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Abstract

This paper explores the effect of market structure on quality determination for com-

plementary products. The focus is on the airline industry and the effect of airline

alliances on flight frequency, an important element of service quality. With zero

layover cost, the choice of flight frequencies has the same double-marginalization

structure as in the usual alliance model, leading to a higher frequency in the alliance

case as double marginalization is eliminated, along with a lower full trip price and

higher traffi c. The surprising result of the paper emerges with high-cost layover time,

where double marginalization in frequencies is absent and where an alliance reduces

service quality via a lower frequency, with the full price potentially rising (in which

case traffi c falls).
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1 Introduction

Analysis of the choice of product quality has a long history in industrial organization. In

early work, Spence (1975) and Sheshinski (1976) showed that the product quality chosen

by a monopolist can be higher or lower than the socially optimal quality, with the outcome

depending on the shape of the demand curve. Swan (1970) and Levhari and Peles (1973)

demonstrated, however, that if quality takes the form of product durability, then a mo-

nopolist and a competitive firm choose the same quality level, with the monopoly choice

thus being socially optimal even though quantity is too low. Much subsequent research

was devoted to exploring the robustness of this finding, with Schmalensee (1979) providing

a survey.

Despite this attention to product-quality issues, the literature has mostly overlooked

a highly relevant question: how does market structure affect quality determination for

complementary products? For such products, consumption of one of the goods enhances

the benefits from consumption of the other. As is well known, pricing of complementary

goods by separate producers is ineffi cient due to (horizontal) double marginalization, with

prices lower when both goods are produced by a single firm. When the qualities of the two

complementary goods must also be chosen, production by separate firms widens the scope

for double marginalization, which now affects quality as well as price. The intriguing ques-

tion is then whether a change in market structure from separate to single-firm production

has beneficial effects on prices and qualities. In other words, does a single producer offer

both lower prices and higher qualities than separate firms in providing the complementary

goods? Economides (1999) offers the only study of this question and reaches an affi rmative

answer, although his price conclusion depends on functional forms.

Given the importance of the link between market structure and complementary-product

quality and its slender treatment in the previous literature, further research is clearly

needed. Accordingly, the present paper offers a new analysis, one that is grounded in a

particular industry where a noteworthy type of product complementarity exists that guides

the formulation of the model. The industry is airlines, and the complementarity arises in

trips that require the use of two different carriers. In particular, suppose that travel from

city X to city Y cannot be carried out using a single airline. Instead, the passenger must

first fly on airline 1, which provides service from city X to an intermediate airport H,

then switching to airline 2, which provides service from H to Y. The two complementary

products are then travel from X to H and travel from H to Y, and they represent perfect
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complements that must both be consumed in making a two-airline XY trip.

Historically, such two-airline trips were provided by individual carriers operating at

arm’s length with minimal coordination. In the early 1990s, however, a market structure

revolution occurred: international airline alliances came into being, with the goal of making

two-carrier trips more like travel on a single airline. With a grant of antitrust immunity,

alliances gained the ability to coordinate in setting fares and flight frequencies for such two-

airline trips as if they were a single firm (before, airlines would set a separate subfares for

their own portions of the trip and could not coordinate on schedules). The result was the

elimination of double marginalization in fare setting, which characterized the pre-alliance

world, leading to lower fares for XY-type trips.1

The purpose of the paper is to analyze the effect of this market-structure change on

the choice of airline service quality, as captured by the flight frequencies offered by the

collaborating carriers. Although service quality includes many different dimensions on

the ground (bag handling, gate location) and in the air (in-flight services, legroom, seat

characteristics), higher flight frequency is an important quality attribute since it reduces

schedule delay, defined as the gap between a passenger’s preferred and actual arrival times.2

With more frequent flights, a passenger can arrive closer to his or her preferred time.3 The

1Chen and Gayle (2007) develop an alternate result by showing that codesharing may not eliminate

double marginalization in markets where a codeshare partner also offers a competing direct service. The

reason is that this airline has an incentive to soften competition for its own service by not eliminating

the margin on its segment of the codeshare product. Gayle (2013) confirms empirically this theoretical

prediction.
2Gayle and Thomas (2015) and Chen and Gayle (2019) explore empirically the effects of alliances and

mergers on a different measure of service quality based on routing distance. A circuitous connecting trip

through an inconveniently located hub yields a high routing distance and thus low service quality according

to their measure.
3Given its importance, the recent literature has added a frequency dimension to theoretical models in

studying issues such as airline network structure, schedule competition between carriers, intermodal com-

petition, the emergence of regional jets, and the effects of mergers. Using a monopoly model, Brueckner

(2004) studies the effect of network structure (hub and spoke vs. fully connected) on flight frequency.

Brueckner and Flores-Fillol (2007) and Brueckner (2010) include scheduling decisions in models of airline

competition. de Palma, Criado and Randrianarisoa (2018) model frequency competition between carriers

serving nearby airports using a Hotelling model. An empirical study by Pai (2010) shows effect of route

distance on flight frequency. Bilotkach, Fageda and Flores-Fillol (2010) analyze how intermodal competi-

tion (cars vs. air services) affects the relationship between route distance and flight frequency. Brueckner

and Pai (2009) and Fageda and Flores-Fillol (2012a and 2012b) study the possible emergence of new point-

to-point routes served by regional jets (offering higher frequencies) or by low-cost carriers (offering lower
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question addressed by the paper is thus: what happens to the two carriers’flight frequencies

on the XH and HY routes, and to the XY fare they charge, when the airlines become alliance

partners? Does the XY fare beneficially fall and do flight frequencies beneficially rise? Or

are other outcomes possible? As will be seen, the answer depends on aspects of passenger

preferences.

The paper therefore provides what is, in effect, a theoretical case study of the impact of

market structure on product quality, focusing on a particular industry where a specific type

of product complementarity exists. The results are more broadly useful, however, given the

sparsity of research on this question. The paper simultaneously advances the theoretical

literature on airline alliances (partly built on Brueckner, 2001) and an associated empirical

literature, both have which have solely focused on price effects (with the empirical literature

confirming the predicted XY fare reduction).4

To capture service quality, the passenger demand function in the model incorporates

aversion to both schedule delay, as discussed above, and connecting layover time.5 This

disutility depends on the flight frequencies of the two carriers. When the frequencies are

equal ex ante, as in the case of an alliance (which sets common values), layover time is

zero and schedule delay is proportional to the reciprocal of the common frequency, as in

the previous models that ignore flight connections. But when the carriers are nonaligned

and choose their frequencies independently, the values differ ex ante, so that airline 1’s

arrivals at H are potentially mismatched with airline 2’s departures, requiring a layover.

frequencies). Richard (2003) studies the effect of mergers on flight frequency, and Bilotkach, Fageda and

Flores-Fillol (2013) examine the effects of the merger between Delta and Northwest on flight frequencies

at the hubs dominated by the two airlines before the merger. Brueckner and Luo (2014) estimate reaction

functions for carriers engaged in frequency competition. Borenstein and Netz (1999) study departure-time

competition without focusing on flight frequency.
4The theoretical literature includes papers by Oum, Park and Zhang (1996), Park (1997), Park and

Zhang (1998), Brueckner and Whalen (2000), Brueckner (2001), Park, Zhang and Zhang (2001), Hassin

and Shy (2004), Bilotkach (2005), Heimer and Shy (2006), Zhang and Zhang (2006), Flores-Fillol and

Moner-Colonques (2007), Brueckner and Proost (2010), and Fageda, Flores-Fillol and Theilen (2019). The

empirical literature includes papers by Brueckner and Whalen (2000), Brueckner (2003), Whalen (2007),

Wan, Zou and Dresner (2009), Brueckner, Lee and Singer (2011), Gillespie and Richard (2012), Gayle and

Brown (2014), and Calzaretta, Eilat and Israel (2017). While these papers study international alliances,

Bamberger, Carlton and Neumann (2004), Ito and Lee (2007), and Armantier and Richard (2008) study

domestic alliances. Other papers based on different conceptual frameworks include Park and Zhang (1998

and 2000).
5See Luttmann (2017) for an estimation of the value of layover time in the US airline industry.
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The challenge, then, is to derive an expression for passenger disutility from schedule delay

and layover time in the no-alliance case, where frequencies differ ex ante. This derivation

is a major contribution of the paper.

In order to show how the particular form of complementarity affects the analytical

conclusions, we carry out the required derivation under two different polar-case assumptions

that turn out to affect complementarity: a zero cost for layover time and a layover cost

high enough so that passengers completely avoid layovers. The first case could apply to

leisure passengers and second to business passengers. In both cases, the ex-post layover

cost is zero, either by assumption (first case) or by choice (second case), so that passenger

disutility (denoted g) consists entirely of schedule-delay cost. With zero-cost layover time,

we show that g is proportional to the sum of the reciprocals of the individual carrier flight

frequencies, so that the qualities of both products matter to consumers in a standard way.

This disutility expression is added to the sum of the subfares charged by the carriers for

their portions of the XY trip, leading to the full trip price. With this additive structure for

both subfares and frequencies, we might expect that the standard double marginalization

result on fares could also extend to frequencies, with frequency rising and the overall fare

falling in moving from the no-alliance to the alliance case.6

Alternatively, with high-cost layover time, passengers choose flights whose arrival and

departure times at the hub coincide so as to avoid any layover. In this case, we show that g

is proportional to the reciprocal of theminimum of the two airline frequencies, so that only

the one of the two product qualities matters despite complementarity. With the additive

structure eliminated, we would no longer expect double marginalization in the choices of

frequencies by nonaligned carriers. Exploration of this alternate case thus provides another

perspective on product-quality determination for complementary goods, with consumers

just caring about the quality of one good. This is the good with the lower quality, namely,

the service offered by the airline with the lower of the two flight frequencies.

The results of the paper can be summarized as follows. With zero-cost layover time,

an alliance raises flight frequency relative to the no-alliance case, in line with the predicted

double marginalization story. Interestingly, however, the same conclusion need not apply

6It should be noted that an incomplete line of reasoning on the frequency impact of alliances would

argue that a fare reduction from elimination of double marginalization would spur higher traffi c and thus

a need for more capacity in the form of higher frequencies. This argument ignores the effect of frequency

on product quality and thus on demand. A fuller analysis that takes the demand effect into account is

thus required.
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to fares, with the overall fare being either higher or lower than in the non-alliance case.

However, an alliance does beneficially reduce the full trip price (fare plus schedule-delay

cost), thus yielding the same increase in traffi c as in the standard model.

With high-cost layover time, an alliance reduces the overall fare, as in the standard

model. But since the high-cost case does not exhibit the double-marginalization structure

of the low-cost case with respect to frequencies, the opposite frequency impact occurs, with

an alliance leading to a reduction in flight frequency. Because of lower frequency, the full

trip price can either rise or fall, so that an alliance could lead to a reduction in traffi c,

in a surprising reversal of the standard result. The upshot is that, when a service-quality

dimension involving flight frequencies is added to an alliance model, the conclusions it

generates may be unfamiliar. More generally, these results show that, when the quality of

only one of two complementary goods matters to consumers, single-firm production may

lead to unexpected effects.

Our findings can be applied to analyze the effect of airline alliances on service-quality

heterogeneity across business and leisure markets. The different values of time for these

two passenger types affects their attitudes toward layover time and schedule delay. This

difference generates a service-quality gap between business and leisure markets in the no-

alliance case, with frequencies being higher in business markets. After an alliance is formed,

the flight-frequency difference between the two types of markets narrows but does not

disappear.

Finally, we add hub-airport congestion to the model. The literature on airport conges-

tion shows that airlines internalize the congestion they impose on themselves, neglecting

the congestion they impose on other airlines. Therefore, given that allied carriers will take

into account the congestion imposed on their partners, alliances are expected to increase

the extent of internalization. Since this internalization effect puts downward pressure on

frequencies in the alliance case, it is conceivable that the positive alliance frequency effect

in the absence of congestion (with zero-cost layovers) could be reversed when congestion

is present. The results of the analysis show, however, that this conjecture is not upheld,

with an alliance still leading to higher frequency and service quality when layover cost is

zero.

The present paper complements the closely related work of Czerny, van den Berg and

Verhoef (2016), which explores the effects of carrier cooperation on service frequency in a

general model that can be interpreted as applying to airlines. In addition to being simpler,
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our model differs by providing microfoundations that translate individual flight frequencies

into overall service quality (as described above) rather than relying on an abstract general

relationship.7

In order to orient the reader to the question being studied, section 2 of the paper

provides an analysis of the effect of market structure on product quality for complementary

goods that is more general than the subsequent airline analysis as well as more general

than that of Economides (1999). The results show that the impact is ambiguous and

depends on the form of preferences, in particular the sign of a demand cross-derivative.

The analysis then proceeds to the airline model, showing again that the market structure

impact is sensitive to assumptions on preferences, this time on the passenger’s attitudes

toward schedule delay and layover time. The analysis therefore does not resolve the general

ambiguity of the market-structure effect, but it provides specific results for a particular

and important industry context. Section 3 presents the setup for the airline model and

derives the service-quality expression in the cases of zero-cost and high-cost layover time.

Section 4 derives the conditions for profit-maximization in the no-alliance and alliance

cases and provides a general analysis of alliance effects. Section 5 derives results under

the assumption that demand is linear. Section 6 considers the effects of congestion, and

section 7 offers conclusions.

2 A general model

Consider a model where consumers purchase two goods, z1 and z2, that must be used in

fixed proportions, here assumed to be 1:1. The goods can be sold either by two separate

firms or a single firm. Each good is produced with a particular quality denoted by qi,

with i = 1, 2. Effective consumption is equal to q1z1 + q2z2 = (q1 + q2)z, where z is the

common quantity purchased. Letting y denote income and p1 and p2 the prices charged by

the two firms, consumer utility is U(x, (q1+q2)z) = U(y− (p1+p2)z, (q1+q2)z), where x is

a third good. Maximizing utility yields a demand function for z given by D(p1+p2, q1+q2),

with Dp (the derivative with respect to the first argument) negative and Dq ambiguous in

sign but assumed positive. Production cost for zi is given by c(qi)zi, where c′, c′′ > 0, so

that higher quality is more costly.

7In a related study that does not focus on flight frequencies, Bilotkach (2007) shows how allied carriers

alter their schedules to reduce connecting times while also lowering the interline fare.
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Consider first the profits of separate firms producing z1 and z2. Normalizing the number

of consumers at 1, the profit of firm i is equal to (pi − c(qi))D(p1 + p2, q1 + q2), and its

first-order conditions for choice of pi and qi are

D + (pi − c(qi))Dp = 0, (1)

−c′(qi)D + (pi − c(qi))Dq = 0. (2)

Given symmetry, both firms choose the same prices and qualities, so that the equilibrium is

given by (1)—(2) with the i subscripts removed and the arguments of D and its derivatives

replaced by 2p and 2q, where p and q are the common equilibrium values.

When a single firm produces both goods, it chooses common prices and qualities, earn-

ing a profit of 2(p− c(q))D(2p, 2q). The first-order conditions for p and q are

D + α(p− c(q))Dp = 0, (3)

−c′(q)D + α(p− c(q))Dq = 0, (4)

where α = 2. Since the separate-firm equilibrium conditions are found by setting α = 1 in

(3)—(4), the difference between the separate-firm and single-firm outcomes can be derived

by computing the comparative-static derivatives of p and q with respect to α.

First consider the effect of a change in α on p or q with the other variable held fixed.

Denoting single-firm profit by π, the expression in (3) equals πp. Differentiating (3), the

derivative of p with respect to α holding q fixed is then

∂p

∂α
= − (p− c(q))Dp

πpp
< 0, (5)

using the second-order condition πpp < 0. Therefore, separate firms, which correspond to

the lower α value of 1, set higher prices for z1 and z2 than a single firm. This result reflects

the effect of double marginalization in prices.

Similarly, holding p fixed,

∂q

∂α
= − (p− c(q))Dq

πqq
> 0. (6)

Therefore, separate firms set a lower value of q than a single firm, reflecting the effect of

double marginalization in qualities. From these findings, we derive the next observation.

Claim 1 Relative to production of the two complementary goods by separate firms, single-

firm production raises quality if price is fixed and lowers price if quality is fixed. Therefore,

the usual double marginalization results emerge when one choice variable is held fixed.
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When both p and q are chosen, their comparative-static derivatives are the solution to(
πpp πpq

πpq πqq

)(
∂p/∂α

∂q/∂α

)
=

(
(p− c(q))Dp

(p− c(q))Dq

)
, (7)

where the derivatives then depend on the sign of

πpq = Dq − αc′(q)Dp + 2α(p− c(q))Dpq. (8)

While the first two terms of πpq are positive, the termDpq, which gives the effect of q on the

slope of the demand curve, is ambiguous in sign. Therefore, the sign of the comparative-

static derivatives in (7) ambiguous as well. This result is summarized below.

Claim 2 Relative to production of the two complementary goods by separate firms, single-

firm production has ambiguous effects on price and quality when both variables are jointly

determined.

Therefore, in a fairly general model, double marginalization due to the uncoordinated

price and quality choices of separate firms yields intuitive effects when either price or quality

is held fixed.8 But when both variables are chosen together, the difference between the

price and quality choices of separate firms and those of a single firm cannot be determined

unambiguously. Hence, as in some previous investigations of the effect of market structure

on product-quality choices, this model leads to an inconclusive result.

It is worthwhile to ask whether this general ambiguity can be resolved in a model of par-

ticular industry where much more structure can be imposed on the product-complementarity

relationship. Economides (1999) generated unambiguous conclusions on both price and

quality via functional-form assumptions on costs, and the subsequent analysis will show

that, in the airline case, the details of the model specification continue to matter in deter-

mining the effect of market structure on price and the quality of complementary products.

While the analysis thus does not yield new general insights, it provides useful theoretical

results for an important industry where a crucial type of complementarity exists.

3 The setup and the form of the g function

The analysis focuses on the simple network shown in Figure 1. Airline 1 operates route

segment XH, and airline 2 operates route segment YH, but travel demand only exists in
8In Economides (1999), separate-firm production is also shown to yield a lower price holding quality

fixed.
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market XY, where passengers rely on interline service by airlines 1 and 2.

Passenger demand, which is for round trips, depends on the full price of the service,

which in turn depends on the overall XY fare and a measure of service quality:

Q = D (fare+ g [f1, f2]) , (9)

where Q is passenger traffi c (common to both carriers), f1 and f2 are flight frequencies,

and D′ < 0. The function g[·] captures passenger disutility from schedule delay and layover
time. The following subsections derive the precise functional form for g[·] under different
alternate assumptions.

As in Brueckner (2004) and Brueckner and Flores-Fillol (2007), we avoid the complexi-

ties of spatial models by using a framework where consumers ultimately care about overall

flight frequencies rather than the departure times of individual flights. This approach re-

lies on the assumption that a passenger’s preferred arrival time is unknown prior to the

purchase of the airline ticket and is thus viewed as random, being uniformly distributed

around the clock. Under this assumption, schedule delay (the difference between a passen-

ger’s preferred and actual arrival times) depends on flight arrival times but is otherwise

random, although its expected value (which matters to the consumer) can be derived con-

ditional on flight times. Note that, by assuming a uniform distribution of preferred arrival

times, the model suppresses passengers’actual preferences for peak-hour travel.

In addition to preferring less (expected) schedule delay, passengers also dislike layover

time. Depending on the cost of layover time relative to the cost of schedule delay, different

scenarios arise, which yield different functional forms for the function g[·]. Two polar cases
are considered, with the cost of layover time either equal to zero or equal to a large enough

value that minimization of layover time is the passenger’s main goal, with schedule delay

being a secondary consideration.

3.1 The form of g with zero-cost layover time

Consider outbound flights from X to H (airline 1) and from H to Y (airline 2). We assume

that the carriers evenly space their flights around the clock, represented by time circle.

This pattern is shown in Figure 2, which illustrates a case where f1 > f2.

Suppose that layover cost is zero, so that the passenger considers only schedule delay

in choosing flights, a case that could apply to leisure passengers, who have a low value of

time. Focusing on outbound flights originating at X, the expected arrival schedule delay

9



depends only on airline 2’s flight frequency, regardless of the relative values of f1 and f2,

as will be demonstrated by considering Figure 3. In the figure, the arrows show the arrival

times of airline 1’s flights at the hub H as well as the departure times of airline 2’s flights.

With air travel assumed to be instantaneous without loss of generality, airline 2’s flight

departure time from H and arrival time at Y are the same. The figure also shows the

passenger’s preferred arrival time.

Suppose that f1 ≥ f2, as shown in panel I of Figure 3. The passenger prefers flight

B of airline 2, which arrives closest to her preferred time, but the passenger is indifferent

between flights A and B of airline 1 since they both allow a connection with flight B of

airline 2. The longer layover generated by flight A is immaterial since layover cost is zero.

The upshot is that additional flights of airline 1 generate no benefit for the consumer, with

expected schedule delay depending only on the gap between airline 2’s flights, which equals

T/f2. Expected schedule delay is 1/4 of this gap, or T/4f2.

When f1 < f2 (panel II), the passenger takes flight A of airline 1 and waits costlessly

at the hub airport to take flight B of airline 2, which minimizes her schedule delay. Again,

expected schedule delay depends only on f2, and the cost of this delay is given by δT/4f2,

where δ > 0 is the schedule-delay cost parameter. Using γ ≡ δT/4, the previous expression

can be rewritten as γ/f2.

In the inbound direction (the return trip from Y to X), the roles of the airlines are

switched, so that expected inbound schedule delay is γ/f1. Average schedule-delay cost in

both directions, which gives travel disutility g given the absence of layover costs, is then

g [f1, f2] =
1

2

[
γ

f1
+
γ

f2

]
. (10)

3.2 The form of g with high-cost layover time

When layover time is costly (as for business travelers), the passenger’s main goal is to

minimize it, with schedule delay being a secondary consideration. In order to analyze this

case without severe complications, additional assumptions about the spacing of flights are

needed. In particular, we assume that when the carriers operate the same numbers flights,

with f1 = f2, the flights operate at the same time. When f1 > f2, the extra flights of

airline 1 evenly fill the gaps between airline 2’s flights, as shown in Figures 2 and 3. Airline

1’s flights are thus given by the rule f1 = 2kf2, where k = 0, 1, 2, . . ., so that airline 1’s

flight density increases with k. Note that under this rule, f1 doubles with each successive
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increase in k, with the extra flights filling in the gaps between airline 1’s existing flights.

The opposite pattern occurs when f1 < f2 with f2 = 2kf1. Similar reasoning applies to

inbound flights, whose volume exactly matches that of outbound flights for each airline.

It is important to note that, as long as flights on the XH and YH routes are evenly

spaced, the additional flight-spacing assumptions above are not needed in analyzing the

zero-cost layover case (even though they were adopted in drawing Figure 3). The reason

is that, since the frequency on the second leg of an XY trip (either outbound or inbound)

is all that matters, no connection between the flight patterns on the XH and YH routes

need be assumed. But in order to compare the outcomes in the two layover-cost cases, the

analysis of the cases needs to be carried out under the same set of assumptions, with the

flight-spacing assumptions then imposed generally.

Starting with the case where f1 ≥ f2, it is easy to see that a passenger will always choose

flights whose arrival and departure times coincide so as to avoid any layover, as shown in

Figure 4. Consider panel I and assume again that the passenger’s preferred arrival time

lies between flights A and C of airline 2. Then, depending on the exact location of the

preferred time, the passenger will choose either flight A or C of airline 1 along with the

corresponding flight of airline 2 (the C flights will be chosen in the case shown in the

figure), incurring a zero layover. In this case, flight B of airline 1 is irrelevant, as in Figure

3-I, and the expected schedule delay is again γ/f2.

Consider now the case where f1 < f2, as in panel II of Figure 4. Despite the presence of

flight B of airline 2, the passenger will make the same choice as in panel I, combining either

the A flights or the C flights of the two airlines. When the preferred arrival is as shown,

the C flights will be used, leading to a zero layover and the schedule delay shown in panel

II. This choice is made even though a shorter schedule delay would be achieved by taking

airline 1’s A flight and connecting to airline 2’s B flight. But since this option involves

a layover equal to the gap between airline 1’s A flight and airline 2’s B flight, it will be

shunned in favor of the option with no layover. In contrast to panel I, it is now airline 2’s

B flight that is irrelevant, and the result is that expected schedule delay equals 1/4 of the

gap between airline 1’s flights. Expected schedule-delay cost is then γ/f1. Combining the

results from the two panels of Figure 4, expected schedule-delay cost for the outbound trip

is thus γ/min {f1, f2}.
Applying the same reasoning for inbound flights, we get the same schedule-delay ex-

pressions: γ/f2 for f1 ≥ f2 and γ/f1 for f1 < f2, expressed again as γ/min {f1, f2}. With
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the same outbound and inbound expressions, the average schedule-delay cost in both di-

rections is given by this common expression. Since layover costs are zero given that no

layovers are incurred, the g function again consists only of schedule-delay costs and is given

by

g [f1, f2] =
γ

min {f1, f2}
. (11)

The proposition below summarizes the difference between the g functions in (10) and

(11).

Proposition 1 With both zero-cost and high-cost layover time, the g function consists

only of schedule-delay costs. With zero-cost layover time, the g function is proportional to

the average of the reciprocals of the carriers’flight frequencies, as in (10). With high-cost

layover time, the g function is proportional to the reciprocal of the minimum of the carriers’

flight frequencies, as in (11). Thus, depending on the magnitude of the layover cost, the

quality of only one of the two complementary airline products may matter to consumers.

It should be clear that, without the previous flight-spacing assumptions, analysis of the

high-cost layover case would be intractable. Arbitrary numbers of flights and arbitrary

alignments of the airlines’equally spaced flights would generally lead to a situation where

positive layover time must be incurred. The passenger would then need to trade off layover

time against schedule delay, with the resulting magnitudes depending on how closely the

flight alignments of the two carriers match up, something that cannot be characterized in

general. In such a case, the consumer’s choice of flights cannot be determined without

knowing the details of the flight patterns, precluding a general solution to his choice prob-

lem. The previous flight-spacing assumptions, however, cut through this indeterminacy,

leading to a simple solution.

While most of the subsequent analysis focuses on the two polar cases from Proposition

1, the analysis in section 5.4 below considers the case where some passengers have a zero

cost of layover time and some have a high cost. The passenger mix is characterized by the

share µ of passengers in the zero-cost group. Once results for the two polar cases have

been derived, conclusions for the mixed case follow easily.

3.3 Airline costs

On a single route segment, airline i’s cost to operate a flight in both directions is given

by θ + τsi, where si is carrier i’s aircraft size, as measured by the number of seats, θ is a
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fixed cost independent of aircraft size, and τ is the marginal cost per seat (as in Brueckner,

2004). Under this specification, cost per seat realistically falls with aircraft size, leading to

economies of traffi c density.

Assuming a 100% load factor, airline i’s flight frequency, aircraft size, and passenger

traffi c Q are all related by the equation sifi = Q, which says that aircraft size times the

number of flights equals traffi c (recall that passenger traffi c is the same for both carriers).

Note that si is an airline choice variable, which is appropriate given that the demands of

airlines ultimately determine the nature of aircraft supplied by manufacturers. While si is

thus endogenous, its value is determined residually once Q and fi are known. Therefore,

carrier i’s total cost is fi(θ + τsi) or, equivalently,

ci = θfi + τQ, (12)

indicating that variable costs depend just on Q, being independent of the number of flights.

Note how the cost function in (12) differs from the one in the general model of section

2. Instead of quantity Q being multiplied by a quality cost function, the quality variable

fi enters additively, as if it were a fixed cost (this structure also appears in Economides,

1999).

4 The general demand model

This section develops the profit-maximization conditions for the no-alliance and alliance

cases under the general-demand specification in (9). In the alliance case, where f1 = f2 =

F , the g function reduces to γ/F with both zero-cost and high-cost layover time, which

means that the alliance conditions are the same in the two cases. The non-alliance profit-

maximization conditions, however, differ between the cases. As a result, the no-alliance

conditions are derived first for the two cases, with the common alliance conditions derived

subsequently.

4.1 No-alliance conditions with zero-cost layover time

Taking into account the form of g[·] with zero-cost layover time (from (10)), demand in (9)
becomes

Q = D

(
p1 + p2 +

1

2

[
γ

f1
+
γ

f2

])
, (13)
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where the overall fare is composed of two subfares (p1 and p2) that the carriers choose in

noncooperative fashion, following previous alliance models. Note that, as in the general

model, the demand function in (13) depends on the sum of prices and the sum of the quality

variables (the inverse frequencies). In addition, the cross-partial derivative between price

and quality is positive.

Airline 1’s profit is therefore π1 = p1Q− c1, an expression that can be rewritten using
(12) and (13) as

π1 = (p1 − τ)D

(
p1 + p2 +

1

2

[
γ

f1
+
γ

f2

])
− θf1. (14)

The corresponding expression for carrier 2 is given by interchanging subscripts.

Each carrier simultaneously chooses its subfare and flight frequency to maximize profit,

treating the other carrier’s values as given. Focusing on the symmetric equilibrium, we set

p1 = p2 = P/2 and f1 = f2 = F after computing first-order conditions for the choice of

p1 and f1, where P is the overall fare for the XY trip and F is the common frequency on

both route segments. These conditions can be rewritten as9

D +

(
P

2
− τ
)
D′ = 0, (15)

−
(
P

2
− τ
)

γ

2F 2
D′ − θ = 0. (16)

After rearrangement, the first condition says that the fare is set optimally when mar-

ginal revenue as a function of P equals the marginal cost of a seat, τ . The second condition

says that F is set optimally when fixed cost per flight (θ) equals the revenue gain from an

extra flight.

4.2 No-alliance conditions with high-cost layover time

With high-cost layover time, g[·] is given by (11), so that demand in (9) becomes

Q = D

(
p1 + p2 +

γ

min {f1, f2}

)
, (17)

9It can be shown that the first-order condition for f1 found by ignoring the rule f1 = 2kf2 and just

differentiating with respect to f1 is the same as the condition that emerges when the rule is used and

differentiation occurs with respect to k. In the latter case, however, k is treated as continuous, not integer

valued, so that the resulting condition should be viewed as an approximation.
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a formulation that differs from the general model given the presence of the min function.

Carrier 1’s total cost is again given by (12), and using these expressions, airline 1’s profit

becomes

π1 = (p1 − τ)D

(
p1 + p2 +

γ

min {f1, f2}

)
− θf1, (18)

while carrier 2’s profit expression comes from interchanging subscripts in (18).

Finding the Nash equilibrium in frequencies is less straightforward than before because

of the presence of the min function. To derive carrier 1’s best frequency response function,

suppose that the subfares in (18) are equal, as they will be in equilibrium, so that the

frequency choices are symmetric for the two carriers. Let f ∗ denote the f1 value that

maximizes (18) under the assumption that f2 > f1, in which case the frequency term in

(18) equals γ/f1. It is then easy to see that the optimal f1 equals f ∗ for f2 > f ∗, while the

optimal value equals f2 for f2 ≤ f ∗. In the latter case, raising f1 toward f ∗ is desirable, but

once f2 is reached, further increases yield no benefit under the min function. The resulting

best-response function for carrier 1 is shown as the solid curve in Figure 5. Carrier 2’s

best-response function is the mirror image of 1’s function, shown as the dotted curve in

the figure, which coincides with 1’s function over a portion of the 45-degree line. From the

figure, it is clear that any (f1, f2) pair lying where the best-response functions coincide is a

Nash equilibrium in frequencies. We assume that, since the equilibrium at (f ∗, f ∗) yields

the highest profit for each carrier among these multiple equilibria, this is the equilibrium

that will be selected.

The resulting optimality condition for f1, which gives the common f under symmetry,

is then the same as the condition yielding f ∗, which comes from replacing min {f1, f2} by
f1 in (18) and differentiating. As before, this condition and the first-order condition for

p1 are evaluated under symmetry, with p1 = p2 = P/2 and f1 = f2 = F . The resulting

conditions are

D +

(
P

2
− τ
)
D′ = 0, (19)

−
(
P

2
− τ
)

γ

F 2
D′ − θ = 0. (20)

Note that the the first condition is the same as the condition under zero-cost layovers (see

(15)), whereas the second condition differs in the absence of a 2 factor multiplying F 2 (see

(16)).

15



4.3 Alliance conditions

The alliance maximizes joint profit, which is split equally between both partners. As in

the standard model, the allied entity chooses an overall fare P . Since the alliance also

sets a common flight frequency F on both route segments, while operating inbound and

outbound flights at the same time, layover cost is identically zero, not being affected by

the cost of layover time. The upshot is that profit-maximization conditions for an alliance

are independent of layover cost, being the same in the zero-cost and high cost cases. With

common route frequencies, (average) schedule delay is γ/F , so that demand is given by

Q = D
(
P +

γ

F

)
, (21)

Joint profit is then written

Π = (P − 2τ)D
(
P +

γ

F

)
− 2θF , (22)

where the 2 factors are needed because the alliance operates two route segments. Note that,

while the same full price (P +γ/F ) emerges in the symmetric no-alliance equilibrium, here

it appears in the original optimization problem.

After dividing by 2, the first-order conditions for the choices of P and F are

D

2
+

(
P

2
− τ
)
D′ = 0, (23)

−
(
P

2
− τ
)

γ

F 2
D′ − θ = 0. (24)

4.4 Unified statement of the profit-maximization conditions

To analyze the effect of alliances on fares and frequencies, we first gather the previous

results in two unified statements of the profit-maximization conditions, one for the case

of zero-cost layover time and the other for the high-cost case. Then, we can carry out a

comparative-static analysis of the equilibrium conditions for the two cases to determine

the fare and service-quality effects of alliances.
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4.4.1 Zero-cost case

Combining (15), (16) and (23), (24), the unified statement of the profit-maximization

conditions for the case of zero-cost layover time is

αD +

(
P

2
− τ
)
D′ = 0, (25)

−
(
P

2
− τ
)

γ

2αF 2
D′ − θ = 0, (26)

where the parameter α takes the value 1/2 in the alliance case and 1 when carriers are

nonaligned.

To get a sense of the different frequency incentives of an alliance and nonaligned carriers,

consider the frequency choices in the two cases implied by (26) when P is held fixed at a

common value. In the no-alliance case, α = 1 makes the expression γ/2αF 2 equal to γ/2F 2

and thus smaller than its value of γ/F 2 in the alliance case (where α = 1/2). This difference

leads to a smaller no-alliance F , holding P fixed. That outcome reflects the fact that, in

the no-alliance case, a change in a carrier’s frequency affects only half of the frequency

portion of the full price rather than the entire frequency portion, which accounts for the

2 in the denominator of the previous no-alliance expression and its absence in the alliance

expression. This difference is the essence of double marginalization, where noncooperative

behavior leads carriers to ignore beneficial spillovers from their choices on the other carrier,

thus setting their decision variable at too low a value. While this discussion holds P fixed,

the ultimate frequency difference between the no-alliance and alliance cases must account

for differences in P .

The α factor in (25) reflects double marginalization by nonaligned carriers in the choice

of fares. In considering a higher subfare p1, airline 1 ignores the effect on airline 2’s revenue,

thus choosing a value higher than the one that would maximize joint profit (the alliance’s

goal). Therefore, relative to the alliance case, the LHS of (25) is larger in the absence of

an alliance (with α = 1 instead of 1/2) and thus reaches zero at a higher value of P .
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4.4.2 High-cost case

Combining (19), (20) and (23), (24), the unified statement of the profit-maximization

conditions for the case of high-cost layover time is

αD +

(
P

2
− τ
)
D′ = 0, (27)

−
(
P

2
− τ
)

γ

F 2
D′ − θ = 0, (28)

where the parameter α again takes the value 1/2 in the alliance case and 1 when carriers

are nonaligned.

Note the differences relative to the zero-cost case: although the first condition remains

the same, the 2 multiplying F 2 is absent in the second condition and α does not appear,

with α present only in the first condition. The absence of α in (28) affects the previous

argument regarding frequency incentives. In contrast to the previous discussion for the

zero-cost layover case, an alliance and nonaligned carriers will now choose the same F

value when P is held fixed at a common value. This outcome reflects the fact, explained

above, that the Nash equilibrium choice of F has carrier 1 ignoring the min function and

choosing f1 in isolation. But since this is the same choice made by the alliance in choosing

a common F on the two route segments, the optimality conditions are then the same. As

a result, the difference between the alliance and no-alliance values of F arises only through

differences in P , which affect the F solution in (28). Thus, in contrast to the zero-cost

layover case, double marginalization in the no-alliance frequency choices is absent, although

it is still present in the choice of subfares.

4.5 The effects of alliances on the fare and frequency

In the general model developed so far, comparative-static analysis of the equilibrium con-

ditions for the zero-cost and high-cost layover cases can be carried out to determine the

fare and service-quality effects of alliances in the two cases. The derivatives ∂P/∂α and

∂F/∂α can be computed to gauge the effect of a change in α on the equilibrium fare

and frequency in moving from the alliance to the no-alliance case. In doing the calcu-

lations, it is important to recognize the equilibrium conditions for the alliance case are

the direct derivatives of alliance profit function with respect to P and F , which means

that the alliance second-order conditions can be used for the comparative-static analysis,
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which increases α, starting at the alliance value of 1/2 and moving toward the no-alliance

value of 1. By contrast, because symmetry has been imposed in generating the no-alliance

equilibrium conditions, the second-order conditions for that case cannot be derived simply

by differentiating these conditions with respect to P and F . A return to the underlying

profit-maximization problem is required.

The computation requires total differentiation of the two sets of alliance equilibrium

conditions (25)-(26) or (27)-(28), with respect to P , F and α, evaluating the results at

α = 1/2. Denoting the expressions in the alliance equilibrium conditions by ΠP and ΠF

(using the same notation for the zero-cost and the high-cost cases), their derivatives are

ΠPP , ΠPF , ΠFP , and ΠFF , where the double subscript denotes second derivative. Then,

for α = 1/2, the following second-order conditions are assumed to hold:

ΠPP ,ΠFF < 0 and Λ = ΠPPΠFF − ΠPFΠFP > 0. (29)

To proceed, we adopt

Assumption 1 ΠPF = ΠFP > 0, which is true under a linear-demand specification.

Note that ΠPF has the sign of − [αD′ + (P/2− τ)D′′], evaluated at α = 1/2. There-

fore, Assumption 1 seems reasonable because one would expect the negative sign of D′ to

dominate in determining the sign of this expression, in which case it would be positive.

In the zero-cost layover case, ΠPα = D > 0 and ΠFα =
(
P
2
− τ
)

γ
2α2F 2

D′ < 0. Therefore,

using Cramer’s rule, the impacts of a change in α on P and F are given by

∂P

∂α
=
−

>0︷︸︸︷
ΠPα

<0︷︸︸︷
ΠFF +

>0︷︸︸︷
ΠPF

<0︷︸︸︷
ΠFα

Λ
, (30)

∂F

∂α
=

<0

−
︷︸︸︷
ΠPP

<0︷︸︸︷
ΠFα +

>0︷︸︸︷
ΠPα

>0︷︸︸︷
ΠFP

Λ
. (31)

As can been seen from inspection of (30) and (31), these derivatives are ambiguous in sign,

just like in the general model considered in section 2. Note that this ambiguity is present

even though a sign for ΠPF (analogous to πpq in (8)) has been assumed.

Moving to the high-cost layover case, ΠPα = D > 0 (as before) but ΠFα = 0. Hence,
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the impacts of a change in α are now simpler:

∂P

∂α
=
−

>0︷︸︸︷
ΠPα

<0︷︸︸︷
ΠFF

Λ
> 0, (32)

∂F

∂α
=

>0︷︸︸︷
ΠPα

>0︷︸︸︷
ΠFP

Λ
> 0. (33)

These derivatives show a clear effect of an alliance in the high-cost layover case, where an

increase in α (movement away from the alliance case) raises P and F , with an alliance

thus yielding a lower fare and a lower frequency. Summarizing these results yields

Proposition 2 Under Assumption 1, formation of an alliance leads to a lower fare and

lower frequency in the high-cost layover case, while having ambiguous effects in the zero-cost

layover case.

Thus, the only general result on the service-quality effect of an alliance is unexpected:

flight frequency falls in the high-cost layover case when an alliance is formed. To gain

further insight, we now put more structure on the model to generate determinate results in

the zero-cost layover case, and to provide some additional results in the high-cost layover

case. We use a linear demand specification, which is widely applied in theoretical work on

airline economics (see, e.g., Brueckner, 2004; and Brueckner and Flores-Fillol, 2007). The

advantage is that clear analytical solutions can be derived directly from first principles.

Additionally, the linear-demand set-up can show the effect of an alliance on the full price

P + γ/F and the traffi c volume Q.

5 A linear demand model

In the material that follows, we assume that the demand function in (9) takes the form

Q = a− b (fare+ g [f1, f2]) , (34)

where a, b > 0. Microfoundations yielding this linear demand function have been developed

in previous papers (see, for example, Brueckner, 2004).
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5.1 Zero-cost layover time

With zero-cost layover time, (34) becomes

Q = a− b
(
p1 + p2 +

1

2

[
γ

f1
+
γ

f2

])
. (35)

With D′ = −b, the zero-cost layover conditions in (25) and (26) reduce to

α
[
a− b

(
P +

γ

F

)]
−
(
P

2
− τ
)
b = 0, (36)

P

2
− τ =

2αθ

bγ
F 2. (37)

Plugging P from (37) into (36), the following condition for F emerges:

(a− 2bτ)F − bγ︸ ︷︷ ︸
L(F )

=
2θ

γ
(2α + 1)F 3︸ ︷︷ ︸

C(F )

. (38)

Using (38), the equilibrium frequency is found graphically, as seen in Figure 6. The F ∗

solution occurs at the intersection between the linear function L (F ) on the RHS and the

cubic expression C (F ) on the LHS. It is easy to verify that a− 2bτ > 0 must hold, so that

the linear function is upward sloping. There are three possible solutions to (38), two of

them positive, but compliance with the second-order conditions makes the second positive

solution relevant (details are in Appendix A).

Some comparative-static results that apply to both the alliance and no-alliance cases

can be obtained by simple inspection of (38) along with Figure 6. Higher demand (an

increase in a), rotates the line in Figure 6 counterclockwise and thus raises frequency,

a natural conclusion. An increase in the demand slope b (which leads to the reverse line

rotation as well as a downward shift), has the opposite effect. Higher fixed or variable costs

also have natural effects on F : a higher marginal seat cost τ rotates the line downward,

reducing F , while a higher flight fixed cost θ has the same effect since it raises the level

of the cubic curve. An increase in the disutility of schedule delay γ seems to produce an

ambiguous effect on F (since it shifts both the line and the cubic curve downward), but

a more thorough analysis shows that F increases with γ. Therefore, frequency rises in

response to a higher passenger sensitivity to schedule delay.10

10The proof of ∂F/∂γ > 0 is as follows (a similar proof can be found in Brueckner, 2004). Equating

(38) to 0, we can compute ∂F/∂γ =
[
2θ (2α+ 1)F 3/γ2 + b

]
/Ψ, where Ψ = 6θ (2α+ 1)F 2/γ − (a− 2bτ).
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With the comparative-static effects of a, b, τ , θ, and γ understood, attention now

shifts to the effects of alliances. The impact of an alliance on F can be easily ascertained

graphically by plotting (38) for the no-alliance (α = 1) and the alliance (α = 1/2) cases,

as shown in panel I of Figure 7. The cubic function in the alliance case C (F )|a is lower
than C (F )|na, so that the equilibrium F is larger: F ∗a > F ∗na, where subscripts a and na

denote alliance and no-alliance equilibrium values.

It is impossible, however, to determine the direction of the alliance fare effect, as can

be seen by referring to (37). Since reducing α from 1 to 1/2 raises F , the change in

the magnitude of the RHS expression is ambiguous, making the change of P on the LHS

also ambiguous. However, the alliance’s effect of the full price of travel can be derived.

Eliminating P/2− τ in (36) using (37) yields

a− b
(
P +

γ

F

)
︸ ︷︷ ︸

Q

=
2θ

γ
F 2. (39)

Since the alliance raises F , the LHS of (39) rises as well, implying a higher traffi c level Q

and lower full price P + γ/F . Therefore, even though the alliance may not lead to a lower

fare, the full price of travel falls and traffi c rises, just as in the standard alliance model

where service quality is not a concern of passengers. Summarizing yields the following

proposition.11

Proposition 3 Under zero-cost layover time, an alliance leads to higher service quality (a

higher F ) than in the no-alliance case, although the fare P may rise or fall. However, the

full price of travel falls with an alliance, raising traffi c Q. As a result, consumer welfare

increases, and since carrier profit rises as well, the alliance is welfare improving.

Note that, while the general ambiguity of the alliance fare impact is not resolved in the

linear case, a determinate frequency impact now emerges along with a conclusion regarding

the impact on the full price and traffi c.

Taking into account that compliance with the second-order condition requires the cubic function to be

steeper than the linear one in (38), we conclude that Ψ > 0 (see Appendix A for the details). Finally,

using again the equilibrium condition in (38) to rewrite the previous derivative, we obtain ∂F/∂γ =

(a− 2bτ)F/γΨ, which is always positive.
11The effect of the alliance on the optimal aircraft size is unclear. With both Q and F rising, the change

in s = Q/F is ambiguous.
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5.2 High-cost layover time

With high-cost layover time, the linear demand in (34) becomes

Q = a− b
(
p1 + p2 +

γ

min {f1, f2}

)
, (40)

and the high-cost layover conditions in (27) and (28) are now

α
[
a− b

(
P +

γ

F

)]
−
(
P

2
− τ
)
b = 0, (41)

P

2
− τ =

θ

bγ
F 2. (42)

Eliminating P in (41) using (42), we obtain the following condition for F :

(a− 2bτ)F − bγ =
θ

γ

(
1

α
+ 2

)
F 3. (43)

The comparative-static properties of a, b, τ , θ, and γ are as in the zero-cost layover

case. As for the effect of alliances, panel II of Figure 7 shows the graphical representation

of this equilibrium condition for α = 1/2 and α = 1. The relationship between the curves

is opposite to the one in the zero-cost layover case, with C (F )|a now higher than C (F )|na,
implying F ∗a < F ∗na, so that the alliance leads to a reduction in F rather than an increase.

Since, in contrast to case of zero-cost layover time, (42) does not involve α, the RHS of

this condition falls in moving to an alliance, implying that P must fall as well. A reduction

in P is, of course, the usual effect of an alliance, but it is now accompanied by a reduction,

rather than an increase, in service quality. Furthermore, in contrast to the case of zero-cost

layover time, the alliance has an ambiguous effect on the full price of travel and thus on

Q. Eliminating P/2 − τ in (41) using (42) yields an analog to (39), where the RHS is

replaced by θF 2/αγ. Since F falls as α drops from 1 to 1/2, the change in the RHS is

ambiguous, implying an ambiguous alliance effect on the LHS. Therefore, in contrast to

usual beneficial effect of alliances on traffi c, which also emerges in the case of zero-cost

layover time, Q may fall with high-cost layover time. Summarizing yields

Proposition 4 With high-cost layover time, an alliance leads to a lower fare P as well as

lower service equality (a lower F ). The full price of travel may either rise or fall, implying

that traffi c Q may decrease. Although carrier profit rises, this ambiguity makes the change

in overall welfare ambiguous.
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This proposition confirms the result obtained in the general model and provides further

insights concerning the full price and traffi c volume.

Recalling the earlier discussion of frequency incentives, the source of the lower alliance

frequency is clear in the high-cost layover case. As explained earlier, the common form of

(42) for the alliance and no-alliance cases meant that differences in F arise solely through

differences in P between the cases. Thus, the smaller P in the alliance case is the source

of the lower frequency.

The analysis with linear-demand thus shows that, in a model where flight frequencies

capture service quality, the cost of layover time is crucial in determining the effects of airline

alliances. When layover cost is zero, the usual double marginalization phenomenon in the

no-alliance case suggests that an alliance should reduce the fare and raise frequency. While

the predicted negative fare effect does not emerge, frequency does rise and its increase is

suffi cient to reduce the full price, benefiting passengers and raising traffi c volume. When

layover cost is costly, the additive reciprocal frequencies are replaced by the reciprocal of

their minimum value, thus eliminating the double marginalization structure. Therefore,

an alliance reduces rather than raises frequency, leading to a possible increase in the full

price and a reduction in traffi c.

Another way to understand these results is by considering the effect of frequency on

passengers’willingness-to-pay for travel, as reflected in the position of the demand curve.

In the zero-cost layover case, the increase in service quality (the higher F ) under an alliance

raises willingness-to-pay by shifting the demand curve outward. While this shift would tend

to raise the fare, the elimination of double marginalization creates downward fare pressure,

and these opposing effects make the direction of the fare change ambiguous. By contrast,

the lower alliance frequency in the high-cost layover case lowers willingness-to-pay and

tends to reduce the fare. Combined with the double-marginalization effect, the result is an

unambiguous fare reduction in moving to an alliance.

5.3 Comparison

Since the alliance frequency is the same in both the zero-cost and high-cost layover cases,

while the no-alliance frequency is lower (higher) than the alliance frequency in the zero-cost

(high-cost) layover cases, we can state
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Corollary 1 The no-alliance frequency is lower in the zero-cost layover case than in the

high-cost case, with the alliance frequency lying between the two no-alliance values.

The corollary is illustrated in Figure 8, where superscript 0 refers to zero-layover cost and

H to high-layover cost.

5.4 Allowing a mix of passenger types

It is possible to consider an intermediate (and more realistic) case between the two polar

cases described above. Suppose now that a proportion µ ∈ (0, 1) of passengers has a zero

cost of layover time while the rest are high-cost passengers. In such a case, the demand

function would be

Q = µ

{
a− b

(
p1 + p2 +

1

2

[
γ

f1
+
γ

f2

])}
+ (1− µ)

{
a− b

(
p1 + p2 +

γ

min {f1, f2}

)}
.

(44)

Given that the alliance analysis is independent of layover-cost considerations, it remains

unaltered in the case of a passenger mix. Focusing on the no-alliance case, the first-order

condition for P remains unchanged, as it is independent of layover cost (see (36) and (41)).

But the first-order condition for F becomes

P

2
− τ =

2αθ

bγ (2− µ)
F 2, (45)

indicating that a higher proportion of zero-cost layover passengers exerts downward pres-

sure flight frequency. Eliminating P , the equilibrium condition for F becomes

(a− 2bτ)F − bγ =
6θF 3

γ (2− µ)
. (46)

Since the LHS expression is the same linear function as in the previous cases, the effect

of passenger mix is therefore determined by the cubic expression on the RHS. Note the

zero-cost and the high-cost expressions can be recovered by substituting µ = 1 and µ = 0,

respectively (as depicted in Figure 8). The advantage of the current analysis consists in

having a continuum of F equilibrium values between the two polar cases F ∗0na and F
∗H
na ,

depending on the passenger mix µ.

The cubic expression on the RHS of (46) can be compared with the one under an

alliance to ascertain the alliance effect for any passenger mix. From this comparison, it

follows that F ∗na < F ∗a for µ > 1/2, F ∗na > F ∗a for µ > 1/2, and F ∗na = F ∗a for µ = 1/2,

yielding
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Proposition 5 The effect of an alliance on flight frequency depends on the passenger mix.

If passengers with a zero cost of layover time are the majority (µ > 1/2), then an alliance

leads to higher service quality (a higher F ). But an alliance reduces service quality when

passengers with high cost of layover time are the majority (µ < 1/2).

Since waiting for a connecting flight at a hub airport is likely to be more costly for

business than for leisure passengers, we can view the zero-cost layover passengers as leisure

passengers and the high-cost layover passengers as business passengers.12 City-pair mar-

kets can then be classified into two categories: business city-pair markets, with a majority

of business travelers (µ < 1/2); and leisure city-pair markets, with a majority of leisure

passengers (µ > 1/2). From the preceding analysis, it follows that business city-pair mar-

kets will have higher flight frequencies than leisure markets in the absence of an alliance.13

But after an alliance is formed, the new entity coordinates flight schedules by setting a

common F that eliminates layover time. From Proposition 5, we can then assert that an

alliance will lead to a higher frequency in leisure markets and a lower frequency in business

markets. Thus, an alliance eliminates airline responses to layover-cost heterogeneity across

markets.

We could extend the business/leisure distinction to include a passenger’s disutility of

schedule delay, as reflected in the value of γ (which would be larger for business passen-

gers).14 Since an increase in γ raises frequency regardless of layover cost or alliance status

(see footnote 10), it follows that the larger γ in business markets will further widen the

no-alliance frequency gap between business and leisure markets that already exists due to

differences in layover cost.

Therefore, different passenger time valuations, operating through both layover and

schedule-delay costs, generate a service-quality gap between business and leisure markets

in the no-alliance case. However, in contrast to layover-cost differences, differences in γ

continue to have an effect once an alliance is formed, with business markets served by an

alliance having higher frequency than leisure markets. Consequently, only partial conver-

gence between business and leisure city-pair markets can be expected as a consequence of

12While layovers with children may be taxing, thus suggesting the reverse relationship for some leisure

passengers, we suspect that layovers are more costly for business passengers on average.
13Brueckner and Pai (2009) and Fageda and Flores-Fillol (2012a) study the emergence of new point-to-

point routes from the use of regional jets that allow higher frequencies in business city-pair markets.
14The same assumption motivates the analysis in Brueckner and Pai (2009) and Fageda and Flores-Fillol

(2012a and 2012b).
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airline alliances.

5.5 Adding interalliance competition

While the current model does not include competition between alliances, the approach of

Brueckner and Whalen (2000) could be used to add it. In modeling competition, their

framework includes brand loyalty, which allows an alliance (or a pair of nonaligned car-

riers) to raise fares without losing all of its traffi c to the competitor.15 In the present

setting, interalliance competition would require an additional carrier pair (i.e., airlines 3

and 4) serving the XY market, with these carriers either nonaligned or operating as al-

liance partners. As in Brueckner and Whalen (2000), the analysis would consider equilibria

where two sets of nonaligned carriers compete, where two alliances compete, or where a

set of nonaligned carriers competes with an alliance. In addition to choosing fares, carriers

would set flight frequencies as well. An analysis parallel to the current one could be carried

out, although the results would presumably differ in various (possibly major) details. This

extension could be the subject of future work.

6 Congestion

In this section, we extend the analysis to account for congestion at the hub airport. The

literature on airport congestion shows that airlines internalize the congestion they impose

on themselves while neglecting the congestion they impose on other airlines.16 Therefore,

alliances are expected to increase the extent to which congestion is internalized, given

that allied carriers will take into account the congestion imposed on their partners. As

a consequence, in a framework where service quality is not a factor, flight frequency is

expected to decrease as compared to the case without congestion (as shown in Flores-Fillol

(2010)). In the present model, where service quality matters, we would expect this effect

to put downward pressure on frequency.

Given that an alliance yields a higher frequency under zero-cost layover time (Propo-

sition 3) but lower frequency under high-cost layover time (Proposition 4), the analysis

15Brand loyalty could arise either from institutional factors such as frequent flier programs, or from

idiosyncratic consumer preferences for particular aspects of airline service that may differ across carriers.
16Some relevant contributions on the phenomenon of congestion internalization are Brueckner (2002),

Mayer and Sinai (2003), and Flores-Fillol (2010).

27



of the latter case is straightforward because the post-alliance internalization of congestion

will reinforce the already reported decrease in frequency. However, the analysis of the case

with zero-cost layover time is more interesting given that an alliance yields two conflicting

effects on flight frequency: a positive one from the service quality effect and a negative

one due to greater internalization of congestion. Consequently, the analysis that follows

concentrates on low-cost layover case, where the existence of these opposing effects suggests

that the previous positive flight-frequency effect could be reversed.

Congestion at the hub airport depends on the number of aircraft movements, given

by f1 + f2. Therefore, the per-flight congestion cost for each of the carriers is a function

H (f1 + f2) with H ′ > 0 and H ′′ ≥ 0, as in Brueckner and Van Dender (2008).17 Taking

into account hub congestion, the cost function in (12) now becomes

ci = θfi + τQ+ fiH (f1 + f2) , (47)

for i = 1, 2. Hence, carrier 1’s profit function in the no-alliance case is given by (14) with

the congestion-cost term f1H (f1 + f2) subtracted. In a similar way, alliance profit is given

by (22) with the term 2FH (2F ) subtracted.

Moving to the linear-demand case to assess the effect of alliances on fares and service

quality, the H function is also assumed to be linear, so that H = η (f1 + f2) in the no-

alliance case and H = 2ηF in the alliance case, with η > 0 being the congestion-damage

parameter. Analysis of the first-order conditions yields the following equilibrium condition

for F :

(a− 2bτ)F − bγ︸ ︷︷ ︸
L(F )

=
2 (2α + 1)F 3

γ

[
θ +

(
1

α
+ 2

)
ηF

]
︸ ︷︷ ︸

G(F )

, (48)

where the LHS is not affected by congestion, being the same linear function L (F ) as in

(38). By contrast, the RHS is now a quartic function G (F ) due to the presence of the

additional congestion term (see Figure 9). There are two possible positive solutions to (48),

but compliance with the second-order conditions makes the second solution relevant.18

It is easy to check that G (F )|a is lower than G (F )|na in the positive quadrant, so
that the equilibrium frequency is larger with an alliance, with F ∗a > F ∗na. Therefore, the

17For the sake of simplicity, we assume no passenger congestion costs. See Flores-Fillol (2010) for an

analysis including both airline and passenger congestion costs.
18The proof showing that only the second positive solution is relevant follows exactly the procedure

described in Appendix A. Details are available from the authors on request.
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previous result, a higher frequency under an alliance, is preserved despite the offsetting

effect from internalization of congestion.

As in the absence of congestion, the direction of the alliance fare effect cannot be

determined, but the expression for the total traffi c, equal to

a− b
(
P +

γ

F

)
︸ ︷︷ ︸

Q

=
2F 2

γ

[
θ +

(
1

α
+ 2

)
ηF

]
, (49)

reveals that the full price P +γ/F falls and traffi c Q rises with an alliance. This conclusion

follows because an alliance leads to a smaller value for the RHS since it reduces α and also

increases F . Consequently, the LHS rises as well, implying a lower full price and higher

traffi c.

It is also important to note that the presence of congestion reduces both F ∗a and F
∗
na

relative to their values in the absence of congestion, reflecting full or partial internalization

of congestion. This outcome is due to the upward shift of the quartic functions for both

the alliance and no-alliance cases when η > 0 relative to their positions when η = 0, shifts

that move both intersections to the left. Note, however, that the magnitude of
(
1
α

+ 2
)
η

captures the extent of the shift in the curves and thus the magnitude of the reductions in

F associated with congestion. The shift is larger with an alliance (α = 1/2) than in the

no-alliance case (α = 1).

All of these results are summarized as follows:

Proposition 6 Under zero-cost layover time,

i) Alliances yield two conflicting effects on flight frequency: a positive one derived from the

double marginalization effect and a negative one due to greater internalization of conges-

tion. The first effect dominates, so that an alliance leads to higher service quality (a higher

F ), a lower full price of travel and higher traffi c, just as in the absence of congestion.

ii) The presence of congestion reduces frequency in both the alliance and no-alliance cases

relative to the no-congestion case, but the alliance reduction is larger, reflecting greater

internalization of congestion.

7 Conclusion

This paper has explored the effect of market structure on quality determination for com-

plementary products. The focus is on the airline industry and the effect of airline alliances
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on flight frequency, an important element of service quality. The analysis fills a gap in the

literature on airline alliances while providing a needed extension to the product-quality

literature, which has mostly ignored the case of complementary products.

The analysis must tackle the problem of distilling the potentially different flight fre-

quencies of two nonaligned carriers into a single service quality measure, which is done

by using alternate polar-case assumptions on layover costs. With zero layover cost, the

choice of flight frequencies has the same double-marginalization structure as in the usual

alliance model, leading to a higher frequency in the alliance case as double marginalization

is eliminated, along with a lower full trip price and higher traffi c. The surprising result of

the paper emerges with high-cost layover time, where double marginalization in frequencies

is absent and where an alliance reduces service quality via a lower frequency, with the full

price potentially rising (in which case traffi c falls).

Therefore, the paper offers a decidedly mixed message on the service-quality effects of

alliances. Although the zero-cost layover case offers a welcome confirmation of existing

results establishing the benefits of alliances, the possibility of an adverse effect remains.

The paper also shows that nonaligned carriers adjust frequencies to suit passenger

preferences in business and leisure markets, while an alliance is less responsive to such

preference differences. This finding could suggest that alliances may have greater incentives

for other kinds of business/leisure segmentation, as compared to nonaligned carriers.

A caveat is that, by simplifying the route structure, our model ignores transoceanic

interhub markets such as New York-London (see Brueckner, 2001). In reality XY traffi c

would pass through two hubs, H and K, with X connected to H and Y connected to K,

and with the XY trip requiring use of the transoceanic HK segment in addition to XH and

KY (both airlines would serve the HK route). Two existing empirical studies, Alderighi

and Gaggero (2014) and Bilotkach and Hüschelrath (2012), study the frequency impact

of an alliance’s presence on such HK routes, finding a positive effect.19 However, because

our model lacks this kind of route structure, our results cannot be directly linked to this

empirical finding. Building an empirically relevant model of alliance flight frequencies

would require a more complex network, and development of such a model could be a task

for future work, using this paper as a foundation.

Thus, this paper opens new avenues for research on airline alliances, while pointing to

19This finding may be more related to the need for greater interhub capacity to handle the alliance-

stimulated traffi c in XY-type markets than to product-quality effects like those analyzed in this paper.
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the need for more study of product-quality determination in the provision of complemen-

tary goods. Further study of the service-quality impacts of alliances, both theoretical and

empirical, can increase our understanding of the impacts of these important airline linkages

and perhaps better inform the actions of the regulators who oversee them. Study of qual-

ity determination in contexts outside the airline industry where product complementary

matters is also likely to be worthwhile.
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Figures

Figure 1: The network.

Figure 2: Illustration of the case f1 > f2.
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Figure 3: Expected schedule delay under zero-cost layover time.

Figure 4: Expected schedule delay under costly layover time.
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Figure 5: Airlines’best-response functions.

Figure 6: The F solution.
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Figure 7: The effect of alliances on F .

Figure 8: Comparing the equilibrium frequencies.
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Figure 9: The effect of alliances on F under zero-cost layover time and congestion.
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A Appendix: Second-order conditions and optimal F

in the linear-demand case

An analysis of the second-order conditions for the linear-demand case reveals that the

second possible solution in Figures 6-8 is always the optimum.

A.1 No alliance

A.1.1 Zero-cost layover time

As mentioned above, the equilibrium frequency is found at the intersection between a linear

and a cubic expression (see Figure 6). At the second positive solution in the no-alliance case

(i.e., α = 1), the cubic function is steeper than the linear one, implying 18θ
γ
F 2 > a− 2bτ ,

which can be rewritten as 18θ
γ
F 3 > (a− 2bτ)F . Using the condition in (38), this inequality

becomes

b <
12θ

γ2
F 3. (A1)

Positivity of the Hessian determinant requires γ < 8F
(
P
2
− τ
)
, which can be rewritten

using (37) as

b <
16θ

γ2
F 3. (A2)

Therefore, satisfaction of (A1) implies satisfaction of the second-order condition in (A2).

At the first positive solution in Figure 6, where the linear function is steeper than the cubic

function (b > 12θ
γ2
F 3) the second-order condition may or may not be violated. If we rule out

situations with two local maxima (which are possible if the second-order condition holds

at both intersections), the second solution is the relevant one in the zero-cost no-alliance

case.

A.1.2 High-cost layover time

At the second positive solution in the no-alliance case (i.e., α = 1), the cubic function is

again steeper than the linear one, implying 9θ
γ
F 2 > a− 2bτ or 9θ

γ
F 3 > (a− 2bτ)F . Using

(43), this inequality becomes

b <
6θ

γ2
F 3. (A3)

42



Positivity of the Hessian determinant requires γ < 4F
(
P
2
− τ
)
, which can be rewritten

using (42) as

b <
4θ

γ2
F 3. (A4)

Therefore, the second-order condition can only be satisfied at the second solution in the

high-cost no-alliance case (this outcome, which is not guaranteed, is assumed).

A.2 Alliance

Repeating these steps for the alliance case (i.e., α = 1/2), where the zero-cost and the

high-cost layover cases converge, the cubic function is steeper than the linear one at the

second positive solution, implying

b <
8θ

γ2
F 3. (A5)

Since positivity of the Hessian determinant requires exactly the same condition, the second-

order condition holds only at the second intersection in the alliance case.
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