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Abstract. With the increasing use of convolutional neural networks
(CNNs) for computer vision and other artificial intelligence tasks, the
need arises to interpret their predictions. In this work, we tackle the
problem of explaining CNN misclassification of images. We propose to
construct adversarial examples that allow identifying the regions of the
input images that had the largest impact on the CNN wrong predic-
tions. More specifically, for each image that was incorrectly classified by
the CNN, we implemented an inverted adversarial attack consisting on
modifying the input image as little as possible so that it becomes cor-
rectly classified. The changes made to the image to fix classification errors
explain the causes of misclassification and allow adjusting the model and
the data set to obtain more accurate models. We present two methods, of
which the first one employs the gradients from the CNN itself to create
the adversarial examples and is meant for model developers. However,
end users only have access to the CNN model as a black box. Our sec-
ond method is intended for end users and employs a surrogate model to
estimate the gradients of the original CNN model, which are then used
to create the adversarial examples. In our experiments, the first method
achieved 99.67% success rate at finding the misclassification explanations
and needed on average 1.96 queries per misclassified image to build the
corresponding adversarial example. The second method achieved 73.08%
success rate at finding the explanations with 8.73 queries per image on
average.

Keywords: Explainability · Deep learning · Image classification · Ad-
versarial examples · Convolutional neural networks

1 Introduction

The use of deep learning, and of convolutional neural networks (CNNs) in partic-
ular, has brought great advances in computer vision [11] and many other artificial
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intelligence (AI) endeavors. Although CNNs can achieve high accuracy in clas-
sification, detection, and segmentation tasks, they are black-box models. This
means that their predictions do not come with explanations or justifications and,
therefore, it is not possible for humans to understand how decisions were made.
To avoid blind algorithm-based decisions, AI models should be explainable [2].
Explainability is not only an ethical principle but also a legal requirement set out
in the European General Data Protection Regulation (GDPR) [6]. The lack of
explanations about the decisions made by CNNs is a problem both for developers
who train such networks and for the citizens affected by their decisions:

– Developers want to know how a decision is made, to ensure that the AI model
takes into account the correct features of the input during the training phase.
In some cases, it may happen that wrong features are used to make decisions,
such as in the well-known example of [14] where a dog-like animal is classified
as a wolf if the image has a snow background and as a husky dog if the image
has a grass background because in the training pictures all the wolves were
displayed in a snowy landscape and the huskies were not.

– Citizens are affected by a growing number of automated decisions: credit
granting, insurance premiums, medical diagnoses, etc. For that reason, legal
regulations [6] and ethics guidelines [4, 16] have appeared that assert the
citizen’s right to an explanation on every automated decision affecting her.
Lacking such explanations, even de iure democracies risk becoming de facto
AI-driven authoritarian societies.

In computer vision, the interpretations of CNN predictions are usually pre-
sented as saliency maps. Those maps suggest specific regions in the images that
are most important in the decision made by the CNN [7].

Contributions and plan of this paper

For the generation of explanations to be scalable and efficient, it must be au-
tomated. In this work, we present two methods that explain CNN-based image
classification by identifying the features that were most influential in the CNN
predictions. The first method assumes access to the gradients of the CNN and
is meant for model developers. The second method treats the model as a black
box and, therefore, assumes that the party generating the explanations, such as
a model end user, only has access to the model predictions.

Both methods leverage adversarial examples [13] to generate explanations.
While the first methods computes adversarial examples by directly employing
the CNN gradients, the second approach builds a simpler surrogate model to
estimate the gradients of the original model, and then uses these estimated
gradients to obtain adversarial examples. More specifically, for each image that
was incorrectly classified by the CNN, we implemented an inverted adversarial
attack consisting in modifying the input image as little as possible so that it
becomes correctly classified. The changes made to the image to fix classification
errors highlight the regions that had the highest influence in the decisions and
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thus explain the causes of model misclassification. By identifying the causes of
wrong predictions, one may tailor the model or the training data to improve the
classification accuracy.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated works devoted to explaining CNNs. Section 3 describes our methods for
explaining CNN-based image misclassification from adversarial examples. Ex-
perimental results are reported in Section 4. Finally, in Section 5 we gather
conclusions and sketch future research lines.

2 Related work

Several methods have been proposed to interpret CNN predictions in image
classification. They attempt to link inputs to outputs to identify the regions in
the image that have the highest impact on the classification decision.

One of the most commonly used approaches to generate explanations is
to calculate the influence of the image features by back-propagating the de-
cision score across all layers of the network. Works that follow this approach
are XRAI [10], Guided Backprop [20], Gradient Input [17], SmoothGrad [19]
and GradCAM [15]. This approach is fast and the methods following it usually
require a fixed number of queries to the black-box model. However, they need
access to all the internal layers of the model. Also, the computational cost of
those methods is high because a second back-propagation is necessary.

It is also possible to locally train a simpler model, a.k.a. surrogate model,
to approximate the black-box behavior and obtain an explanation of the black-
box model [14]. This approach requires that the surrogate model be simple and
understandable to humans. Unfortunately, the surrogate model is often much
inferior to the black-box model in terms of accuracy, and hence the explanations
provided by the former are not very reliable [8].

Another approach, known as perturbation-based, is to modify the input im-
ages and measure the effect of this change on the black-box prediction [5, 3,
22]. Perturbation-based methods allow directly detecting the regions of the im-
ages that had the highest impact on the predictions. Typically, these methods
require multiple queries to the black box in order to interpret its predictions,
which makes them slow [23].

The methods we propose in this paper fall in the perturbation-based cate-
gory. By using gradient-based adversarial examples to add the perturbation to
the original image, we are able to minimize the required number of queries to
the model and we keep the computational cost at a minimum. Also, thanks to
a surrogate model with reasonable complexity and accuracy compared to the
black-box model, we can generate explanations just from the black-box predic-
tion, without knowing any details on the black box’s internal layers.
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3 Our proposals

We focus on generating explanations for the wrong predictions made by CNNs
by identifying the regions of the input images that had the highest influence on
those predictions. To this end, we need a way to modify the input images towards
the correct classification while keeping the number of required queries and the
computational cost at a minimum. Our choice is to use gradient-based adversarial
examples [21]. Specifically, we add minimal perturbations to incorrectly classified
images to create correctly classified adversarial examples. Then, by comparing
the original image with the modified image, we can find the regions that had the
highest impact on the wrong black-box predictions.

3.1 Adversarial examples

An adversarial example is a sample from the same distribution as the original
data in which small, intentional perturbations of its features cause an AI model
to change its prediction [12]. Adversarial examples can be used to alter predic-
tions of a variety of machine learning models, including state-of-the-art neural
networks [21]. Even though adversarial examples are usually employed to cause
the AI models to produce wrong predictions, in this work we use them the other
way around: to correct wrongly classified samples.

To create adversarial examples we used the gradient-based optimization ap-
proach proposed in [21], in which we set the target to be the correct label for the
wrongly predicted samples. The adversarial examples are created by minimizing
the following function with respect to r:

loss(f(x+ r), l) + ε · |r|, (1)

where f is the AI classifier, x is the original image, r is the perturbation added
to the pixels of x to create the perturbed image that constitutes the adversarial
example, l is the target class label and ε is used to balance the distance between
images and the distance between predictions. The smaller ε, the more similar is
the created perturbed image to the original image. To minimize the loss function
in Equation (1), the party that computes it needs access to the model gradients.

3.2 Explaining model predictions on the developer’s side

To explain the wrong predictions made by the model on the developer’s side, we
consider that the developer has full access to the CNN and, more specifically, to
the gradients of the model.

As shown in Algorithm 1, first the developer splits the input images into
training and testing sets and trains the model with the training images. Then,
in the testing phase the developer keeps track of all the wrongly classified im-
ages. For each of these images, she tries to find the closest adversarial example
that is correctly classified. The developer does this in the following way: i) she
calculates the value of the loss function between the model prediction and the
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correct prediction; ii) she calculates the gradients of the model according to the
image and the loss value; 3) she modifies the image according to the gradients
and the perturbation ratio ε. These steps are repeated until the adversarial ex-
ample is obtained or ε exceeds the α value signaling the termination condition
(in the latter case the image misclassification cannot be explained). The final
step consists in comparing each original image with its corresponding adversar-
ial example. To draw a saliency map that identifies the features that caused
wrong predictions, Algorithm 2 prescribes that pixels in perturbations with val-
ues smaller than q3 + iqr · τ , where q3 is the third quartile of perturbations,
iqr is their interquartile range and τ > 0 is relaxation parameter, are neglected
because they do not identify regions of interest, whereas the remaining pixels
are multiplied by β > 1 to boost them in the saliency map.

Algorithm 1 Explaining the model predictions on the developer’s side

1: input: Data set X, CNN model model
2: Train X, Test X ← Split Train Test(X)
3: model← Train Model(Train X)
4: perturbations← {}
5: for i in Test X do
6: model prediction← model.predict(Test X[i])
7: ε← 0.1
8: while model prediction 6= correct prediction OR ε < α do
9: loss← loss function(model prediction, correct prediction)

10: gradients← get model gradients(Test X[i], loss)
11: perturbed image← Test X[i]− ε · gradients
12: model prediction← model.predict(perturbed image)
13: ε← ε+ 0.1
14: end while
15: if model.prediction = correct prediction then
16: perturbations[i]← perturbed image− Test X[i]
17: else
18: perturbations[i]← NIL
19: end if
20: end for
21: return perturbations

3.3 Explaining model predictions on the user’s side

End users should have the right to obtain explanations about predictions made
by the AI models that concern them. However, for end users, the model is a
black box and they only have access to the model predictions. Therefore, they
must create their own local explanations. In our work, we considered that the
user who wants to generate explanations of an AI model must have enough data
to train a simpler CNN model, a.k.a. a surrogate model. It is shown in [9] that
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Algorithm 2 Drawing the saliency maps

1: input: perturbations
2: q1, q3 = get quartiles of non NIL perturbations(perturbations)
3: iqr ← q3− q1
4: for i such that perturbations[i] 6= NIL do
5: for pixel in perturbations[i] do
6: if perturbations[i][pixel] < q3 + iqr · τ then
7: perturbations[i][pixel]← 0
8: else
9: perturbations[i][pixel]← perturbations[i][pixel] · β

10: end if
11: end for
12: Draw(perturbations[i])
13: end for

knowledge of one or more models can be compressed into another, less complex
model, which allows us to estimate the gradations of the original model using a
surrogate model.

The method we propose is formalized in Algorithm 3. First, the user splits
the data she has into training and testing data sets. Then she builds a surrogate
model by using the local training data set. Afterwards, she uses the test data
set to identify the wrong predictions to be explained. Finally, she generates the
adversarial examples in a similar way as in Algorithm 1. The only difference is
that the gradients from the surrogate model will be used instead of the gradients
from the original model.

4 Experimental results

We tested the two proposed methods introduced above on the gender classifica-
tion data set1 from the Kaggle website. This data set consists of cropped RGB
images of male and female faces. The training data set contains 23,200 female
images and 23,800 male images. The validation data set contains 5,800 images
in each class. The images are rectangular, but not all of them are of the same
size. Thus, we first resized all the images to 100 x 100 pixels.

4.1 Explanations for the developer

To test Algorithm 1 we used the CNN shown in Figure 1 with four Conv blocks
followed by six fully connected layers. Each Conv block contained two convolu-
tional layers and a max-pooling layer. The output depths for Conv blocks were,
respectively, 64, 128, 256 and 512. The numbers of nodes of fully connected lay-
ers were, respectively, 2048, 1024, 512, 128, 32 and 2. We trained the model for
20 epochs, with a batch size 64 and a learning rate 0.001. The test accuracy was
96.3%.

1 https://www.kaggle.com/cashutosh/gender-classification-dataset
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Algorithm 3 Explaining the model predictions on the user’s side

1: input: local data X local , black-box model black box, surrogate model
local surrogate

2: Train X local, Test X local← Split Train Test(X local)
3: local surrogate← Train Black Box(Train X local)
4: for i in Test X local do
5: black box prediction← black box.predict(Test X local[i])
6: ε← 0.1
7: while black box prediction 6= correct prediction OR ε < α do
8: local prediction← local surrogate.predict(Test X local[i])
9: loss← loss function(local prediction, correct prediction)

10: gradients← get surrogate gradients(Test X local[i], loss)
11: perturbed image← Test X local[i]− ε · gradients
12: black box prediction← black box.predict(perturbed image)
13: ε← ε+ 0.1
14: end while
15: if black box prediction = correct prediction then
16: perturbations[i]← perturbed image− Test X local[i]
17: else
18: perturbations[i]← NIL
19: end if
20: end for
21: return perturbations

The number of misclassified images in the test data set was 301, for which our
method created adversarial examples. 300 of the 301 adversarial examples were
classified into the correct labels, which corresponds to a success rate 99.67%, with
an average number 1.96 queries per image. Figure 2 shows four examples of the
explanations created by Algorithm 1, in the form of saliency maps highlighting
the differences between original images and adversarial examples.

In Figure 2, we can see that perturbations added to the original images to
create the adversarial examples are not noticeable to the naked eye. Nevertheless,
the explanations resulting from Algorithm 1 in the form of saliency maps shed
light on the most important regions that caused the wrong predictions. For
example, in Image 1 the important pixels were those around the eyes and the
edge of the nose. In Image 2 the causes of wrong classification were also found
in the eyes and the nose in addition to the left cheek. In Image 3, the causes
of misclassification were mainly the left eye and the edge of the right eye in
addition to parts of the covered forehead. The most relevant regions for Image
4 were the left eye, the edge of the nose and the left cheek.

4.2 Explanations for the user

Testing the performance of Algorithm 3 tells whether the user is capable of cre-
ating model explanations locally. We assumed the user’s local data consisted of a
random 10% sample of the training data described in the previous section. With
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Fig. 1. Architecture of the CNN used as original model in the experiments

these local data, the user trained her surrogate model. The black-box model was
the same CNN described in the previous section, whereas the local surrogate
model built by the user consisted of a CNN with three Conv blocks followed by
four fully connected layers. Each Conv block contained two convolutional layers
and a max-pooling layer. The output depths for Conv blocks were, respectively,
64, 256 and 512. The numbers of nodes of fully connected layers were, respec-
tively, 1024, 256, 32 and 2. We trained the model for 50 epochs, with a batch
size 64 and a learning rate 0.001. The test accuracy for the surrogate model was
87.78%.

The complete test data set was used to generate explanations. Therefore,
we got the same 301 misclassified images. Following Algorithm 3, explanations
were obtained as follows: i) obtain the prediction and gradients of the local
surrogate model; ii) create the adversarial example using the gradients of the
surrogate model; iii) test whether the adversarial example was correctly predicted
by using the original black-box model; iv) draw the saliency map. Out of the
301 adversarial examples, the original black-box model correctly classified 220
images, which corresponds to a 73.08% success rate. The average number of
queries to the original CNN model per image required to create the adversarial
example was 8.73.

Figure 3 shows the same four samples of Figure 2 but with saliency maps
that were locally generated using the gradients of the surrogate model. As in the
previous test, the differences between the adversarial examples and the original
images are not noticeable to the naked eye. However, the most relevant regions of
the images are similar to those obtained with Algorithm 1: in the four images the
same regions highlighted by Algorithm 1 are also highlighted here, even though
in a less focused way due to the less accurate surrogate model.

The number of queries per image needed to create adversarial examples with
Algorithm 1 was lower than with Algorithm 3: 1.96 vs 8.73. The reason is that
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Fig. 2. Four examples of explanations generated on the developer’s side

the former algorithm uses the gradients from the original model, whereas the
latter uses the gradients from the surrogate model. Hence, the generation of
adversarial examples is less accurate with the second algorithm. However, both
algorithms were successful in generating explanations for the wrong predictions
of the original model and both highlighted the same regions as important.

The explanations provided by our methods can help model developers to
identify the weaknesses of the data sets used to train the model. Specifically,
for the gender classification data set, the eye regions are highlighted in most
saliency maps as important regions. This suggests that classification accuracy
may be improved by training on images where the eye region is clear. For model
users, it is important to know which features influenced the predictions since
some of the black boxes may be artificially biased or employ features that may
discriminate some minorities [1]. Beyond face classification, an even more crucial
application could be to help understand medical diagnoses [18].
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Fig. 3. Four examples of explanations generated on the user’s side

5 Conclusions and future research

We have presented two methods employing gradient-based adversarial examples
to obtain explanations of the predictions of CNNs in image classification.

We have reduced the number of queries needed to create the adversarial
examples by adding targeted perturbations to change the predictions for each
image. In our experimental work, developer-side Algorithm 1 required only 1.96
queries per image, whereas user-side Algorithm 3 needed 8.73 queries per image.

The two proposed algorithms showed promising results to explain misclas-
sification by CNNs. Both produced similar explanations on the same samples.
Algorithm 1 had a higher success rate (99.67%) thanks to using the gradients of
the original model, whereas Algorithm 3 had a lower success rate (73.08%) due
to using a surrogate.

As future work, we plan to test the performance of our approach on data
that are not identically and independently distributed. We also plan to tailor the
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generation of adversarial examples to highlight regions of interest in correctly
classified images.
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