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ABSTRACT This work presents a seat-occupancy detection system based on a PCR (Pulsed Coherent Radar)
at the unlicensed 60 GHz ISM band. The radar can measure distances with sub-millimeter resolution. There-
fore, the system can detect the presence of people occupying the seats by measuring small movements of the
body, such as those produced by breathing. In consequence, the system not only measures seat-occupancy
but also breathing rate, which is estimated from the amplitude peaks after filtering the amplitudemeasured by
the radar to remove the noise. The effect of the car vibrations and random body movement is experimentally
studied. Measurements performed with adults, as well as with a baby emulator sitting in a child seat, are
presented. Comparison of the system with another that measures the breath based on airflow shows good
agreement and permits its validation.

INDEX TERMS Automotive radar, mm-wave radar, seat occupancy, detection, vital-sign monitoring,
breathing monitoring.

I. INTRODUCTION
Vehicle Seat-occupancy detection systems have taken on
importance with the introduction of the airbag system. Airbag
systems are fundamental safety elements in vehicles but, for
proper operation, they require information about the pres-
ence and type of occupant of the seat. Undesired activa-
tion of the airbag results in a high repair cost. In addition,
an airbag deployment in a seat occupied by an infant sit-
ting in a rear-facing baby seat can cause fatal injuries [1].
Therefore, sensors capable of detecting seat occupancy are
required, inhibiting the activation of the airbag when the seat
is occupied [2]. The seat occupancy detector can also be
used as a seat belt reminder. Conventional seat belt reminder
systems work with weight sensors. Therefore, they produce
undesired alarms when the seats are occupied by luggage or
purchases. In addition to meeting regulatory requirements,
seat occupancy detection systems can also be used to improve
passenger comfort, for example, controlling the air condi-
tioning system according to the occupancy rate. Another
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application is to warn of the presence of children or pets.
This prevents the driver from accidentally forgetting them
inside the car. Besides, one of the most effective ways to
reduce pollution in the cities is to promote the reduction of
vehicle traffic, encouraging the vehicle sharing. In the same
line, on some highways, discounts are applied to vehicles with
high occupancy. In addition, tracking drivers’ vital signs can
alert drivers to stress [3], apnea [4]–[6] or drowsiness [7],
which can increase the likelihood of traffic accidents. In con-
sequence, radar-based seat occupancy detection has twomain
benefits. First of all, it is able to detect occupation avoiding
both the contact with the passenger as well as the installation
of any auxiliary equipment in the seat and, second, thanks to
the measurement of vital signs (such as breathing rate), it is
possible to distinguish objects from living beings and to track
the conditions of drivers. However, the signal received by the
radar will not only contain information about the passenger’s
vital signs, but also about the voluntary passenger’s move-
ments and about those induced by the motion of the car.
Consequently, monitoring vital signs using a radar-based sen-
sor becomes quite difficult in a non-stationary environment.
An accelerometer can be used to acquire information about
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the unwanted motion induced by the car in order to cancel
it. Reference [8]. The main contribution of this paper is to
study the feasibility of using a low-cost pulsed mm-Wave
radar to implement a seat occupancy detection system and to
monitor the driver’s breathing rate. The pulsed radar operates
in the 60 GHz band. Millimetre-wave transmission in the
60 GHz range is seen to be a promising method to meet
the demanding requirements of future wireless systems with
regard to increasing data rates. The main advantages of this
frequency band are the large (license-free) bandwidth that
allows high data rates and the short wavelength is suitable for
indoor applications using small antennas. The advantage of
this radar compared to other mm-wave Frequency-Modulated
Continuous-Wave (FMCW) radars is the integrated system-
on-chip solution characterized by high accuracy in distance
measurements, without requiring the use for complex signal
processing units. Therefore, the system can be implemented
using low-power microcontrollers. Also, there is no inter-
ference with existing radio systems because most of the
communication systems operate at lower frequencies, and
specifically automotive radars in the 24 GHz and 77 GHz
bands.

The rest of the paper is organized as follows. Section II
revises different non-contact seat occupancy detectors, espe-
cially based on a radar. Section III describes the proposed
solution. Experimental results are given in section IV. Finally,
conclusions are provided in section V.

II. RELATED WORKS
Different methods for seat occupancy detection have been
proposed in the literature. These can be classified as contact
and non-contact methods. The first method is characterized
by the installation of a wired sensor in the seat that detects the
presence of an occupant, whereas the second method is based
on devices that sense the presence at a certain distance using
electromagnetic waves or optical systems. Table 1 summa-
rizes several seat occupancy devices reported in the literature,
including both the method used for measurement and some
additional comments. In the first method, we can find pres-
sure sensors [9], [10]. The main problem of these sensors is
their sensitivity to vibration and the requirement of body con-
tact with the seat. Breathing measurements with piezoelectric
sensors integrated into the seating area are difficult. It can
also be activated when objects are placed on the seat. Another
group of sensors is based on capacitive detection, which work
on electrode arrays integrated into the seat [11]–[13]. This
method is used in ECG measurements [13]. However, these
sensors are sensitive to both interference and to the distance
between the body and the seat.

Seat-occupancy detection using optical sensors could be
an alternative to the current detection methods, especially for
rear seats. An example of this is a method based on a camera.
The main drawback is that it relies on face or shape detection,
making it difficult to work under low light conditions or when
children are covered with a clothing. Thanks to body heat,
infrared cameras can detect people in low light conditions, but

humans cannot be detected when the inside of the car is hot,
as normally happens in summer. Besides, infrared cameras
are more expensive than conventional cameras. These vision
systems require advanced signal processing algorithms with
a high computational cost that contribute to increase the cost
of the system. Time-of-Flight LIDAR sensors have also been
proposed for seat detection [14]. Recently, a camera-based
method for measuring breathing has been proposed in [15].
It is based on the detection of a reflective object attached to
the belt.

Vital-signs monitoring has been studied in the literature
using different radars such as Impulse Radio Ultra-Wide
Band (IR-UWB) [16]–[19], Continuous Wave (CW) Doppler
radar [20]–[23] and Frequency-Modulated Continuous-Wave
Radar (FMCW) Radar [24], [25]. Vital signs using millimeter
wave radar, specially based on Doppler radar, exploits the
ability of detection of microdoppler phase shift induced by
the chest and heart movements [26], [27]. A fully integrated
CMOS Doppler radar has been designed for this application
in [28]. In addition to the microdoppler signature detection,
FMCW radars can also determine the range [29] of multiple
persons and even the angle using beamforming techniques
with a multichannel front-end [30]. However, these radars
have a higher complexity and require higher computational
efforts than simple CW radars or the proposed pulse coherent
radar used in this work. Despite this interest, the applica-
tion of vital-signs monitoring to automotive environments is
restricted to a relatively small number of works [31]–[33].
Seat occupancy based on FMCW microwave and mm-wave
radars at 24 GHz and 77 GHz have been recently pro-
posed in [34] and [35], respectively. Seat occupancy detec-
tion based on monitoring the received UWB signal has been
proposed in [36]. A system based on channel measurements
frommmWaveWiFi devices (60-GHz 802.11ad devices) was
recently proposed in [37] for human activity monitoring at
room-level. The system uses signal-to-noise ratio (SNR) and
channel state information (CSI) measurements, with a clas-
sification method for human pose recognition and seat occu-
pancy sensing. Besides vital-signmonitoring, novelmmWave
radar applications for object and material classification have
recently been proposed [38]–[40].

III. SYSTEM DESIGN AND THEORETICAL BACKGROUND
A. PULSED RADAR OPERATION
A mmWave radar from Acconeer is used in this work.
Acconeer’s radar is based on PCR (Pulsed Coherent Radar)
technology that operates at the unlicensed 60 GHz band. This
makes possible to use a very small antenna and ultra-short
pulses. The core is an A111 radar sensor [44] that is a
System-in-Package (SiP): it integrates the mm-Wave front-
end, antenna, memory, logic control and digitization of
received signal in one chip. This solution makes it possible
to identify materials and detect motion in advanced sensor
applications. The radar is characterized for its millimeter
accuracy in range and low power consumption. It canmeasure
ranges between 60 - 2000 mm for a RCS of −21 dBsm
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TABLE 1. Seat occupancy detectors.

(sphere of radius r = 50 mm), having a continuous sweep
update frequency configurable up to 1500 Hz. The Half
Power BeamWidth (HPBW) is 40 and 80 degrees in E-plane
and H-plane, respectively. The radar is available in a com-
mercialmodule (XM132) ready for evaluation and integration
and its cost is around 16 e.

Figure 1 shows schematically the waveform transmitted
by the pulsed radar. It is a modulated wavelet at the carrier
frequency (fc = 60 GHz). The interval between pulses is
determined by the PRF that is equal to 13 MHz. The duration
of the wavelet (TPULSE ) can be configured between a set
of five values. The transmitter effective isotropic radiated
power (EIRP) is 10 dBm. The typical range resolution is on
the order of 0.5 mm. The leakage between the transmitter
and the receiver limits the minimum detection distance to
about 6 cm for the minimum pulse length. The system relies
on the transmission of coherent phase pulses. Therefore,
the received signals from multiple pulses are combined to
improve the signal-to-noise ratio (SNR), thus enhancing the
visibility of the object.

Transmitted signals bounce off in an object. The distance
to the object (r) is calculated from the time elapsed between
transmission and reception of the reflected signal (τ ):

r =
cτ
2

(1)

where c is the propagation velocity.
The radar is installed in front of the seat. The transmitted

signal xt (τ ) can be expressed as a train of wavelets modulated
by the carrier frequency:

xt (τ ) =
N∑
k=0

p(τ − kT )cos(2π fc(τ − kT )) (2)

FIGURE 1. Schema of the transmitted radar waveforms.

FIGURE 2. Seat states considered: (a) empty, (b) with a passive object,
(c) adult, and (d) baby.

where p(τ ) is the envelope of the wavelet and T is the inverse
of the pulse repetition frequency (PRF). The signal received at
the radar is the transmitted signal delayed and attenuated due
to the propagation, plus the noise added by the receiver. The
system relies on the fact that the pulses are transmitted with
phase coherence. This makes it possible to reduce noise and
improve the signal-to-noise ratio (SNR) in order to enhance
the target detection, by combining the received signal from
multiple transmitted phase coherent pulses [45]. The enve-
lope is the module of the in-phase and quadrature demodu-
lated signals (IQ) on the radar. After the coherent integration
of the transmitted pulses, the envelope of the received signal
can be expressed as a function of the delay τ for each sweep
time t , and can be modeled as follows:

xr (τ, t) = α · p(τ − τ0)+ n(t) (3)

where α is an attenuation term that depends on the distance
and the reflection coefficient of the body and τ0 is the delay
due to round-trip between the target and the radar, and n(t) is
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the noise signal in the receiver. The radar module considers
that there is a target if the amplitude of the envelope exceeds
a certain threshold value. This threshold value can be config-
ured to be a fixed value, or it can be estimated using a cell
averaging constant false alarm (CA-CFAR) algorithm [45].
In this work, a constant threshold is considered, and it is
determined from a measurement with the radar pointing to
an empty seat.

The distance between the body and the radar can be mod-
eled as the sum of the average distance r0 and two terms that
take into account the periodic movement of the chest, with
maximum displacement rb, and the randommovements of the
body induced by the car vibrations (rv(t)):

r(t) = r0 + rbcos(2π fbt)+ rv(t) (4)

In this model, the movement induced by the heartbeat is
not considered because it is assumed to be masked by the
breathing movement and the vibration of the car. With the car
in motion, the randomness and changes in the road surface
are the main factors that cause vibrations in a vehicle [46].
It can be used to analyze the influence of vehicle structural
parameters and road excitation on vehicle random vibration.

It has been proven that the coefficient of rolling resistance
of the vehicle increases with increasing road roughness coef-
ficient. On the other hand, the vehicular rolling resistance
force is also affected by vehicle speed, due to deformation
of the tread and vibration in the tire rim caused by increased
speed. The power spectrum density (PSD) depends on the
kind of vehicle and has a significant content within the band
between 1 Hz and 100 Hz [47].

The distance (r0) to the body can be estimated from the
envelope peak τpeak of the measured signal as a function of
the delay, which is returned by the radar firmware using the
envelope service provided by the radar manufacturer [48].

The amplitude of the peak y(t) = xr (τpeak , t) provides
information about movement and breathing. The received
pulse waveform can be developed in a Taylor series assuming
that the amplitude of the displacement due to breathing and
random vibrations is small compared to the mean distance.

y(t) = xr (τpeak , t)

= A ·
∞∑
n=0

p
′(n)(0)
n!

(τbcos(2π fbt)+ τv(t))n + n(t) (5)

where τb = 2db/c and τv = 2dv/c are the maximum
delays associated with the breathingmovement and vibration,
respectively, being db the micromovement of the chest due to
breathing and dv the random micromovement due to vibra-
tion. t is the slow-time corresponding to the each radar sweep
t = nTs, where Ts is the time between each radar sweep. The
amplitude A depends on the distance between the radar and
the target and on its radar cross section.

The micromovements of the chest due to breathing and
random movements of the body produce an envelope mod-
ulation as a function of slow time. The interference due to

randommovements can be appreciated in (5). The fundamen-
tal harmonic of the breathing frequency corresponds to the
term n = 1. The spectrum can be filtered to avoid important
frequency interference, but if the amount of random move-
ments is high, the interference occurs within the frequency
range of the breathing (from 0.1 Hz to 1 Hz). Additionally,
intermodulation products can also fall within the breathing
spectrum.

B. SIGNAL PROCESSING
1) SEAT OCCUPANCY DETECTION
In absence of an occupant, the distance detected by the radar
corresponds to the distance to the seat or any object located on
the seat (eg. a bag). Therefore, it remains constant if the target
is assumed to be static. In this case, small variations are due
to noise and vibrations. In order to determine the presence of
a person, the standard deviation of the AC component of the
envelope amplitude is computed:

σ 2(t) =
∫ t

0

(
dy
dt

)2

dt (6)

A digital implementation of (6) is possible from the sam-
ples of the measured peak amplitude y[n] returned by the
radar in each sweep. To perform its implementation onmicro-
controllers with lowmemory resources, low-pass filters based
on exponentially weighted moving average (EWMA) are
used. This moving average filter is equivalent to an infinite
impulse response (IIR) filter. This filter has the advantage that
it is not necessary to save samples previously, only having to
easily fit one coefficient or parameter. Using an EWMAfilter,
equation (6) can be implemented as follows:

σ 2[n] = α
(
y[n]− y[n− 1]

Ts

)2

+ (1− α)σ 2[n− 1] (7)

where the derivative is approximated by the finite difference
between two consecutive samples. The parameter α is the
smoothing coefficient that can be obtained from the cut-off
frequency [49]:

α=
√
cos2(�3dB)− 4 cos(�3dB)+ 3+cos(�3dB)−1 (8)

where �3dB is the normalized angular frequency:

�3dB = fc
Ts
2π

(9)

The seat is considered to be occupied by a human if σ is
higher than a threshold σth. Fig. 3 shows a block diagram of
the signal processing used to obtain the seat occupancy. For
the case of a stationary target the finite difference between
consecutive samples must be zero and only noise contribution
should be present. Consequently, σ will be an estimation of
the noise deviation. The threshold is initially estimated from
the average value of σ when the seat is empty. An excessively
small value increases the probability of false alarm, while a
high value can cause detection errors or delays in the response
of the presence sensor. We have assessed that the noise level
remains almost constant if the radar settings do not change.
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FIGURE 3. Block diagram of the signal processing used to obtain the seat
occupancy.

2) BREATHING RATE DETERMINATION
In order to obtain the breathing rate, signal processing has
been carried out. Firstly, a band pass filter between 0.1 Hz
and 1 Hz has been applied to the amplitude of the enve-
lope y(t). Breathing signal is obtained by applying a band
pass filter to the amplitude of the envelope y(t). To avoid the
use of high order filters that can introduce undesired delays,
the band-pass filter is implemented in two steps. Firstly,
the DC component is removed from the signal and then a
low-pass filter is applied to remove components outside the
breathing spectrum. In order to detect the variations produced
by the movement of the body, a low-pass filter with a very
low cut-off frequency (less than 0.1 Hz) is used. In absence
of body movements and car vibrations the resulting signal
b(t) should be composed by the fundamental and the first
harmonics of the breathing signal.

yDC (t) = h1(t) ∗ y(t) (10)

b(t) = h2(t) ∗ (y(t)− yDC (t)) (11)

where the symbol ∗ denotes the convolution operator and
h1(t) and h2(t) are the impulsional response of the low-pass
filters used to estimate the DC component and removing high
frequency noise and components from y(t), respectively. The
practical implementation of these digital filters is described
below.

Considering the possibility of performing the real-time
implementation in a low-power microcontroller, the filter to
remove the DC component h1 can be implemented with an
EWMA filter:

yDC [n] = α1y[n]+ (1− α1)yDC [n− 1] (12)

To perform the low pass filter h2 there are several options
[50], [51]. IIR filters provide higher attenuation with a lower
order than FIR filters. In order to save memory a cascaded
biquadratic filter has been used, whose transfer function is
given by [52]:

H2(z) =
B(z)
X (z)
=
b0 + b1z−1 + b2z−2

1+ a1z−1 + a2z−2
(13)

This filter can be implemented in a relatively simple
difference-equation form, also known asDirect Form I, which
can be easily applied to a time-based data stream:

b[n] = b0x[n]+ b1x[n− 1]

+b2x[n− 2]− a1b[n− 1]− a2b[n− 2] (14)

where the input sequence x[n] (see Fig. 4) is the breathing
signal y[n] after removing the DC component:

x[n] = y[n]− yDC [n] (15)

Alternatively, direct form II implementation can be used,
which requires only two delay registers. To increase the
attenuation, the filter can be applied in cascade to b[n]. The
biquadratic filter coefficients (an and bn) can be obtained
from the desired corner frequency and quality factor [53].

In order to determine the bodymovements, the deviation of
the distance σd can be computed by replacing the amplitude
samples y[n] by the distance samples d[n] in (7).
Vital signs monitoring systems are often focused on deter-

mining the heart and breathing rates. At this point, the breath-
ing rate can be determined from the filtered sequence b[n].
It can be obtained from the spectrum by applying a finite time
window. However, this approach has some drawbacks. The
most important one is that Fourier transforms are required,
therefore it is necessary to save long data sequences that
involve a great computational effort, especially if it has to
be implemented in a low-power microcontroller. On the other
hand, some physiological events, such as apneas, are detected
from the reduction of the breathing rate and its duration
is difficult to assess. The breathing rate is calculated from
the average of the signal measured within the time window.
Therefore, the respiration rate variability (RRV), which is
obtained from the measurement of the changes in the time
interval between breaths cannot be analyzed. Random body
movements within the timewindow used to estimate the spec-
trum produce peaks in the spectrum that can be erroneously
considered as breathing components. Some of these draw-
backs can be overcome if the breathing signal is analyzed in
the time domain.

To this end, a peak search algorithm is used to determine
the breathing interval between two breaths. The algorithm
described in [54] [55] is employed. It is based on searching a
maximum (or minimum) The algorithm does not start another
search until the trend of the signal has reversed (decreases
after a maximum or increases after a minimum) the value
specified by a parameter 1. A suitable large enough value
for this parameter provides a very robust behavior against
noise. In addition, nearby peaks that produce impossible
breathing frequencies are discarded. In order to amplify the
breathing contribution, a nonlinear transformation is applied
to compress the signal between two limits:

bn[n] = tanh
(
b[n]
√
2σb

)
(16)

where σb is the standard deviation of the breathing signal.
Fig. 4 shows the main blocks diagrams used for the breathing
rate calculation.

IV. EXPERIMENTAL VALIDATION
Several experiments have been conducted to show to feasi-
bility of the system. The radar has been located facing the
driver’s seat (see Fig. 5) and the algorithm presented above
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FIGURE 4. Block diagram of the signal processing used to obtain the
breathing rate.

FIGURE 5. Image of the radar installer in the car oriented to the driver.

has been applied. The acquisition range of the radar is set
typically between 0.5 m and 1 m. Therefore, any reflection
that occurs outside of this range limit is ignored.

A. SEAT OCCUPANCY
Fig. 6 shows the results corresponding to the first situation
(case 1) that has been measured. In this case, the seat remains
empty (Fig. 2a) for 30 seconds, then a passenger enters, leaves
a bag (Fig. 2.b) and exits the car. It can be seen that while the
seat is empty or occupied by an object, the range of the max-
imum detected (Fig. 6a) and the peak amplitude ((Fig. 6b)
remain constant. The time interval in which the passenger
is in the seat produces a variation of the peak amplitude.
During this interval the deviation σ increases and exceeds the
threshold that activates the seat occupancy indicator (shown
in doted line in the Fig. 6c). During this interval breathing rate
can be detected (Fig. 6d).
Fig. 7 shows the results corresponding to a second situa-

tion (case 2). Here the measurement begins with the engine
switched off and the person occupying the driver’s seat. After
30 seconds the driver gets out of the car and re-enters after
approximately 30 seconds. Then the driver starts the engine
and after 50 seconds he stops it and exits the car. Both the
range and the amplitude are nearly constant when the seat is
empty and the deviation is below the threshold, which is set
at the same value as in case 1.

B. BREATHING RATE RESULTS
This section compares the breathing rate measured with an
air-flow sensor and with the radar. The air-flow temperature
sensor consists of a negative temperature controlled (NTC)
thermistor installed in a face mask (see Fig. 8). During
the exhalation and inhalation process, the temperature rises

FIGURE 6. Case 1: (a) range, (b) amplitude, (c) deviation and seat
occupancy indicator (dotted line), and (d) breathing rate.

FIGURE 7. Case 2: (a) range, (b) amplitude, (c) deviation and seat
occupancy indicator (dotted line), and (d) breathing rate.

and falls, respectively, as shown in Fig. 8. This temperature
variation produces changes in the resistance of the NTC ther-
mistor. The NTC used in this work is the G10K3976, whose
nominal value is 10 k� at a temperature of 25◦C. A Wheat-
stone resistive bridge connected an operational amplifier
(LMV358 from Texas Instruments) is used to amplify the
sensed signal (see Fig. 9). The output of the amplifier is dig-
itized with the ESP32 microcontroller from Espressif, which
integrates a 12-bit analog-to-digital converter (ADC). The
same signal processing algorithm explained in section III-B
is applied to both sensors.

To perform the comparison between both sensors, a person
is seated stationary in front of the radar with the air-flow
temperature sensor adjusted to the face using a mask. The
measurements have been made with volunteers sitting still in
order to avoid interference measured on the radar or in the
position of the air flow sensor due to movement, which could
produce outliers. The effect of random body movements
will be studied later. An example of these measurements is
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FIGURE 8. Air flow sensor based on sensing the variation of temperature
measured with a thermistor.

FIGURE 9. Signal conditioning used for air flow sensor.

shown in Fig. 10. This figure shows the radar b[n] and the
air-flow output signal recorded for 3 minutes. Good agree-
ment between both sensors can be observed. Fig. 11 compares
the breathing rate obtained from the two sensors.

A Bland–Altman plot (difference plot) is a data plotting
method used to analyze the agreement between two different
trials [56], [57]. It consists in plotting the difference between
the two methods as a function of the average measurement.
Bland–Altman analysis of Fig. 12 shows that the result does
not depend on the proportional error. However, it does depend
on the magnitude of the measurements. The Bland–Altman
analysis reveals a bias of 0.2 bpm and a confidence range
of 2.4 and−1.93 bpm. The analyses have been repeated with
several volunteers achieving similar results.

The effect of random body movements in determining the
breathing rate is studied in the next figures. To this end

and accelerometer is connected to a microcontroller via an
I2C bus. The accelerometer is placed around the chest with
the help of a ribbon. Both the acceleration and the radar
signal are recorded simultaneously. A measurement is shown
in Fig. 13. Fig. 14 shows both the normal component of
acceleration due to the chest movement and the spectrogram.
A periodic change associated with breathing movements can
be observed, resulting in an almost constant peak in frequency
as a function of time. However, random movements around
30 and 50 seconds produce a strong interference in all the
spectrum making difficult the measurement of the breathing
rate. Under these circumstances, there is a rapid variation
of the signal in the time domain. Consequently, a small
interval appears between adjacent peaks, causing an erro-
neous estimation of the breathing rate. Since the breathing
rate is computed from the inverse of the breathing interval,
these periods do not affect the estimation of the breathing
rate of the next interval. These abnormally high values do
not represent any inconvenience, since they can be easily
detected and neglected. The seat occupancy indicator works

FIGURE 10. Breathing signal from the radar (a) and for air flow sensor (b).

FIGURE 11. Breathing rate as a function of the time obtained from the
radar (a) and the air flow sensor (b).
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FIGURE 12. Bland-Altman plot for the breathing rate.

FIGURE 13. From top to bottom: measured peak distance, amplitude,
standard deviation, chest acceleration and breathing rate including
reference airflow sensor (red line).

correctly over the entire time interval of the measurement
because the envelope deviation σ is higher than the threshold.
It is observed that the values of σ increase for the period
of random body movements. In order to reduce the inter-
ference of movements of the arms that can block the line-
of-sight of the radar, the radar could be integrated into the
roof of the car, to have direct visibility of the subject’s chest.
Another improvement would be the use of lens antennas to
increase their directivity, thus reducing the interference from
surrounding objects. Reflections that fall outside the range
window determined by the time-gating interval are consid-
ered to be ignored. Therefore, interference from movements
of passengers is eliminated.

FIGURE 14. Measured chest acceleration (top) and spectrogram (bottom).

FIGURE 15. Influence of car vibrations. From top to bottom: standard
deviation, normal radar acceleration and breathing rate including
reference airflow sensor (red line).

The influence of car vibrations both at rest and in motion is
studied in the following figures. To this end, an accelerometer
is attached to the radar support to measure the acceleration
suffered by the radar. The acceleration is simultaneously
recorded with the radar measurements using a microcon-
troller connected to a computer. An example of measurement
is shown in Fig. 15. The engine is initially stopped. After
35 seconds, the driver starts the car engine, and after another
25 seconds, he stops it. The procedure is repeated again.
Fig. 16 shows the spectrogram of the acceleration. Fig. 17
shows the breathing rate variability in a Poincare plot. This
plot shows the scatter obtained from the correlation between
two consecutive data points in a time series. It consists in a
scatter plot of the current breathing duration plotted against
the previous breathing interval. SD1 and SD2 (standard devi-
ations outside and inside the axis, respectively) are approx-
imately the same with both the engine off and on. It can be
shown that the effect of the car vibrations is small because the
high frequency components are filtered out.

Now the system has been tested in a real environment.
An urban scenario has been chosen where the driver must
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FIGURE 16. Measured radar acceleration (top) and spectrogram (bottom)
with the engine off and on.

FIGURE 17. Poincare analysis: (a) engine off, (b) engine on.

move the steering wheel sharply and accelerate and brake
repeatedly along the way. Fig. 18 shows the measured results

FIGURE 18. Measurements in an urban travel of 10 min. From top to
bottom: measured peak distance, amplitude, standard deviation, chest
acceleration and breathing rate including reference airflow sensor (red
line).

FIGURE 19. Poincare analysis for a travel of 10 min.

caused by the driver breathing activity. Fig. 19 shows the
Poincare plot for a driver measured during this travel. Due
to the activity of the driver, the breathing variability increases
with respect to the situations corresponding to periods of rest.
An increase of outliers has not been observed during the trips,
this fact shows the robustness of the proposed framework.
It shows the potential feasibility of the system to study the
driver’s drowsiness and stress [58] based on the variability of
the breathing rate. To this end, parameters such as the average
breathing rate and the standard deviation of the distances of
points located both off the axis of the bisector and along the
axis, SD1 and SD2 [59], can be tracked as a function of time.

Fig. 20 and Fig. 21 show the Poincare plot and the breath-
ing rate as a function of the time obtained during a travel
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FIGURE 20. Poincare analysis for a travel in the highway of 1h.

FIGURE 21. Breathing rate as a function of the time for a travel in the
highway of 1 h determined by the radar and the reference sensor (dashed
line).

FIGURE 22. Photography of baby emulator in a seat with an
electromechanical transducer.

by a highway of an hour of duration. We can observe that
the breathing rate is slightly lower and trend to be almost
constant that can indicate low a driver activity and symptoms
of a certain degree of drowsiness.

FIGURE 23. Measurement with a baby seat emulator: from top to bottom:
measured peak distance, amplitude, standard deviation, and breathing
rate.

FIGURE 24. Poincare analysis for a baby emulator at 12 bpm (0.2 Hz).

C. BABY SEAT DETECTION
To study the seat occupancy detection for the case of a baby
with a child seat (Fig. 2d), an emulator has been designed.
An electromechanical transducer (a loudspeaker) connected
to a low-frequency generator has been used to simulate the
movements of the baby’s chest. Fig. 22 shows a photogra-
phy of the emulator installed in a car seat. Fig. 23 shows
a measurement with the emulator moving at a frequency
of 0.2 Hz (12 bpm). The generator is turned on and off to
simulate the seat occupancy. Results show that the system
can detect the movements of the transducer, thus raising an
indicator that the seat is occupied when the generator is
enabled. Fig. 24 shows the Poincare plot when the generator is
continuously enabled at 0.2 Hz which corresponds to a period
of 5 s. Similar results have been obtained at other frequencies
from 0.1 Hz to 1 Hz.

V. CONCLUSION AND FUTURE WORK
A seat occupancy detection system based on an integrated
PCR (Pulse Coherent Radar) technology at the unlicensed
60GHz ISM frequency band, has been investigated. The radar
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can measure distance with sub-millimeter resolution, allow-
ing to distinguish small body movements, which are used
to detect the presence of persons. A detector based on the
estimation of the standard deviation of the peak amplitude
differences and a threshold comparator has been proposed.
Therefore, the system can distinguish the presence of a human
being from other objects that can occupy the seat.

Due to its high resolution, it is possible to measure the
breathing rate from the changes in the peak amplitude. To this
end, digital filters to remove the DC component and noise
are applied. The measurement of the breathing rate is per-
formed from the time interval between two peaks associated
with breathing. This method does not require computational
charge compared with other methods based on spectrum
estimation and, therefore, can be implemented on low-power
microcontrollers. The influence of random body movements
and vibrations in the measurement of the breathing rate has
been investigated. Body movement produces an interference
that blocks the correct estimation of the breathing cycles.
Random movements associated to car vibrations are treated
as broadband noise. Therefore, it is filtered by the digital
filter and the effect is small. Bland–Altman analysis have
been performed to compare the radar measurements with an
air-flow sensor, obtaining mean differences less than 2 bpm.
The system has been tested in an urban circuit to measure the
breathing of the driver showing its potential use to monitor
the drowsiness state or driver fatigue. A baby emulator has
also been used to show the possibility to detect child seat
occupancy. Another potential use of the system could be the
monitoring of apneas and the study of sleep quality.
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