131 

derivatives, Savitzky-Golay smoothing and Standard Normal Variate (SNV). After spectral pre-132 

processing, data were mean-centered.  133 

First, a preliminary PCA model was built using only the data from the first experiment, in order to 134 

qualitatively visualize the main changes in the spectra and to detect trends in sample types (NOC and 135 

MLF). This model allowed to explore the variability of batches from the same experiment and the 136 

variability associated to the malolactic fermentation.  137 

Next, three different strategies were applied with the unfolded, two-dimensional (IKxJ) matrix. In the first 138 

one, only NOC batches from a sole experiment were used to build a NOC PCA model (matrix of 340 139 

rows – samples x time, and 62 columns - wavelengths). In the second strategy, NOC batches from the 140 

other experiments were added to build a new NOC PCA model including the variability among 141 

experiments. Thus, the 10 NOC samples from the previous model were used, but the matrix was 142 

augmented using 15 more NOC samples from the others three different experiments. The final NOC 143 

matrix consisted of 771 rows (NOC samples coming from the 4 experiments x time) and 62 columns 144 

(wavelengths). In both approaches, samples from all the sampling times were used.  Finally, in the third 145 

strategy, eight-hour models (interval PCA models) were developed used all the NOC data. A scheme of 146 

the procedure followed for all models is shown in Figure 1. 147 

In the three strategies, MLF samples (272 rows – samples x time, x 62 columns - wavelengths) were 148 

projected in the different NOC PCA models by calculating their scores in the NOC reduced space and 149 

using the loadings obtained from each model. The capability of the PCA models to detect a deviation 150 

during the process using the defined reduced space and the statistical performance of the MLF samples 151 

were evaluated.  All models were validated by applying the Kennard-Stone algorithm [22] using half of 152 

the NOC samples in the calibration set to ensure that the whole NOC variability is represented.  153 

For each one of three models, T2 and Q control charts were built. A 95% Hotelling’s T2 confidence limit 154 

was calculated using the NOC calibration samples, and then NOC samples from the validation set and all 155 

MLF samples were plotted in the Hotelling’s T2 control charts, representing T2 values vs time. Similarly, 156 

a 95% confidence limit was calculated for the Q residuals using the NOC calibration samples, and then 157 



NOC samples from the validation set and MLF samples were projected in the Q control charts, 158 

representing in this case Q values vs time. 159 

 160 

Figure 1. Scheme of the procedure applied to build the IKxJ PCA models for NOC samples and the 161 
projection of MLF samples. 162 

 163 

All multivariate data analyses were performed using the PLS Toolbox v8.7 (Eigenvector Research Inc., 164 

Earglerock, USA) with MATLAB R2015b (The MathWorks, Natick, USA). 165 

 166 

3. Results and discussion 167 

 3.1. Evolution of alcoholic and malolactic fermentations  168 

As previously reported [23,24], the regions that show the greatest variability during alcoholic 169 

fermentation in the mid-infrared region are between 950 and 1500 cm-1, due to sugars, acids, proteins and 170 

ethanol bonds absorption. In this region, the greatest variability associated to the biochemical 171 

transformation of sugars into ethanol and carbon dioxide is observed between 950 and 1100 cm-1. 172 

However, when using the region from 950 to 1500 cm-1, it was not possible to distinguish between NOC 173 

and MLF because spectral changes due to malolactic fermentation in this region were hidden by spectral 174 

changes corresponding to the main process (alcoholic fermentation) (data not shown). For this reason, to 175 

focus on the malolactic fermentation process, we used the region between 1309 to 1082 cm-1, which 176 

maximised the differences between alcoholic and malolactic fermentations.  177 



The optimized pre-processing used was first derivative (1st order polynomial) with Savitzky-Golay 178 

smoothing through 15 points, SNV and mean-center. A preliminary PCA model was built only using 179 

samples from a single experiment (consisting on 10 NOC and 8 MLF batches), attempting to screen 180 

different behaviours between NOC and MLF samples. The number of principal components used for this 181 

purpose was optimized to 2 PCs, to well-define alcoholic fermentation and avoid overfitted models. As it 182 

can be observed in Figure 2, the first principal component (98.61% explained variance) follows the trend 183 

of alcoholic fermentation kinetics, as shown in our previous work [20]. From the second principal 184 

component (accounting for only a 1.04% of the total variability), a difference can be observed between 185 

NOC and MLF samples from hours 60-80 until the end of the process. It must be taken into account that 186 

the greatest variability in the spectra is due to the alcoholic fermentation, as it involves the transformation 187 

of sugars into ethanol from an initial concentration of 200 g L-1. On the other hand, at the beginning of 188 

malolactic fermentation, malic acid concentration is only around 2 g L-1 and the variability in the signal is 189 

much lower. Moreover, even though the second bioprocess does not interfere in the first bioprocess, 190 

sugars’ and acids’ bonds absorb in the same regions of the spectra, which makes it hard to detect MLF 191 

deviations. Figure 2 shows that differences between NOC and MLF start to be noticeable 80 hours after 192 

the beginning of the process, and a separation trend can be appreciated between 40 and 80 hours. 193 

 194 

Figure 2. Scores for PC1 (left) and PC2 (right) for a singles batch fermentation. 195 

 196 

3.2 MSPC charts for monitoring fermentations 197 

  3.2.1 Single experiment strategy 198 

The MSPC charts used in this strategy are based on the Q and T2 statistics. NOC samples used to build 199 

the PCA in section 3.1 were also used to build a single experiment NOC PCA model (matrix 340x62). 200 

The scores of this model were used to calculate the T2 95% confidence limit, and the residual matrix of 201 



this model was used to calculate the Q-residuals 95% confidence limit. Q and T2 vs time control charts 202 

are shown in Figure 3 for the 10 NOC and the 8 MLF batches (4 MLF1 and 4 MLF2). In both charts, 203 

NOC samples lie below the 95% confidence limit during the main course of the alcoholic fermentations. 204 

In contrast, MLF samples in the Q control chart show a significant difference from NOC samples from 80 205 

hours onwards, as it was already observed in the PCA scores plot (Figure 2, section 3.1). On the other 206 

hand, all MLF samples lie below the confidence limits in the T2 chart. Nevertheless, MLF samples exhibit 207 

a trend of higher T2 values with respect to NOC samples from hour 110. These higher values could be 208 

explained because malolactic fermentation at this time is almost finished, and the distance to the centre of 209 

the model increases but not significantly, from a statistical point of view.  210 

The fact that MLF samples are distinguishable from NOC samples in the Q chart but not in the T2 chart is 211 

a reasonable result because the enormous variability in the spectra due to alcoholic fermentation 212 

(especially between hours 70 and 90 when tumultuous fermentation takes place (in figure 2, from hour 40 213 

to 120, when sugar consumption is at its fastest rate) hampers the possibility to establish a confidence 214 

limit to differentiate the samples. It is important to remark that, despite the fact that a different trend 215 

between MLF and NOC samples can be seen after >100h, all samples fall under the confidence limit 216 

because of the mentioned variability among samples between hours 70 and 90h. Furthermore, malolactic 217 

fermentation evolution in the spectrum is jumbled with alcoholic fermentation, explaining the difficulty in 218 

finding the differentiation. 219 

This methodology was validated by applying the Kennard-Stone algorithm. NOC samples were split 220 

using 50% of them to build the model (calibration set) and the remaining 50% for validation. Q values 221 

from the validation NOC samples were under the new Q residual confidence limit. Similarly, MLF 222 

samples showed a similar behaviour as in the model built with all NOC samples.  223 

This time-wise unfolding approach is proposed as an alternative to IxJK batch-wise unfolding [8], were 224 

the exact same number of sampling times is required in order to project new suspected samples. We 225 

previously reported the use of a time-wise approach to detect sluggish alcoholic fermentations [14]. Here, 226 

any spectrum from a MLF batch can be projected onto model, and the model is able to determine if the 227 

sample is under or above the confidence limit, with no need to neither follow its complete alcoholic 228 

fermentation, nor to have the same exact amount of sampling points during the process. To confirm this 229 

idea, MLF samples from a single time point (hour 119), which were above the Q confidence limit, were 230 



projected solely and, as samples are independent of the time, they were placed above the Q confident 231 

limit.  232 

  233 
Figure 3. Q and T2 charts for a single experiment. Symbols: (x) NOC, (   ) MLF1 (   ) MLF2. 234 

 235 

 3.2.2 Multiple experiment strategy  236 

To confirm the hypothesis that it is not necessary to have the same sampling times and number of 237 

sampling points, three different experiments consisting of 15 additional NOC batches were added to the 238 

model. In every experiment, sampling was performed at similar, but not exactly, the same time points. 239 

This methodology perfectly agrees with the typical control timing in a winery, where the fermentation 240 

control is performed usually once or twice a day and not in each fermentation tank at the same time. In 241 

this case, as different NOC batches with different initial sugar concentrations (which implies different 242 

sugar consumption rates) were used (matrix dimensions of 771x62), the model was validated following 243 

the same procedure as in the single experiment model, assuring that NOC samples from all the 244 

experiments were included in both sets. As it can be observed in Figure 4, NOC validation samples are 245 

generally under the 95% confidence limit in both Q and T control charts, assuring the validation of the 246 

model. In this model the trend observed in the Q control chart for the MLF samples is similar as in the 247 

previous PCA model when using a single experiment (section 3.2), with a separation from hour 80 248 

onwards. For the T2 control chart, despite exhibiting the same trend observed in the model from section 249 

3.2, MLF samples are now statistically different from hour 120 until the end of the process. This may be 250 

explained because as more NOC samples are included in the NOC model, alcoholic fermentation 251 

variability is better described, and the model is able to detect the differences among NOC samples and 252 

MLF, which can now be statistically differentiated after hour 120.  253 



  254 

 255 

Figure 4. Q and T2 charts for all the experiments. (x) Calibration NOC samples, () validation NOC samples,   256 

(   ) MLF1 (   ) MLF2.  257 

 258 

As in the single experiment model, samples are independent of the sampling time and the full trajectory 259 

of the batch is not needed. Any single MLF spectrum can be projected into the model and this will be able 260 

to determine if the sample is statistically different in both Q and T2 control charts. In other words, MLF 261 

samples will appear in the same position in the Q and T2 charts as it happened when all the MLF samples 262 

were projected, regardless of the sampling times available.  263 

 3.2.3 Interval models’ strategy 264 

As it could be inferred from the T2 control chart in Figure 4, during tumultuous fermentation (in figure 2, 265 

from hour 40 to 120), higher T2 values are observed. It would then be useful to build specific models for 266 

certain time intervals, as more accurate confidence limits could be stablished, especially for Hotelling’s 267 

T2. An 8-hour time interval was defined, because this period of time would be sufficient to take corrective 268 

measures in a winery and also, the changes in the matrix during this period would not affect the final 269 

product quality.  270 

In this approach, all NOC and MLF matrix (771x61) was divided into 8-hour time-intervals, and PCA 271 

models were built for each interval until the separation of MLF samples. Matrixes of different sizes were 272 

used depending on the number of samples available at each time-interval. With the T2 control charts, no 273 

statistical separation was achieved, showing that T2 statistics does not represent a useful way to detect 274 

deviations. The model built with the time interval between 65 and 72 hours (Figure 5) shows a MLF 275 



separation trend. This time interval model could be useful as an alert indicator before all MLF batches are 276 

completely separated, to foresee a spoilage at early stages of the malolactic fermentation. In this case, the 277 

Q values of MLF1 samples are slightly smaller than the ones of MLF2, as MLF2 samples have a higher 278 

concentration of LAB (higher L-malic acid consumption rate). The complete statistical separation in the 279 

Q chart was obtained in the model between 81 and 88 hours. Models were also built for subsequent time 280 

intervals, in order to assure that the separation is consistent until the end of the malolactic fermentation. 281 

Our results show that a malolactic fermentation detection threshold can be established as an indicator that 282 

a deviation is arising at the 65-72h interval, when 40-50% of this bioprocess has taken place. At this 283 

point, additional measures should be taken to readjust the principal process (alcoholic fermentation) and 284 

to avoid having a worse situation which could lead to wines with organoleptic defects or even worse, the 285 

loss of a whole vintage. 286 

 287 

Figure 5. Time interval 65-72 hours. (X) NOC samples, (   ) MLF1, (   ) MLF2.  288 

 289 

 4. Conclusions 290 

In the best of our knowledge, this is the first time that Q residuals and Hotelling’s T2 control charts are 291 

used for the detection of an unwanted malolactic fermentation during alcoholic fermentation in wine 292 

based on ATR-MIR spectroscopic data. It was demonstrated that a specific signal pretreatment (e.g. batch 293 

alignment) is not required since typical year-to-year variability is considered in the global model. Also, 294 

using specific interval models improves the performance of the statistical detection of malolactic 295 

fermentation in the Q residual control chart. In conclusion, the different approaches here presented have 296 



the potential to be used in the oenological field, as an early detection of fermentation problems based on 297 

MSPC charts,  298 
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