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Abstract

This letter studies of the multifractal dynamics in 84 cryptocurrencies. It fills an important gap in the literature, by studying
this market using two alternative multi-scaling methodologies. We find compelling evidence that cryptocurrencies have different
degree of long range dependence, and –more importantly – follow different stochastic processes. Some of them follow models
closer to monofractal fractional Gaussian noises, while others exhibit complex multifractal dynamics. Regarding the source of
multifractality, our results are mixed. Time series shuffling produces a reduction in the level of multifractality, but not enough to
offset it. We find an association of kurtosis with multifractality.
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1. Introduction

Contemporary to the outbreak of the 2008 financial crisis, an
anonymously posted paper attributed to Nakamoto (2009), set
the grounds for a new type of financial asset. This new synthetic
product, aimed at bypassing the traditional banking system, be-
came known as cryptocurrency. In spite of the fact that its prop-
erties as “currency” has been cast in doubt by Yermack (2013),
Dwyer (2015), Selgin (2015), and Schilling and Uhlig (2019),
it is undoubtedly a financial asset of great interest among in-
vestors. Shortly after its launching, Bitcoin became tantamount
of cryptocurrency. This success led many entrepreneurs to de-
velop their own crytpocurrencies. Elbahrawy et al. (2017) trace
the evolutionary dynamics of this market, finding that until the
beginning of 2017 the average birth rate of new cryptocurren-
cies was slightly larger than the average death rates, with an
average net increment in the number of coins in the long run.
As of March 2020, there are more than 5000 cryptocurrencies,
which are traded on 20877 platforms, adding up a market cap-
italization of 142 USD billions (Coinmarket, 20120). These
figures highlight the economic relevance of this phenomenon.

Cryptocurrencies studies emerge as new and frutiful empiri-
cal area, where researchers look for insights of this novel prod-
uct. Recent surveys (Yli-Huumo et al., 2016; Corbet et al.,
2019; Merediz-Solà and Bariviera, 2019) show aspects that has
been covered until now: statistical properties of daily returns
(Urquhart, 2016; Bariviera et al., 2017); safe haven character-
istics of Bitcoin (Bouri et al., 2017; Smales, 2019); correlation
of main cryptocurrencies with traditional assets (Corbet et al.,
2018; Aslanidis et al., 2019); and portfolio optimization (Pla-
tanakis and Urquhart, 2019).
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Nevertheless, there are several gaps in the literature. Firstly,
most empirical studies focus their attention on Bitcoin, or at
most on the five biggest cryptocurrencies (Bitcoin, Ethereum,
Bitcoin Cash, Ripple, Litecoin). Secondly, the scale dimension
remains unstudied.

Hence, an alternative approach is necessary. This letter ex-
pands and complements previous literature on cryptocurrencies
in three aspects: (i) it uses a multi-scaling approach that repre-
sents a new approach to this market; (ii) it works with a compre-
hensive set of cryptocurrencies, which reflects more accurately
the behavior of the market; and (iii) it presents a criterion for se-
lecting more appropriate stochastic models of cryptocurrencies
dynamics.

The letter is organized as follows. Section 2 discusses gen-
eral aspects of long range memory and explains the methodol-
ogy. Section 3 presents the data. Section 4 discusses the main
findings. Finally, Section 5 outlines the conclusion of our anal-
ysis.

2. Methods

2.1. Long range memory
The Efficient Market Hypothesis (EMH) represents the cor-

nerstone of financial economics, upon which many areas (e.g.
portfolio optimization, option pricing) are built. It is based on
the idea price movements in a competitive market constitute a
fair game. The pioneering work by Bachelier (1900) proposes
the the arithmetic Brownian motion as a suitable model to rep-
resent the price dynamics of French bonds. Several decades
later, Samuelson (1965) rediscovers Bachelier’s model, propos-
ing a geometric Brownian motion model1 and sets the grounds

1The geometric Brownian motion had been independently proposed by Os-
borne (1959, 1962)Email address: aurelio.fernandez@urv.cat (Aurelio F. Bariviera) 
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for the EMH. The definition and classification of the EMH is
owed to Fama (1970). Briefly, the EMH requires that returns
of financial assets follow a Markov process with respect to the
respective underlying information set.

Contrary to this ideal model, several papers find long mem-
ory in traditional financial assets, using different methods
(Barkoulas et al., 2000; Carbone et al., 2004; McCarthy et al.,
2009; Cajueiro et al., 2009). An important research line in
statistics and econometrics is directed at detecting long mem-
ory in financial time series. Different alternatives have been
formulated (e.g.: fractional Brownian motion, fractional Lèvy
flights) to account for long memory. However, they are all de-
fined within a monofractal framework. Even Autoregressive
Fractionally Integrated Moving Average (ARFIMA) processes,
proposed by Granger and Joyeux (1980) as a generalization of
Box and Jenkins (1994) models, assume a monofractal station-
ary process.

Regarding cryptocurrencies, there are also several studies on
long range dependence. Bariviera (2017) shows a declining
trend in long range dependence in Bitcoin returns, but a persis-
tent long range memory in daily volatility. Tiwari et al. (2018)
observe that the Bitcoin market has a trend towards the informa-
tional efficiency, albeit it exhibits long range dependence during
April-August, 2013 and August-November, 2016. Such results
are aligned with those previously found by Urquhart (2016).
More recently, Phillip et al. (2019) show that faster transacted
currencies show stronger oscillating long run autocorrelations.
Kristoufek and Vosvrda (2019) examine and produce an effi-
ciency ranking of fourteen coins and tokens according to the
well-established Efficiency Index developed by Kristoufek and
Vosvrda (2013). For the sake of brevity, we refer to Corbet
et al. (2019) and Merediz-Solà and Bariviera (2019) for further
details on the empirical financial literature on cryptocurrencies.

In a recent contribution, Kukacka and Kristoufek (2020) link
the concepts of multifractality and complexity, and replicate the
statistical dynamic properties of the time series by means of
several agent-based models. In a broad sense, we can say that
multifractality is a statistical feature of time series realated to its
non-trivial scaling properties. For a comprehensive discussion
on multifractality in financial markets see the recent review by
Jiang et al. (2019)

2.2. Generalized Hurst exponent

Harold Edwin Hurst, a British engineer, developed in a series
of papers (Hurst, 1951, 1956a,b, 1957) an empirical method to
measure the long range dependence of river discharges. His
method marked a landmark in hydrology studies, and was found
to have applications in other scientific domains. The original
method, R/S, was based on the rescaled range of the partial
sums of deviations of a time series from its mean.

Mandelbrot and Van Ness (1968) postulate a generalization
Brownian motion and Gaussian noise models, allowing for long
range dependence, linked to the system’s Hurst exponent. Man-
delbrot and Wallis (1968) find that these fractional models be-
have remarkably good in hydrology, and Mandelbrot (1972)
proposes its use in economics.

Depending on the type of signal under analysis, and the goal
of the research, we can select among a wide range of methods
to compute the Hurst exponent. An exhaustive discussion on
this topic is in Serinaldi (2010).

The Hurst exponent H does not only measure long range de-
pendence, but it is also closely related to the fractal dimension
of a time series, as shown by Sánchez-Granero et al. (2012).
In economics, it is common to assume that the process under
study is a fractional Brownian motion (fBm) or a fractional
Gaussian noise (fGn). They are monofractal processes, mean-
ing that the Hurst exponent scales linearly. However, real world
phenomena can exhibit more complex dynamics. For example,
Tuberquia-David et al. (2016) show that network traffic pattern
present multifractal characteristics, meaning that the Hurst ex-
ponent scales nonlinearly.

In this paper we use two approaches to detect multifractality.
The first one is the generalized Hurst exponent (GHE) devel-
oped in Di Matteo et al. (2003), and the second one is a mul-
tifractal version of the detrended fluctuation analysis presented
in Kantelhardt et al. (2002). It was recently recognized (Lux
and Segnon, 2018; Buonocore et al., 2020) that multifractal-
ity could be considered an stylized fact of financial time series
complementing those originally proposed by Cont (2001).

2.3. The GHE estimator

In contrast to other methods, this first method is specially
suitable for describing the multi-scaling properties in financial
time series. Di Matteo et al. (2003, 2005) show that it provides
robust and unbiased estimators on long term memory.

Without loss of generality, let consider a financial time series
X(t) (with t = ν, 2ν, . . . , kν, . . . ,T ). We are interested in ana-
lyzing the q−order moments of the distributions of increments,
according to the time resolution (ν). Di Matteo (2007) reveals
that qth-order moments are much less sensitive to outliers, and
are associated with different features of the multi-scaling com-
plexity of the time series. It is defined as

Kq(τ) =
〈|X(t + τ) − X(t)|q〉

〈|H(t)q|〉
(1)

where 〈·〉 is the expectation operator. The generalized Hurst
exponent H(q) results from the scaling behavior of Kq(τ) from
the following relation:

Kq(τ) ∼
(
τ

ν

)qX(q)
(2)

This approach enables to signalize two situations: (a) unis-
caling or unifractal processes where H(q) = H is constant; and
(b) multi-scaling or multifractal processes where H(q) depends
on q.

This procedure raised some concerns by Kukacka and Kris-
toufek (2020), who argue that sometimes GHE yields inconsis-
tent results.

2.4. Multifractal Detrended Fluctuation Analysis

To counterbalance the possible drawbacks of the GHE esti-
mator, we also utilize an alternative approach to the degree of
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multifractality. We employ the Multifractal Detrended Fluctu-
ation Analysis (MF-DFA). This method, developed by Kantel-
hardt et al. (2002) is generalization of the celebrated Detrended
Fluctuation Analysis by Peng et al. (1994). This is method is di-
vided into five steps. The first step determines the profile func-
tion:

Y(i) =

i∑
k=1

(Xt − 〈X〉), i = 1, . . . ,N (3)

The second step partitions Y(i) into nonoverlapping segments
of length s. Then the third step computes the local trend for
each segment using least square fitting, using linear, cuadratic
or higher order polynomials. The fourth step computes the av-
erage over all segments, in order to obtain the qth order fluctu-
ation function:

Fq(s) =

 1
2Ns

2Ns∑
ν=1

(F2
DFA(ν, s))q/2


1/q

(4)

Finally, the fifth step determine the scaling behavior drawing
using the q × Fq(s) log-log plane

Fq(s) ∼ sH(q) (5)

Kukacka and Kristoufek (2020) proposes the use of the
range of the generalized Hurst exponents (∆H ≡ maxq H(q) −
minq H(q)) and the width of the multifractal spectrum (∆α ≡
maxq α(q)−minq α(q)) to measure the degree of multifractality
in a time series.

Ihlen (2012) provides a guide to implement MF-DFA to time
series in Matlab. Its code, available in Ihlen (2020), is used in
this paper.

2.5. The source of multifractality

It is not only important to detect the presence of multifractal-
ity in time series, but also to determine its source. According
to Kantelhardt et al. (2002) two types of multifractality can be
distinguished. The first type is related to the probability density
function, and the second one is related to the varying long-range
correlation structure in the time series.

In order to detect which kind of multifractality presents a
time series, some tests on surrogated time series should be done.
An straightforward strategy is to shuffle the original time se-
ries. This randomization will destroy non trivial correlations
present in the original time series. Consequently, this proce-
dure will allow to determine if the source of multifractality is
the correlation structure. However, if the time series present
multifractality due to the probability distribution, the measures
of multifractality will not (significantly) change. Additionally,
as highlihted by Kantelhardt et al. (2002) if both types of multi-
fractality affect the time series, multifractality metrics will show
a reduction in the shuffled series. A detailed discussion on the
sources of multifractality in financial assets could be found in
Barunik et al. (2012).

Table 1: Descriptive statistics of the Log volume and generalized Hurst expo-
nent of the sample for q = 1 and q = 2.

Gen. Hurst exponent
Log vol. q = 1 q = 2

Obs. 84 84 84
Mean 5.5210 0.5150 0.4471
Median 6.2597 0.5211 0.4812
Min −0.5299 0.3564 0.2513
Max 8.7063 0.7333 0.5692
Std. Dev. 1.8227 0.0622 0.0780
Skewness −0.9143 0.0305 −0.8984
Kurtosis 3.3324 4.8306 2.5925
Jarque-Bera 12.0904 11.7414 11.8818

3. Data

Cryptocurrencies’ markets are not regulated by national au-
thorities and market data lacks of proper independent standard-
ization and verification. Consequently, a careful selection of the
data sources is a key element in order to obtain reliable results.

Following Alexander and Dakos (2020), we obtain our data
from CryptoCompare (20120), because other coin-ranking sites
base their quotes on unreliable volume data.

We use daily price data of the eighty-four largest cryptocur-
rencies (coins and tokens), according to traded volume. The
period under examination goes from 06/01/2018 to 05/03/2020,
for a total of 790 observations. The selection criteria was based
on the average daily volume traded over the period, and the
availability of data for every day within the period under study.

A table with the list and descriptive statistics of daily loga-
rithmic returns is included as a supplementary material to this
letter.

4. Results

Most studies have been focusing on Bitcoin or, at most on a
few cryptocurrencies. This fact generates an overrepresentation
of the big players in the literature. The analysis of eighty-four
cryptocurrencies allows depicting a more comprehensive land-
scape of this novel and rapidly evolving market.

Our empirical investigation is divided into two parts. The
first one, computes the generalized Hurst exponent for q =

{1, 2} and refines results by using a multi-scaling procedure with
the computation of the curves of qH(q) as a function of q, fol-
lowing the procedure developed by Di Matteo and coworkers.
The second one provides more robust results by computing the
generalized Hurst exponent and the multifractal spectrum of the
different cryptocurrencies using the MF-DFA framework.

The descriptive statistics of the logarithm of the average daily
volume of the period, and the estimated Hurst exponents are
displayed in Table 1.

Results regarding the estimated Hurst exponents for q = 1
uncover an uneven behavior of cryptocurrencies. H(1) de-
scribes the scaling behavior of the absolute values of the in-
crements of a time series. We find that 0.5 < H(1) < 0.6 for
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most of the largest cryptocurrencies according to traded vol-
ume. Hence, behavior is congruent with a standard Brownian
motion or with a somewhat persistent stochastic process. This
is in line with previous findings (referred only to Bitcoin) by
Urquhart (2016), Bariviera (2017), Phillip et al. (2019), and
Aslan and Sensoy (2019), among others.

From Figure 1 it can be seen that cryptocurrencies within
the third and fourth volume quartiles behave differently. Their
Hurst exponents spans between H(1) ≈ 0.32 and H(1) ≈ 0.65.
Coins in the third quartile tend to follow a persistent behav-
ior (H(1) > 0.5), whereas those in the fourth quartile are more
likely to present an anti-persistent behavior (H(1) < 0.5). In
both cases, the time series are generally informational ineffi-
cient. A density plot is inserted on the right vertical axis of
Figure 1 in order to show the distribution of the generalized
Hurst exponent in the different quartiles.

The Hurst exponents for q = 2 is connected to the autocorre-
lation function and connected to the power spectrum (Flandrin,
1989; Di Matteo et al., 2005). We observe, again, a noticeable
behavior depending on cryptocurrency size. Cryptocurrencies
in the first and second volume quantiles are roughly efficients,
whereas the third and fourth quartiles exhibits an clear antiper-
sistent behavior (see Figure 2).

Figure 1: Scatter plot of the generalized Hurst exponent for q = 1 and log
volume of cryptocurrencies. On the right there is a density plot of the Hurst
exponent, classified by volume quartile.

As mentioned in Section 1, we generalize the analysis of
the Hurst exponent for different values of 0 < q < 4. Fig-
ure 3 displays the planar representation of q × qH(q). The re-
sults of the different coins are grouped into quartiles according
to volume. As a benchmark model, we include also the re-
sults arising from a simulated time series of the same length
and H = 0.52 If the stochastic process under consideration is
monofractal (i.e. the simulated time series), qH(q) as a function

2Simulation was performed using Matlab function wfbm.

of q is a straight line, and its slope depends on the H. However,
the presence of nonlinearities in this function is a signature of
multifractal processes. Thus, we provide compelling evidence
against (fractional) Brownian, (fractional) Lèvy, and other ad-
ditive, monofractal processes.

This analysis reinforces what was shown previously regard-
ing the heterogeneous behavior of cryptocurrencies according
to their volume size. Figure 3 clearly reveals that coins in the
first quartile follow roughly unifractal processes, being a frac-
tional brownian motion a suitable model for describing their
behavior. On contrary, cryptoassets within the other cuartiles
(specially those in the third and fourth) exhibit strong multi-
fractality. In such cases, Brownian or Lèvy models (included
their fractional varieties), are deemed inadequate for capturing
their complex dynamics.

4.1. Source of multifractality: MF-DFA on original and shuf-
fled time series

In the previous subsection we detected multifractality in all
the time series. Its presence is particularly relevant in coins and
tokens belonging to the third and fourth quartiles.

In order check for the robustness of our results, and follow-
ing the advise of Kukacka and Kristoufek (2020), we compute
two multifractality measures (∆H,∆α) using MF-DFA method
by Kantelhardt et al. (2002). We also conduct our empirical
analysis on 1000 independent shuffled realizations of each time
series, and construct the 95% confidence interval of the multi-
fractal measures.

Figure 4 shows similar results to Figure 3, indicating that
multifractality (albeit at different degrees) is present in all time
series.

Table 2 presents the results of the two selected multifractality
measures (∆H,∆α) using the original and shuffled realizations
of the time series. Results are presented by quartiles. We ob-
serve that, even multifractality is reduced by the shuffling pro-
cedure, it does not vanish. This result indicates that the source
of multifractality is (not only) a different long range correlation
structure for small and large fluctuations.

We conduct also a detailed analysis of each coin and token
of our sample, whose results can be found in the supplementary
material to this paper. According to our results, ∆H is outside
this confidence interval in 29 out of the 84 cryptocurrencies,
representing 34% of our sample. This means that in almost two-
thirds of the time series multifractality is due to the correlation
structure, which is destroyed by the shuffling process. Rejec-
tion rates varies according cryptocurrency size. In the first and
third quartiles 28% of the coins exhibit multifractality. In the
second quartile, 24% show results compatible with multifractal
dynamics. However, in the fourth quartile, multifractality af-
fects 57% of the time series, meaning that an additional source
of multifractality could be present. Similar results are found
using ∆α as multifractality measure.

Subsequently, we explore the role of kurtosis in the multi-
fractal profile of the time series. Kurtosis is a common descrip-
tive statistic to signal the peakedness of the probability density
function and the presence of fat tails. It was previously reported
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Figure 2: Scatter plot of the generalized Hurst exponent for q = 2 and log
volume of cryptocurrencies. On the right there is a density plot of the Hurst
exponent, classified by volume quartile.

Figure 3: The function qH(q) vs. q, averaged by quartiles, and a simulated
brownian motion process with Hurst=0.5.

Table 2: Multifractal measures computed on the original and shuffled time se-
ries

MF-DFA Multifractal spectrum
Original Shuffled Original Shuffled
∆H ∆Hshu f f led ∆α ∆αshu f f led

Quartile 1 0.2658 0.2016 0.4640 0.3631
Quartile 2 0.2628 0.2215 0.4145 0.3999
Quartile 3 0.4636 0.3368 0.7344 0.5576
Quartile 4 0.6825 0.4708 1.0162 0.7374

Figure 4: The function qH(q) − 1 vs. q on original and shuffled time series,
averaged by quartiles. The function is also computed for a simulated brownian
motion process with Hurst=0.5.

+

(Corbet et al., 2019; Aslanidis et al., 2019) that cryptocurren-
cies exhibit stronger fluctuations than traditional assets. This
could be specially true for the smallest and most illiquid assets,
which are prone to sudden jumps.

Figure 5 and 6 show an association between the measures
of multifractality (∆H,∆α) and the estimated kurtosis of the
time series. This association is (to a great extent) destroyed
by the shuffling procedure in coins and tokens belonging to the
first and second quartiles. Thus, kurtosis seems not to influ-
ence significantly in the level of multifractality of these coins.
This result is consistent with our previous finding that only 28%
(23%) of the cryptocurrencies in the first (second) quartile lie in
the critical region of multifractality. However, extreme events
(proxied by greater kurtosis) in the third and fourth quartiles
seem to translate into stronger multifractality. As a caveat, we
are not saying that these time series are less informational effi-
cient, but that smaller coins and tokens present more frequent
and larger jumps, which in turn induces more multifractality.

5. Conclusions

This letter sheds light on the multifractal behavior of the
cryptocurrency market in a broad way.

We expand previous research computing the generalized
Hurst exponent and the multifractal spectrum of eighty-four
cryptocurrencies time series using two alternative methods.

According to our results, cryptocurrencies have a different
long memory endowment, according to their size, proxied by
traded volume. More importantly, we detected the presence of
multiflactality in several time series. Largest cryptocurrencies
(those in the first quartile of volume) seem to follow monofrac-
tal processes, consistent with a fractional Brownian motion. On
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Figure 5: Relationship between kurtosis and ∆H as a measure of the level of
multifractality. Each point represents a cryptocurrency using the original and
the shuffled time series.

Figure 6: Relationship between kurtosis and ∆α as a measure of the level of
multifractality. Each point represents a cryptocurrency using the original and
the shuffled time series.

contrary, other cryptocurrencies exhibit strong multifractality.
This result poses some restrictions on the suitable stochastic
models for such coins and tokens.

Regarding the source of multifractality, our results are mixed.
According to our results, shuffling the time series produces a re-
duction in the level of multifractality, but does not offset all of
it. This result is in agreement, regarding bitcoin, with Kukacka
and Kristoufek (2020). Consequently, there is another source of
multifractality. We find an association of kurtosis with greater
levels of multifractality. This association is stronger for the
smallest coins and tokens of our sample.

Consequently, our results support the idea that cryptocurren-
cies differ not only among them in their long range dependence,
but also in the stochastic processes that govern their dynamical
behavior.

Our findings can be of interest for academics and practition-
ers alike. From the academic point of view, means that one
model does not fit all. It is necessary to study on a case-by-case
basis, in order to select the most appropriate model to describe
return dynamics. From the practitioners point of view, means
that there could be some arbitrage opportunities, depending on
each cryptocurrency.
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