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Abstract—Text is the most usual way to share information in society. Yet, if textual documents contain personal sensitive information,
they cannot be shared with third parties or released publicly without adequate protection. Privacy-preserving mechanisms provide ways
to sanitize data so that identities and/or confidential attributes are not disclosed. In the last twenty years, a great variety of mechanisms
have been proposed to protect structured databases with numerical and categorical attributes; however, little attention has been devoted
to unstructured textual data. In general, textual data protection requires first detecting pieces of text that may lead to disclosure of
sensitive information and then masking those pieces via suppression or generalization. Current solutions rely on pre-trained classifiers
that can recognize a fixed set of (allegedly disclosive) named entities, such as names or locations. Yet, such approaches fall short of
providing adequate protection because in reality disclosive information is not limited to a predefined set of entity types, and not all the
appearances of certain entity type result in disclosure. Besides, named entity recognition requires considerable manual effort to tag the
training data needed to build classifiers. In this work we propose a more general and flexible solution for textual data protection. By means
of word embeddings we build vectors that numerically capture the semantic relationships of the textual terms appearing in a collection of
documents. Then we evaluate the disclosure caused by the textual terms on the entity to be protected (e.g., an individual’s identity or a
confidential attribute) according to the similarity between their vector representations. Our method also limits the semantic loss (and,
therefore, the utility loss) of the document by replacing (rather than just suppressing) disclosive terms with privacy-preserving
generalizations. Empirical results show that our approach offers much more robust protection and greater utility preservation than
methods based on named entity recognition, with the additional important advantage of avoiding the burden of manual data tagging.
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1 INTRODUCTION

TEXT constitutes the most usual way to share information
among human beings. Textual data are therefore a crucial

resource for many businesses and researchers. For instance,
medical histories and clinical notes are needed in medical
and pharmacological research [29], publications in social
networks can drive socioeconomic studies [2], or written
opinions and reviews can be used to improve recommender
systems [24]. However, textual data may carry sensitive per-
sonal information; in this is the case, they cannot be shared
with third parties or released in the public sphere without
properly protecting the fundamental right to privacy [55] of
the individuals to whom the text refers.

Even though a panoply of privacy protection methods
have been proposed in the literature [23], most of them
focus on structured data (that is, data that conform to
a regular model such as a database schema) and more
concretely on numerical attributes [7]. This contrasts with
the fact that the vast majority of data generated nowadays
are unstructured [48], [54]. Specifically, unstructured text is
the most common form of unstructured data, and it can be
found in books, articles, web pages, emails, posts in social
networks or clinical reports.

To protect structured databases, attributes are categorized
according to their potential disclosure on the individual
to whom a record corresponds. An identifier is an attribute
whose values are enough to re-identify the individual to
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whom a record corresponds, whereas quasi-identifiers are
attributes that separately do not allow re-identification but
whose combination may. Both types of attributes entail iden-
tity disclosure risk. On the other hand, confidential attributes
are those that may disclose sensitive information on the
individual, thereby entailing attribute disclosure risk. The
usual approach to data protection is to remove identifiers
and mask quasi-identifiers (where masking can be enforced
via perturbation, generalization or even suppression of
values) [40]. While identifier attributes are usually easy to
recognize, quasi-identifiers and confidential attributes are
not. In general, we should classify as quasi-identifiers any
set of attributes whose combined values may be available in
an external data source that associates them with an identity.

If dealing with structured data may be challenging,
protecting unstructured text is even more complex. First,
we no longer have a fixed list of attributes: textual data may
contain any information, which varies across documents. Fur-
thermore, deciding what is a quasi-identifier or a confidential
value is much more complex than with structured data: for
each piece of text we need to judge whether it can be used
for re-identification or may disclose sensitive values. Such a
judgment is not easy for a human expert [8], let alone for a
computer program.

In general, accurate protection of textual documents re-
mains a largely manual process [8]. At most, (semi)automatic
tools based on named entity recognition (NER) have been
designed to remove –some– of the burden from the human
experts. These tools are configured to pinpoint predefined
entity types that are assumed to facilitate the re-identification
of individuals (such as names, locations or dates).
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However, NER-based techniques have important limi-
tations. First, for the more sophisticated NER techniques
one needs to train the classifiers, and this requires a large
amount of manually tagged training data that match the
language of the text to be protected. Tagging a sufficient
volume of training data may become a considerable effort.
Second, NER-based methods are unable to discern whether
the pinpointed entities refer to the individual to be protected
or not. Hence, systematic masking (for example suppression)
of those entities often degrades the text semantics (and
therefore its utility) without a corresponding reduction of risk.
Finally, while NER systems detect a fixed set of entity types,
there are unlimited ways of referring to (quasi-)identifying
information in a text. As a result, NER-based methods are
usually characterized by a low detection recall, which yields
poorly protected outcomes.

In this work, we overcome the above-mentioned lim-
itations of NER-based techniques by proposing a more
general and flexible method that better captures the notion
of disclosure risk as understood in the literature on data
privacy [56]. We characterize the semantic relationships
between the textual entities appearing in a document by
leveraging word embeddings [32]. Word embeddings learn
detailed vector representations of linguistic terms that convey
the semantics of such terms. We make use of these vectors to
measure the semantic relatedness and, from it, the extent to
which the terms appearing in the text document disclose the
entity to be protected. The latter can be either an individual’s
identity (e.g., a name) or a confidential attribute (e.g., a
sensitive disease). Thus, our method naturally encompasses
the notions of identity and attribute disclosure, and it
automatically classifies the textual terms as being disclosive
or not disclosive; that is, it automatically determines which
terms act as (quasi-)identifiers of the entity to be protected.
This delivers a more powerful solution to protect textual
documents than NER-based methods, because our solution
is not restricted to detecting predefined (quasi-)identifying
types (e.g., names or locations) and it can limit the protection
only to the terms referring to the entity to be protected,
whatever it is. The empirical results we report show that
our method offers more robust protection than NER-based
approaches. Regarding ease of use and deployment, our
solution is mostly language-agnostic and does not require
manual tagging of training data.

Beyond accurately meeting the privacy requirements, we
also improve the masking of quasi-identifying terms in order
to increase utility preservation. In contrast to approaches
that simply suppress quasi-identifying terms, we propose a
generalization-based masking procedure that preserves their
underlying semantics as much as allowed by the privacy
requirements, which state the maximum level of allowed
disclosure. To this end, we rely on the taxonomies contained
in structured knowledge bases that model the domains to
which the entities appearing in the document belong. As
we also show in the empirical work, with this approach
we significantly reduce the information loss incurred by
data masking in comparison with approaches based on data
removal or NER-based classification of entities.

The rest of this paper is organized as follows. In Section 2
we review related work on textual document protection. In
Section 3 we present our approach to document protection

based on word embeddings. Section 4 contains an empirical
evaluation of our method and a comparison against related
contributions. In Section 5 we discuss several practical appli-
cations of our method that sustain its generality. Section 6
gathers conclusions and future work directions.

This paper is an extension of the preliminary research
reported in the conference paper [22], which strictly focused
on preventing re-identification. In contrast, here we extend
this previous work by considering a broader notion of data
protection, against both identity and attribute disclosure; fur-
thermore, we propose a utility-preserving procedure to mask
quasi-identifying terms. The abstract and the introduction
have been significantly revamped to reflect this greater
ambition. Sections 2 and 3 have been substantially expanded
(including new figures) to consider newer embedding models
and related works. Section 3.2.3 is entirely new. Further, the
experiments in Section 4 have also been greatly augmented
by (i) including utility metrics, additional NER and word
embedding models and additional training corpora, (ii) eval-
uating the influence of the data pre-processing and disclosure
thresholds and (iii) evaluating the actual protection offered
by the different approaches against a machine learning-based
re-identification attack. Finally, Section 5 is new and Section 6
has been rewritten.

2 RELATED WORK

The task of protecting the private information of the individu-
als mentioned in text documents is referred to in the literature
as document redaction [8], sanitization [44] or anonymization [5].
Whatever the name, it consists of two steps: (i) detecting
(potentially) disclosive pieces of text, and (ii) masking those
pieces appropriately.

For many years textual data protection has been a highly
manual process [35], and it still is. Usually, several human
experts review the text and mask all items they deem usable
to re-identify individuals and/or disclose confidential data
on them [8]. To reduce the burden of human experts, some
systems that make use of NER have been introduced.

NER was created as a way to extract structured informa-
tion, like person and organization names, locations, times
or dates, from an unstructured text. Early NER systems
were based on handcrafted rules or regular expressions. For
instance, times can be identified using the following pattern:
“at” + digits + “am”/“pm”. Up until 2000, handcrafted rule
systems offered the best results. Statistical approaches subse-
quently took over. In statistical NER systems, models such as
HMM (hidden Markov models) or CRF (conditional random
fields) are trained to locate a specific type of entity. With the
development of deep learning neural networks, recurrent
neural networks (RNN) and extensions of them such as long
short-term memory (LSTM) and gated recurrent units (GRUs)
surpassed the accuracy of statistical NER systems. Nowadays,
the state of the art is based on transformers like BERT [15]
and ELMo [37]. These are pre-trained on large amounts of
data and, unlike previous models, they characterize words
according to their context. Even though they are general-
purpose NLP models, these contextual models can be tailored
or fine-tuned to solve multiple tasks including NER, but
also sentiment analysis, text generation, question answering,
summarization or machine translation.
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Training an NER model from scratch or tailoring an NLP
model for NER require a considerable amount of tagged
data that match the language to which the NER model is
to be applied. Well-trained NER models usually have high
precision (typically above 80%). Additionally, there are quite
a few software packages available to carry out NER tasks,
such as spaCy [50] or the Stanford NER [28].

Current solutions for textual data protection employ
NER because they assume that the named entities (NEs)
are the ones that entail the highest disclosure risk, as they
refer to real-world entities. Amazon’s Macie [4] locates
several personally identifiable information items (like names,
addresses, birthdates, etc.) and classifies documents in
several categories according to their risk. Additionally, Macie
is capable of detecting many information items that are
regarded as confidential (like passwords, bank accounts, etc).
Google’s Cloud DLP [13] also leverages rules and machine
learning techniques to detect the presence of confidential and
re-identifying pieces of information. Similarly, Symantec’s
Data Loss Prevention [53] uses dictionaries and rules (to
detect several types of information items that have a regular
structure) as well as machine learning (to detect other
types of identifiable and confidential information that lack a
regular structure). Microsoft’s Presidio tool [30] is based on
combining regular expression matching, spaCy NER models
and Flair [3] with BERT embeddings. It is trained on 80,000
samples generated with data augmentation techniques and
can detect 17 (quasi-)identifying and confidential categories.

As evidenced by the number of commercial tools avail-
able, NER-based systems are practical enough to be em-
ployed in real-world applications. However, since they
assume that all (and only) the NEs in a given document
should be protected, they suffer from the severe limitations
highlighted in the introduction. First, nouns or phrases
other than NEs may also be (quasi-)identifying, such as
demographic attributes or healthcare conditions. Second, not
all the NEs appearing in a document should be protected,
perhaps because they are very general entities (such as
countries or large cities) or because they do not refer to
the individual to be protected (as it may happen when
the text refers to other individuals in addition to the one
to be protected). Third, only the NE classes for which the
classifier has been trained can be detected; this means that
usually a few dozens of NE classes can be detected, whereas
there is an unbounded number of potential quasi-identifying
information types that may not resemble NEs at all (e.g.,
demographic information may be quasi-identifying in some
contexts). In summary, NER-based protection introduces
considerable burden (due to the need of training), and
typically results in both unnecessary masking and weak
protection.

The methods and tools reviewed above solely focus on
detecting (quasi-)identifying information or at most they
suppress disclosive items or replace them with coarse NE
values (like “person”, “location”, “date”). This falls short
of optimizing data protection, which consists in using the
minimum amount of masking required to meet the privacy
requirements. The analytical utility of the protected outcomes
ought to be preserved as much as possible, for them to be
usefully shareable. Generalization is the most common utility-
preserving masking technique applied to the protection of

text [45]. Unlike other methods in the literature, such as entity
swapping [1] and noise addition [20], generalization outputs
truthful data [6], [11], [14]. The methods in [11] and [14]
use generalization similarly to the way k-anonymity [40] is
employed in structured databases: they assume a large and
homogeneous collection of documents and generalize the
quasi-identifying terms so that there are at least k identical
generalizations in the collection. In this way, each disclosive
term becomes indistinguishable from at least k−1 other terms
in the collection. However, assuming a homogeneous set of
documents and protecting them groupwise is quite restrictive.
An approach that can individually sanitize documents is
presented in [6]. The authors employ a knowledge base to
generalize quasi-identifying terms so that at least t plausible
versions of the generalized document can be created by
combining specializations of the generalized terms. The
authors acknowledge that setting the value of t is not
intuitive and that it is hard to predict the protection offered
by a concrete value because it depends on several factors
including the document size, the number of terms to be
masked and the detail of the knowledge base used to
generalize terms.

The methods cited in the previous paragraph concentrate
on masking quasi-identifying terms, but they assume those
items have been already detected. An integral approach
considering both detection and utility-preserving masking is
presented in [42], [43], [44], [45]. The authors propose a pri-
vacy model grounded on information theory that quantifies
disclosure risks as a function of the mutual information
shared among the entities referred to in the document.
Afterwards, quasi-identifying items are generalized so that
the amount of information they disclose on the entity to
be protected is sufficiently decreased. Even though this
approach is more general than NER-based methods, it suffers
from the need to compute accurate conditional probabilities
among all the combinations of terms in the document.
This hampers scalability to deal with large collections of
documents.

Some authors have recently proposed privacy-preserving
methods for text documents that build on word embed-
dings [19], [20], [26]. However, these works focus on obfus-
cating the authorship of the document, rather than protecting
the privacy of the individuals referred to in the text. The
authorship of a document and the author’s attributes are in-
ferred from the linguistic and stylistic properties/regularities
of written text rather than the document’s topic or the
text semantics. Hence, the approaches to protecting the
document author rely on distorting the distribution of
words in the text via differentially private noise added
to the word embeddings [19], [20] or on constraining the
training of the embeddings to prevent disclosing certain
attributes [26]. Thus, the outputs of those systems are –
distorted– word distributions (e.g., bag-of-words) [19] or or
constrained embedding models [26] rather than actual docu-
ments. As a result, the outputs lose their readability and are
only useful for applications employing these deconstructed
representation of documents, such as topic classification.
Finally, as discussed above, noise-based approaches in which
words are probabilisticaly replaced by other words do not
preserve the truthfulness of the output, unlike generalization-
based masking, which is the usual approach to document
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sanitization.

3 DOCUMENT PROTECTION VIA WORD EMBED-
DINGS

The most widely accepted definition of privacy rests on
the notion of informational self-determination, that is, “the
claim of individuals, groups or organizations to determine
for themselves when, how, and to what extent information
about them is communicated to others” [56]. Following this
definition, the crux of protecting data releases is the ability to
detect (and subsequently remove or mask) the information
that refers to a single entity and to no other entity. In other
words, protecting one entity should not encroach on how
another entity is protected. This is exactly the goal that our
approach sets out to achieve. As discussed in the previous
section, approaches based on NER fail in this respect because
they implicitly assume the entire content of each document
refers to a single entity.

To reach our goal, we need a way to characterize the
textual terms according to the information they disclose on
the entity to be protected. A common metric to quantify this
“amount of disclosure” is the semantic relatedness between
the terms in the document and the entity to be protected [44].
Traditionally, the semantic relatedness between linguistic
entities has been assessed using distributional [33] or proba-
bilistic models [41], which require accurate statistics on the
(co-)occurrence of words. A recent trend in computational
linguistics to measure the relatedness between words is to
use word embedding models.

3.1 Background on Word Embeddings

Word embeddings map words into high-dimensional nu-
merical vectors capturing their semantics. Word embedding
models can be categorized into two main types: static
embedding and dynamic/contextual embedding. Models
like word2vec [31], fastText [9] and GloVe [36] are static
and context-independent models: they build vector repre-
sentations of words that do not depend on the context in
which words appear. Word2vec uses a neural network [31]
trained either to predict the current word from a window
of neighboring words (continuous bag-of-words model) or
to predict neighboring words based on the current word
(skip-gram model). FastText [9] also works on the same
idea, but the main difference is that fastText takes care
of the out of vocabulary (OOV) problem by taking into
consideration the subword information. Finally, GloVe [36]
uses two methods to generate word representations: local
context window information and aggregated global word-
word co-occurrence statistics from the pre-training corpus.
Unlike word2vec and fastText, GloVe does not rely just on
local context window information, but incorporates global
statistics to obtain a more accurate word representation.

However, the current state of the art is contex-
tual/dynamic embedding with models like BERT [15] or
ELMo [37]. These models are built using transformer-based
self-supervised architectures that are pre-trained for lan-
guage understanding. The key idea of these models is that the
pre-training task is designed to be a generic form that can be
tailored to solve any specific problem in NLP. Pre-training can

be performed by using masked language models (MLM) or
next-sentence prediction (NSP). MLM randomly masks some
of the tokens from the input and the objective is to predict
the original words, whereas NSP consists in identifying
consecutive sentences. Both tasks aim at steering the model
into taking the context of a word into consideration.

3.2 Our Approach
From the perspective of distributional semantics, words that
are likely to co-occur in a context (or, otherwise put, those
with similar contexts) tend to be semantically related [39].
Therefore, after training a word embedding model with a
collection of word contexts, semantically related words will
have similar word embedding vectors. The distributional
semantics captured by word embedding models also en-
compasses a very broad notion of relatedness. Moreover,
the larger the amount of data used, the more general the
resulting distributional model [10]; in fact, word embedding
models owe their success to the massive amount of data
they use for training. On the other hand, a strong semantic
relatedness between the words appearing in a text and the
entity to be protected is what enables the semantic inferences
that may lead to disclosure [5], [44]. Therefore, we propose to
measure the disclosure risk caused by each term appearing
in a document w.r.t. an entity to be protected as a function of
the similarity between their word embedding vectors.

Our approach consists of three phases. In the first phase,
we use a large corpus to train a word embedding model
tailored to capture the semantic relationships that may cause
disclosure. The trained model has learned the relationships
(and, therefore, the pairwise disclosure risks) between all the
terms appearing in the collection of documents. In the second
phase, for a given document D, an entity to be protected
e and a threshold t stating the maximum level of allowed
disclosure, we use the trained model to detect the terms
in D that may act as (quasi-)identifiers of e. Both e and
t define the privacy requirements. In the third phase we
mask the quasi-identifying terms we detected in the second
phase. Masking is performed by replacing those terms by
generalizations extracted from structured knowledge bases
modeling the concepts of the domain. The generalizations are
picked so that they are the most specific ones that are ’safe’
(i.e., non-disclosive enough) according to the risk criterion
employed in the second phase. In this way, we protect privacy
while retaining the semantics (and, therefore, the utility and
readability) of document D as much as possible.

3.2.1 Training the Model
The first phase of our method is depicted in Figure 1. It has
the following steps, which are explained further below:

• Data collection and pre-processing;
• Model training.

To train a word embedding model that accurately char-
acterizes the disclosure-enabling semantic relationships af-
fecting an entity or a set of entities, we need a representative
“core” corpus of documents that describe those entities.

Ideally, the corpus ought to contain all the documents
that shall be protected (for instance, a collection of medical
records). In this way we ensure that all the terms in such
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documents appear in the model’s vocabulary and get accu-
rate vectors. If this “core” corpus is small, the collection of
documents can be expanded with more general corpora that
will provide additional evidences on the co-distribution of
words and thereby mitigate the data scarcity. An alternative
would be to use an embedding model pre-trained on large
corpora (such as BERT) and fine tune it with the corpus of
documents to be protected.

Since we aim at protecting entities and semantic relation-
ships occur at a conceptual level (rather than at a word level),
we introduce a pre-processing step to create a meaningful
vocabulary of concepts (rather than isolated words) for the
word embedding model.

Specifically, concepts and entities are referred to in a
text via noun phrases. For example, the noun phrase “New
York Times” refers to a sole specific entity that is completely
different from the individual meaning of its words “New”,
“York” and “Times”. To properly evaluate disclosure risks,
we need the vector representation of the concepts referred
to by the text (e.g., “New York Times”), rather than the
representations of isolated words. For this purpose, in the
pre-processing step we extract the noun phrases (or n-grams)
and feed them as atomic elements to the word embedding
model for training.

As shown in Figure 1, the pre-processing step consists
of a pipeline of syntactic analyses: tokenization, part-of-
speech tagging and chunking [34]. As a result, noun, verb
and prepositional phrases are obtained. Also, to minimize
the lexical variability of the noun phrases, stop words are
removed during the tokenization step; in this way, the
occurrences of n-grams like “the New York Times” and
“New York Times” will contribute to the same vocabulary
entry/word vector.

In addition to improving the characterization of the
entities appearing in the documents, this pre-processing
helps reduce the size of the vocabulary and, therefore, the
training runtime.

Our method is not tied to a particular embedding model:
it only needs accurate and exhaustive vector representations
of all the n-grams appearing in the documents to be protected.
In the sequel we illustrate on word2vec [31] the training
process of a word embedding model tailored to our needs,
even though, as we show in the evaluation section, other
embedding models can be employed. Word2vec can be
trained either to predict the current word from a window
of neighboring words (continuous bag-of-words model) or
to predict neighboring words based on the current word
(skip-gram model). To this end, the neural network uses
a collection of sentences as training data, and builds a
vocabulary with the words appearing in the collection. The
weights of the hidden layer of neurons that results from
training the neural network for each word in the vocabulary
are used as the vector associated with that word. In this way,
the number of neurons in the hidden layer (which can be
configured), corresponds to the dimensionality of the vectors.

Regarding the learning model, the skip-gram model
yields more accurate vectors [31]. More specifically, it uses as
input a binary vector in which each position corresponds to
a word wi in the vocabulary V . The position of the current
word (wc) is set to ’1’, whereas the remaining positions are
set to ’0’. The output layer is a Softmax classifier with as

many neurons as words in the vocabulary, where the i-th
neuron provides the probability that the word at a randomly
chosen nearby position of the current word wc is wi. The
neural network is trained with nearby word pairs from the
input collection of sentences. Context windows are employed
to restrict the neighborhood of words that are considered
to be nearby and to build the training samples. Once the
training is complete for wc, the weights of the hidden layer
of neurons —which embed the tendency to co-occur between
wc and all the other words in the vocabulary— are employed
as the vector representation of wc.

The training of the skip-gram model depends on several
configuration parameters. In what follows we discuss such
parameters and argue which values are appropriate in the
context of document protection.

As said above, the skip-gram model predicts the probabil-
ity that words in the vocabulary appear in the neighborhood
of the input word. To this end, it uses training samples
of word pairs that co-occur within a context. This context
(and, therefore, the co-occurring word pairs) can be restricted
according to a window size. The window size is usually set to
encompass complete sentences, say between 5 and 10 words
each, because words appearing in the same sentence are
assumed to be closely related. Larger window sizes require
more iterations, because more word pairs are evaluated
during the learning process; as a matter of fact, doubling
the window size increases the training runtime by around
50%. We also set the window size to include sentences but
considering that our linguistic units are n-grams rather than
isolated words.

Another relevant parameter is the dimensionality of vectors.
In principle, the greater the dimensionality, the more accurate
the results, because the adaptability of the model is propor-
tional to the vector size. However, since the dimensionality
is equal to the number of neurons in the hidden layer of
the network, a greater dimensionality significantly increases
the training runtime. Again, doubling the size of the vectors
implies increasing the runtime by around 50%. Even though
there is no fixed rule to tune the dimensionality, a value 300
is suggested in [31] because larger values do not significantly
improve accuracy.

Finally, it is possible to set a minimum number of
appearances as a cutting threshold below which words in
the input collection of documents will not be used for
training. Since word embedding is usually employed to guide
general semantic similarity assessments, it makes sense to
discard words that occur too rarely because the evidences
of co-occurrence they provide are too weak to derive robust
statistics. Moreover, filtering out outliers significantly reduces
the vocabulary size and, therefore, the training runtime.
However, in the context of document protection rare words
(such as names or particular addresses, which may appear
only once together with the entity they refer to) are usually
those that entail the greatest risk because they often refer
to very specific (quasi-)identifying information [42]. For
this reason, we do not use any cutting threshold for rare
words. For such words, the model may learn a strongly
biased relationship w.r.t. the entity to be protected, which
is the only one they co-occur with in the training data. This
is however beneficial from the point of view of privacy
protection, because in this way these rare words will be
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Fig. 1: Overview of the training phase

characterized for sure as quasi-identifying terms.
Training a word embedding model on a large collection

of documents can be costly. Nonetheless, once trained, the
model can be efficiently reused to protect any number
of documents as long as their content is covered by the
vocabulary of the trained model. Also, in the event that a new
document to be protected contains terms that are not in the
vocabulary, the previously trained model can be efficiently
updated (without re-initializing the training) with new
vocabulary entries via vocabulary expansion techniques [25].

3.2.2 Detecting Quasi-identifying Terms
Once the model is built, we obtain a vector representation of
each phrase in the input collection of documents. If two
n-grams had similar contexts in the training data (and,
therefore, are semantically related [39]) they will also have
similar vectors. The standard way of measuring the similarity
between vectors is the cosine similarity. We employ this
similarity to assess how disclosive/similar are the terms in a
document w.r.t. the entity to be protected and, in this way,
we detect those terms that act as quasi-identifiers of that
entity.

The second phase of our method is depicted in Figure 2.
Given a document D and a particular entity e whose privacy
is to be protected (where e can be an identity or a confidential
value), we iteratively evaluate how disclosive about e each
phrase pi in D is. We do this by measuring the cosine
similarity between the vector representations of pi and e,
which we denote by sim(v(pi), v(e)). Prior to that, we pre-
process D as described in Section 3.2.1, so that the contents
of D are evaluated at a conceptual level rather than at a word
level. If the similarity of a certain pi is above a threshold
t, then pi is deemed a quasi-identifier and will undergo
masking in the third phase. Thus, t defines the maximum
level of tolerated disclosure for the (masked) terms appearing
in the protected output, and it allows balancing the trade-
off between disclosure protection and utility preservation.
As it happens with other generalization-based methods [6],
[11], [14], which also rely on privacy/utility thresholds, the
specific value of t should be set according to the needs of
the application scenario: higher values for better protection
(and less utility) or lower values for better utility (and less
protection).

3.2.3 Masking Quasi-identifying Terms

As discussed in Section 2, different strategies can be em-
ployed to mask quasi-identifiers, of which the most common
are suppression and generalization. The former strategy
is straightforward and is usually employed in document
redaction [43]. On the other hand, term generalization, which
consists in replacing specific terms by less detailed general-
izations, does a better job at preserving the semantics and the
readability of the protected document. Since by definition
generalizations encompass a subset of the semantics of their
respective specializations, generalization-based replacements
preserve a subset of the original document semantics.

Generalizing requires detailed taxonomies from which
suitable generalizations of disclosive terms can be obtained.
Taxonomies suitable for non-specialized text can be obtained
from general-purpose ontologies, such as WordNet [18]
or YAGO [52]. More specifically, WordNet models the se-
mantic relationships between 175,979 concepts, which are
taxonomically organized under the common abstraction
“entity”. YAGO enriches WordNet’s taxonomy by adding
Wikipedia categories and articles; as a result, YAGO includes
more than 10 million entities. These knowledge bases can
be expected to cover most of the entities appearing in
text. For specialized documents such as medical records,
domain-specific knowledge bases can be used; for example,
SNOMED-CT [49] models more than 311,000 clinical terms
within several taxonomies.

Masking quasi-identifying terms is performed as follows.
For each quasi-identifying phrase si detected in the second
phase, we obtain an ordered set of generalizations G(si) from
an ontology by matching si to concept labels in the ontology.
If si matches more than one concept (due to its being poly-
semic), we map it to its most probable sense/concept, based
on the probability of occurrence available in the sources we
use for generalization. If si is not found in the ontology,
we look for simpler forms of the noun phrase by iteratively
removing adjectives and nouns starting with the leftmost
ones (e.g., “metastatic breast cancer” → “breast cancer” →
“cancer”). These simpler forms of si are also added in the first
positions of G(si) because they are actual generalizations of
si. In this way, G(si) contains generalizations of si ordered
from most specific to most general. If si is a very specific
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Fig. 2: Overview of the detection phase

entity, such as the name of an individual, we may not find
it in any ontology. In this case, we use the most abstract
concept in the ontology (e.g., “entity”) as its generalization.

As shown in Figure 3, the most suitable generalization
gi to mask si is the most specific generalization in G(si)
such that sim(v(gi), v(e)) < t, that is, the first generalization
in G(si) that brings the disclosure on e below threshold
t. To calculate sim(v(gi), v(e)) we also need the vectors
corresponding to all the generalizations of all si. Since gi are
generalizations of si, they are likely to have already appeared
in the input collection of documents, in which case v(gi) has
already been calculated. Otherwise, we need to update the
model by feeding new documents that contain the missing
gi. Training data could be Wikipedia articles covering gi,
which are already associated with concepts in ontologies
such as YAGO, and are a common training source of general-
purpose embedding models [9]. As discussed in Section 3.2.1,
to efficiently re-train the model with new samples (and
vocabulary elements) we can use vocabulary expansion
techniques. If the amount of documents and entities to
be protected is large, a more efficient approach would be
to first train a complete model covering all the entities
contained in the ontology by using, e.g., their corresponding
Wikipedia articles as training data, and second, to expand the
model by considering the specific contents of the documents
to be protected. In this way, we ensure that all possible
generalizations are already covered by the model when we
reach the masking phase.

4 EVALUATION

In this section we report a performance evaluation of our
approach from three perspectives: (i) the accuracy of the
detection of quasi-identifying terms, (ii) the utility preserved
by the protected document after masking such terms, and
(iii) the effectiveness of the protection against a simulated re-
identification attack. We have evaluated our method under
different conditions and we have compared our results
against several tools based on named entity recognition.

4.1 Detection Phase
Our evaluation considered a scenario similar to that used
in related works on document protection [12], [42], [43]. In

these works, the evaluation data consist of a set of Wikipedia
articles describing real-world entities of different domains.
Our goal was to protect each article so that the outcome did
not unequivocally disclose the entity described by the article.
To obtain the ground truth, we manually examined the con-
tents of the articles to identify the terms that might disclose
the described entity. Wikipedia articles were used because
of their high informativeness and tight discourses, which
constitute a challenging scenario for document protection.

More specifically, we used a collection of English
Wikipedia articles corresponding to movie actors from
several countries. First, we collected the abstracts of 19,000
articles under the “20th century actors” Wikipedia category.
These were used to train the word embedding model
as detailed in Section 3.2.1. The model was built using
word2vec [32]. Training was configured with the parameters
discussed in Section 3.2.1: window size 10, vector dimension
300 and no filtering of rare words.

As an evaluation test bed, we randomly picked 50
summaries from the collection and we tagged them manually
to identify words and n-grams that might disclose the actor’s
identity. We used the following annotation guidelines, which
are inspired by how (quasi-)identifying attributes are selected
in structured databases [23]:

• Identifiers: any information that can directly and
unequivocally identify an individual. This includes
the actor’s name and also direct family members such
as father, mother, brothers, children, husband/wife,
etc. We also considered the movie characters’ name
he/she have played.

• Quasi-identifiers: publicly available information that, in
isolation, does not identify the individual but whose
combination may. There is an unbounded number of
information types that may act as quasi-identifiers,
but they mainly boil down to demographic and
spatiotemporal attributes such as age, date of birth,
place of living, received awards, names and dates of
the movies he/she has started, etc.

The annotation was independently carried out by the
three authors of this work. A final annotation was thereafter
agreed upon via majority voting. The inter-annotator agree-
ment among the three of us was Fleiss’ kappa = 0.869, which
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Fig. 3: Overview of the masking phase

shows a very strong agreement. As a result of the annotation,
2,655 words or around 30% of the content were tagged.

The evaluation metrics we employed were the standard
precision, recall and F1-score measures, which we next
summarize. Precision is defined as

Precision =
#detected tagged terms

#detected terms
,

where detected terms is the set of terms detected as quasi-
identifiers through the process detailed in Section 3.2.2 and
detected tagged terms is the subset of terms detected as
quasi-identifiers that contain one or more tagged words. The
higher the precision, the lower the number of false positives,
that is, of over-protected terms. A high precision implies that
the document’s semantics and readability, that is, its utility,
are better preserved by the protection process. Regarding
recall, it is defined as

Recall =
#detected tagged terms

#tagged terms
,

where tagged terms is the set of terms manually tagged as
quasi-identifiers. The higher the recall, the more robust the
protection, because a greater amount of (quasi-)identifiers
have been correctly detected. Finally, the F1-score is defined
as

F1 = 2 · Precision ·Recall

Precision+Recall
,

which corresponds to the harmonic mean of precision and
recall and can be viewed as a performance summary of the
detection phase when the same weight is given to precision
and recall. Notice that, even though a high precision is always
positive, a high recall is usually more desirable because un-
detected quasi-identifiers may render the protection useless.

We empirically set the similarity threshold t employed to
detect quasi-identifiers so that the F1-score was maximized
on average across the evaluated documents. The selected
value was t = 0.25. Notice that, rather than being a
hyperparameter to be optimized, the threshold t is a privacy
requirement, i.e., it allows tailoring the privacy/utility trade-
off, and its value can be set by the user according to

his/her protection needs. We show in Figure 4 how the
threshold influences precision/recall/F1 for values within
the [0.01, . . . , 1] range. We can see that different values yield
different balances between protection (recall) and utility
preservation (precision), with t = 0.25 offering the best
balance.

Fig. 4: Influence of the value of the similarity threshold t

We evaluated two versions of our method: the first
one included the pre-processing detailed in Section 3.2.1
whereas the second one did not. In the first version the
model vocabulary consisted of 651,835 n-grams, whereas in
the second version it comprised 1,084,189 individual words.
Model learning took 177 seconds with the first version and
232 seconds with the second version, in both cases on an
AMD Athlon X4 860K CPU with 24GB RAM. Notice that
document pre-processing is the only phase of our method
that is language-dependent. Therefore, by measuring the
influence of the linguistic pre-processing on the results, we
were able to quantify the benefits brought by this additional
analysis and the penalty incurred if the linguistic tools
required to analyze a (minority) language were not available.

We then compared the evaluation figures obtained by our
method against those achieved by several NER-based tools.
In addition of NER being the most common approach to
document protection, it is also the only method among those
discussed in Section 2 that can compare with our approach
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in terms of practicality for real-world tasks. In particular we
used the Stanford Named Entity Recognizer software [28],
which provides 3 pre-trained NER models for English (NER3,
NER4 and NER7), and Microsoft Presidio, which tailors NER
towards privacy protection:

• NER3: detects and categorizes named entities of
ORGANIZATION, LOCATION and PERSON types.

• NER4: detects and categorizes named entities of
ORGANIZATION, LOCATION, PERSON and MISC
types.

• NER7: detects and categorizes named entities of
LOCATION, ORGANIZATION, DATE, MONEY, PER-
SON, PERCENT and TIME types.

• Presidio: detects and categorizes named entities
of CREDIT_CARD, CRYPTO, DATE_TIME,
DOMAIN_NAME, EMAIL_ADDRESS, IBAN_CODE,
IP_ADDRESS, LOCATION, PERSON, NRP,
PHONE_NUMBER, UK_NHS, US_BANK_NUMBER,
US_DRIVER_LICENSE, US_ITIN, US_PASSPORT
and US_SSN types.

Table 1 reports the evaluation figures of the different
methods on average for the 50 documents under considera-
tion. It is clear that our method improves on the NER-based
approach very significantly, regardless of the NER model
in use. In particular, the recall is more than doubled, which
results in a much higher F1-score. This illustrates the main
limitation of NER-based methods: named entities are not
the sole source of disclosure. This limitation tends to yield
under-protected documents in which, for example, identities
may be disclosed by correlating several non-protected facts
or personal features that do not fall into the predefined
types of named entities. By comparing the last column of
Table 1 with Figure 4, we also see that our method provides
significantly better F1 scores than NER tools for a wide range
of threshold values (those below 0.5). This shows that the
user enjoys some freedom to tailor the threshold to his/her
needs, while still getting a better protection-utility balance
than with NER-based methods.

Regarding the differences among the three NER models,
we see that NER3 produces the worst recall because it has
been trained to detect the least number of entity types. NER7
and Presidio improve on the results of NER3, mainly because
they can detect dates such as birthdates, which are quite
common in biographies. Finally, whereas NER3, NER7 and
Presidio have been trained with specific named entity types,
NER4 adds the MISC type, which encompasses a variety of
named entities such as nationalities. No significant differ-
ences in precision are visible across NER tools, regardless
of the different models they use to detect NEs, i.e., CRF
for Standford and BERT-based NER for Presidio. From the
privacy point of view, the low recall resulting from the
limited amount of supported NE types has a much greater
influence than precision.

Disabling the pre-processing in our method decreases the
recall from 81.24% to 59.79%. Even though this penalty is
large, the decreased recall is still significantly higher than
the recall of the best NER model. On the one hand, this
illustrates the benefits of analyzing the content of documents
at a conceptual level, rather than at a word level. On the other
hand, it can be seen that the results of our approach with

TABLE 1: Average precision, recall and F1-score for the 50
evaluated documents

Method Precision Recall F1

NER3 96.09% 19.59% 32.07%
NER4 97.59% 34.25% 49.72%
NER7 98.32% 27.89% 42.77%
Presidio 98.06% 27.07% 41.12%
Our method 82.69% 81.24% 81.66%
Our method (no pre-process) 83.48% 59.79% 69.00%

a language-agnostic implementation (i.e., without language-
dependent tools) are still significantly better than those of
NER-based methods, which nonetheless require language-
specific tagged training data.

The behavior of the different methods is illustrated in
Table 2, which contains an extract of the input text of one of
the evaluated documents and compares the manual tagging
with the entities detected by the different approaches. We
can see that NER-based methods failed to detect pieces of
information that are relevant to re-identify the actor, such as
her/his birth date (for NER3 and NER4) or the title of the
movies or TV series she/he appeared in. NER7 is particularly
worrying, because it missed the actor’s name, which is a
direct identifier. In contrast, our approach only missed the
actor’s profession (due to its being very general), and only
incurred over-protection for the term “the action drama”.

In fact, it takes more than providing good average results
for a method to be useful: a good method has to yield good
enough results in all cases. Table 3 reports the coefficient
of variation (a measure of dispersion computed as the ratio
of the standard deviation to the mean) of the results given
in Table 1. We can see that our approach provides the most
consistent results, with a variation of the F1-score just 0.31%.

Precision is the only metric for which the NER-based
approach achieved better figures. Indeed, NER has an
inherently high accuracy in a pure NER task. Moreover, the
evaluation scenario we consider is quite favorable to NER
because most of the text in each document is highly related
to the individual to be protected (the biographee). Therefore,
if a named entity appeared in the text and was properly
identified by the NER method, then this named entity was
very likely to refer to the biographee and, therefore, to be
disclosive. In a less favorable scenario, in which the content
of a document could refer to different people, the precision
of the NER-based approach would significantly decrease,
because not all the named entities in the document would
refer to the individual to be protected. We simulated this
setting by putting together the biographies of two related
actors (both American and acting in the same TV series)
and manually tagging only the terms that may be disclosive
on one of them. In this case, the system had to detect not
only those terms that exclusively related to the actor to be
protected, but also the information he or she had in common
with the other actor also referred to in the text. The results of
this experiment are reported in Table 4.

As expected, the precision of the NER-based methods is
significantly lower in this two-actor setting, even though we
see relevant differences among the different NER models. The
problem was not only to detect the NEs, but to distinguish
which actor an NE referred to. Some significant false positives
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TABLE 2: Output samples for each method

Manual
annota-
tion

Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in
the film Endless Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread
attention for starring in the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

NER3 Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in the film Endless
Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread attention for starring in
the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

NER4 Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in the film
Endless Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread attention for
starring in the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

NER7 Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in the film Endless
Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread attention for starring in
the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

Presidio Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in the film Endless
Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread attention for starring in
the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

Our
method

Thomas Cruise Mapother IV (born July 3, 1962) is an American actor and producer. He started his career at age 19 in
the film Endless Love (1981), before making his breakthrough in the comedy Risky Business (1983) and receiving widespread
attention for starring in the action drama Top Gun (1986) as Lieutenant Pete "Maverick" Mitchell.

TABLE 3: Average coefficients of variation (CV) for precision,
recall and F1-score

Method Precision CV Recall CV F1 CV
NER3 0.48% 2.14% 2.41%
NER4 0.16% 3.67% 2.97%
NER7 0.09% 2.65% 2.34%
Presidio 0.12% 4.75% 5.02%
Our method 0.52% 0.67% 0.31%

TABLE 4: Precision, recall and F1-score for a document
referring to two different individuals

Method Precision Recall F1

NER3 55.55% 22.72% 32.25%
NER4 77.27% 59.09% 66.96%
NER7 60.0% 27.27% 37.5%
Presidio 66.67% 38.1% 48.48%
Our method 68.0% 81.81% 74.27%

of NER tools involved tagging the birth place and birth
date of the actor not to be protected; this was a mistake
that our method avoided. Although the false positive rate
of our method also increased with respect to the single-
actor setting, the increase was smaller than for NER-based
methods; besides, the recall of our method stayed at the same
level as in the single-actor setting.

So far, we have examined the performance of our method
on word2vec and with an excellent training data set that
perfectly matches the contents of the evaluated documents.
However, gathering large and suitable training data may be
difficult in some domains. On the other hand, our method is
not tied to a particular embedding model and may benefit
from advances in embedding techniques. To assess the
generality of our approach, we also experimented with
the following word embeddings models trained on general-
purpose data:

• Pre-trained word2vec [32]: an off-the-shelf word2vec

model trained on the Google News data set. The
model has a vocabulary of 3 million words/terms.

• FastText [9]: a library for word embedding learning
created by Facebook’s AI Research lab (see Section 3.1
for more details). Two pre-trained models were
considered: the first model (wiki1) has a vocabulary
of 2 million words/terms trained on the Common
Crawl data set, which is an archive of web data
collected since 2011; the second model (wiki2), has
a vocabulary of 1 million words/terms trained on the
2017 Wikipedia snapshot, the UMBC webbase corpus
and the statmt.org news data set.

• BERT (base-cased) [15]: a BERT model with 12 encoders
with 12 bidirectional self-attention heads trained from
data extracted from the BookCorpus with 800M words
and the English Wikipedia with 2,500M words.

When the training data do not perfectly match the
contents of the document to which the model is applied, the
document may contain out of vocabulary (OOV) terms. For
the models trained with fastText this does not occur because
it approximates OOV vectors from subword information.
However, since word2vec does not do this, many of the
complex n-grams we extracted from the documents to be
evaluated were not found in the model’s vocabulary. For
the Google News model to provide usable results, we
had to disable pre-processing so that the content of the
document was evaluated at a word level. The evaluation
figures obtained with the pre-trained models are reported in
Table 5.

It is interesting to see that the models trained with
fastText and BERT produced results comparable to those
obtained with our domain-specific training corpora. This
shows that in the absence of such domain-specific corpora,
large general-purpose corpora and pre-trained models may
be employed with reasonably good results. However, when
the pre-processing applied to pre-train the model does not
match the pre-processing used to evaluate new documents
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TABLE 5: Evaluation figures with several pre-trained word
embedding models

Model Precision Recall F1

FastText (wiki1) 82.38% 71.84% 75.93%
FastText (wiki2) 83.06% 71.85% 76.20%
Word2Vec (Google News) 68.58% 24.80% 35.58%
BERT (base-cased) 81.84% 72.31% 75.95%

and OOV terms are not handled properly, results are much
worse, as it was the case for the Google News model. Recall
was especially bad because many of the n-grams that ought
to have been detected as quasi-identifiers were either not
found in the vocabulary or were only partially detected,
which we also counted as a miss.

4.2 Masking Phase
In this section we report on the performance of the masking
strategy presented in Section 3.2.3. We measured the relative
utility preserved by the protected document after mask-
ing via ontology-based generalization the quasi-identifiers
detected in the previous phase. Generalizations for quasi-
identifiers were obtained from WordNet and YAGO. The
vectors of such generalizations were computed by re-training
the model with the Wikipedia articles corresponding to those
generalizations.

Similarly to related works [44], we measured the relative
utility of the protected document (D′′) as the aggregation of
the semantics it conveys w.r.t. the semantics of the original
document (D). This yields

Utility_preservation(D′′) =
Semantics(D′′)
Semantics(D)

· 100,

where Semantics(D) is the sum of the information content
IC(pi) of each phrase pi in D, that is,

Semantics(D) =
n∑

i=1

IC(pi),

with n being the number of phrases in D.
In information-theoretic terms, IC(pi) is the inverse

logarithm of the probability of occurrence of pi:

IC(pi) = −log2 Pr(pi).

To obtain representative probabilities of occurrence, we
queried pi in the Bing search engine and divided the number
of results it provides by the total number of resources indexed
by the search engine, as done in [44].

The utility metric we use captures the fact that the
generalizations used for masking carry less information than
their respective specializations. The information content is
a metric commonly used to quantify the semantic content
of terms in computational linguistics [38]. Moreover, in the
literature on data privacy [23], utility preservation is usually
measured as a function of the information loss incurred by
masking, which is exactly what our utility metric does. We
focus on the total information content lost as a result of the
replacements rather on the number of such replacements.

Table 6 depicts the average relative utility preserved by
different methods and masking strategies for the 50 evaluated

TABLE 6: Average relative utility preserved by different
methods and masking strategies

Method Suppression Generalization Avg. masked terms
NER3 66.98% 85.44% 33.8
NER4 39.70% 74.73% 64.08
NER7 54.00% 81.29% 54.16
Presidio 54.04% 81.00% 61.12
Our Method 48.48% 85.01% 86.04

documents. We compared our method against the NER
approaches discussed in the previous section when replacing
the detected named entities by their types (e.g., “Tom Cruise”
→ PERSON). We also report the relative utility that remained
when quasi-identifiers (in our case) and named entities (for
NER-based methods) were suppressed, as usually done in
document redaction [43].

As expected, plain suppression produced protected out-
comes that retained significantly less utility than generaliza-
tion. Add to this that blacking out pieces of text hampers
document readability and makes potential attackers aware
of the document sensitivity [8]. Generalization, either via
ontologies or via named entity types, preserved much
more utility. For NER models, utility figures were inversely
proportional to the number of masked terms (shown in the
last column). In contrast, our approach yielded the second
best utility value while masking the largest number of terms
(resulting from the best recall in the detection phase). The
good utility was due to the use of fine-grained ontological
generalizations rather than coarse NE types. Thus, our
method achieved the best balance between privacy protection
and utility preservation.

4.3 Protection Against Re-identification

So far we have evaluated detection and masking in isolation.
To measure the practical effectiveness of protection as a
whole, we implemented a re-identification attack that is
inspired by the evaluation framework proposed in works
like [19] for authorship attribution. The general idea of this
experiment is to check the ability of a machine learning
classifier to correctly predict the entity from the protected
output of each method.

Specifically, we took the 50 articles we had manually
annotated and we fine-tuned the BERT base-cased model
to predict the actor’s name by training it on the post-
summary text, that is, all of the article’s text except the
part we manually annotated. We split the post-summary
text into sentences, each one labeled with the name of the
actor. We used 80% of the sentences to train the model
and the remaining 20% to validate it. Then we tested the
classifier on the summary text, which is the part that we
manually annotated and that we protected. Predictions
were evaluated by checking whether the majority-predicted
class of the sentences in the summary matched the actual
actor. The classifier was tested on the original unchanged
summaries, the manually annotated summaries (by just
replacing the tagged text by the label SENSITIVE) and the
masked outputs of the different protection methods. The
percentage of correct predictions is reported in Table 7. Due
to the non-deterministic behavior of the BERT model in
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TABLE 7: Percentage of correct predictions for each method

Input Correct predictions
Original summary 84.67%
Manual annotation 2.00%
NER3 18.00%
NER4 16.00%
NER7 37.33%
Presidio 18.67%
Our Method 10.00%

tensorflow, which sightly varies for every run, we report the
average results of three runs.

First of all, it is important to highlight that this setting
is very favorable for re-identification. On the one hand,
the number of individuals/classes to be predicted is very
limited in comparison with the size of the population of
personal data sets (accounting for thousands or millions of
individuals). On the other hand, the text used for prediction
(summary) bears a lot of similarities to the training data,
not only regarding content, but also regarding the linguistic
structure of the sentences. As a matter of fact, sentences
in the summary also appear quite frequently in the post-
summary text, and this gives an ’unfair’ advantage to the
classifier. Despite all the above, we see in Table 7 that the
prediction accuracy for manual annotation was at the level of
random guess (2%, that is, 1/50). Yet the protection achieved
by manual annotation came at a high utility cost, because the
masking in this case was equivalent to text suppression and
suppression was shown in Table 6 to significantly damage
the utility of the document. Table 7 also shows that our
method is the one that offers the best protection, closest
to the protection level offered by manual annotation and
with much less utility loss (due to the use of ontological
generalization).

The results in Table 7 show some discrepancy with respect
to the recall-based protection reported in Table 1 for some
NER models, especially NER7. Even though NER7 yielded
a higher recall than NER3 due to the former considering
a larger variety of NE types, its protection against re-
identification was less effective, mainly because NER7 failed
to detect some family names that NER3 did not miss, as
we mentioned above. This illustrates that recall figures do
not give a complete view on the robustness of protection,
because the nature of the terms missed by a method (e.g.,
highly disclosive direct identifiers such as family names or
less risky circumstantial quasi-identifiers such as the year an
event happened) may be more influential on the success of
re-identification attacks than the number of identified terms.

5 APPLICATION SCENARIOS

The approach we present in this paper is remarkably ver-
satile and unconstrained. In particular, it does not require
manually tagged data, it works reasonably well with general-
purpose pre-trained models and, except for the optional
pre-processing, it is language-agnostic. As a result, our
method can be immediately applied to a variety of real-word
scenarios.

The most natural application of text protection is docu-
ment declassification, which consists in releasing documents

that used to be classified as confidential. Declassification
is oftentimes motivated by transparency principles and
open data initiatives. To make transparency compatible
with data protection and other interests at stake, parts of
the declassified documents that may refer to non-public
individuals, facts or places need to be sanitized by redacting
(blacking out or deleting) them. Redaction is also employed
for selective disclosure of information. For example, when
a document is subpoenaed in a court case, information
not relevant to the case is often redacted. Similarly, US
legislations on the privacy of medical data mandate hos-
pitals to redact all direct or indirect references to sensitive
diseases (such as sexually transmitted diseases or AIDS)
before releasing patient records to insurance companies or
in response to worker’s compensation or motor vehicle
accident claims [8]. As discussed in Section 2, redaction
has traditionally been performed manually by following
certain rules or guidelines [35]. However, manual approaches
are time-consuming [17] and error-prone, and they usually
require the coordinated effort of several human experts [8].
Our method perfectly fits the needs of document redaction:
given a set of entities to be protected (identities, locations or
confidential values such as sensitive diseases), our technique
can be iteratively applied to each entity in a given document
so that any references, either direct or indirect, to those
entities are detected and subsequently redacted.

In a different context, the well-known Snowden and
Wikileaks scandals have made companies more aware of
the damage that may be caused by insiders who gradually
gain access to more and more confidential data. To mitigate
this threat, companies have started to implement risk man-
agement policies, whereby the contents of corporate files
are characterized according to their risk, and accounting is
enforced on employees by continuously monitoring their
accesses to such files. Then, metrics such as misuseability
scores [21] can be developed to quantify the harm that
might be inflicted by an employee in a hypothetical data
leakage as a function of the accumulated sensitive data he or
she has accessed. These metrics enable early detection and
prevention of data leakage or misuse by insiders, for example,
by implementing dynamic access control policies to decide
whether or not access to new content should be granted to
specific employees, or by detecting individuals with unusu-
ally high scores. A variety of commercial software packages
are available to enforce risk assessment on corporate files,
such as the aforementioned Amazon’s Macie [4], Google’s
DLP [13] or Symantec’s Data Loss Prevention [53]. However,
all those packages characterize risk based on the (limited set
of) named entity types they can detect by means of regular
expressions and pre-trained classifiers. Thus, they suffer
from the limitations discussed in Section 2. In this respect,
as shown in Section 4, our approach can offer a much more
accurate risk characterization, which can also be tailored to
the specific privacy requirements of the organization.

A similar approach can also be employed to measure the
exposure level of users of social networks and therefore their
privacy risks. Proposals in the literature compute privacy
risk scores of social network users as the sum of attributes
disclosed by their profiles [27], [51]. However, messages
posted by users provide much more detailed and up-to-
date information on the users’ preferences or demography
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than static attributes, thereby entailing higher risk [47]. Our
method can be applied (trained) on the users’ data and
be enforced on the topics that current regulations (such as
GDPR) regard as sensitive, such as religion, sexuality or
ethnicity. As a consequence, the user can be made aware
of the level of exposure his or her publications entail on
such sensitive topics and by that means he or she can make
informed decisions on whether to publish certain data. User
awareness and empowerment regarding privacy are in fact
pillars of the modern outlook on privacy protection [46].

6 CONCLUSIONS AND FUTURE WORK

We have presented an automatic method to protect text
documents that leverages word embeddings to measure
disclosure risk and masks disclosive terms via utility-
preserving generalizations. Our approach is more general
and, at the same time, more flexible than methods based
on NER. On the one hand, we do not restrict the disclosure
assessment to predefined entity types, because doing so
typically incurs under-protection, as we have shown in our
evaluation. On the other hand, our method drives protection
according to privacy requirements focused on the entity or
entities on whom information should not be disclosed by
the sanitized text. This behavior is more similar to the way
human experts tackle manual sanitization [8] and to the
way privacy models enforce ex-ante privacy guarantees in
structured databases [16]. As a result, the protection afforded
by our method is consistent with the privacy requirements
and, at the same time, more robust and utility-preserving
than the protection of NER-based methods. Finally, even
though our method relies on machine learning, it does not
require tagged data and model building is language-agnostic.
Therefore, no manual effort is required during the whole
lifecycle of the protection process, which makes our method
suitable for managing large amounts of textual data.

As future work, we plan to tailor contextual embedding
models like BERT to our domain. As shown in the evaluation,
pre-trained BERT was able to obtain results comparable to a
word2vec model trained on domain-specific data. Hence,
BERT trained on domain-specific data might offer even
better results. Moreover, thanks to the contextual embeddings
provided by BERT, language ambiguity will be minimized
without requiring complex semantic disambiguation meth-
ods.
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