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Abstract

Varietal control to avoid unwanted varietal mixtures is an important objective

for the nursery plant industry. In this study, we have developed and analyzed

the capabilities of a computer vision system based on deep learning for the

control of plant varieties in the nursery plant industry and for evaluating its

capabilities. For this purpose, three datasets of nursery plant images were com-

pared. The datasets came from two varieties of almond trees (Prunus dulcis)

named Soleta and Pentacebas. Each dataset contained images with three differ-

ent scales: whole plant, leaf, and venation. The Gradient-weighted Class Acti-

vation Mapping (Grad-CAM) technique was used to unveil the most important

features to discriminate between both varieties. The three datasets provided

classification accuracies above 97% in the test set, being the leaf dataset, with a

98.8% accuracy, the one providing the best results. Concerning the most impor-

tant features of the plants, the Grad-CAM showed that they are located in the

center of the leaf, that is, the venation. In conclusion, we have shown that

computer vision is a promising technique for the control of plant varietal

mixtures.
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1 | INTRODUCTION

Rapid discrimination between vegetal varieties is a key requirement in nursery plant production.1 The appearance of
varietal mixtures within a batch, which should be homogeneous, is an important trouble, not only because the cus-
tomer receives unwanted vegetal material but also because nursery plant companies may face expensive legal suits and
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the deterioration of their corporative image.2 In this context, we propose using computer vision based on deep learning
techniques (CV-DL) as a possible solution to sort out this problem.

Computer vision is an old discipline that has recently undergone a qualitative improvement thanks to the use of
deep learning algorithms. The goals of computer vision are to achieve a higher level of operational efficiency and pro-
ductivity, as well as a higher level of automatization.3 Moreover, it is one of the new technologies that drives the so-
called Industry 4.0.

Deep learning is a specific subfield of machine learning, which in turn is included in the field of artificial intelli-
gence. Deep learning could be defined as a modality of learning representations from data that emphasize learning suc-
cessive layers of increasingly meaningful representations.4 Each layer may be viewed as a nonlinear transform of the
outputs of the precedent layer. The transformation parameters (weights) are learned using a supervised strategy. In
other words, it consists of training a model from examples of the classes that we want to characterize, in our case the
two varieties of almond trees. During the training process, the model calculates the classification error, which is repre-
sented as a mathematical function named loss, and with a small set of instructions, it autonomously modifies parame-
ters (weights) of the model to reduce the loss, which allows improving the accuracy of the classification.5 This process
is known as model learning. The deep in deep learning is a reference to the large number of interconnected successive
layers, stacked on top of each other and composed of computational neurons, which is called neural network. Nowa-
days, neural networks involve tens or even hundreds of layers. The structure of deep learning neural networks is
divided into three sections. The first is the input layer, which receives the input images that feed the model. The middle
section contains the hidden layers, a group of successive layers where the representation of the data takes place. This
part constitutes the body of the neural network. Finally, the last section receives the name of output layer. This layer
predicts the class to which a sample belongs based on the representation made by the hidden layers.

It was decided to use CV-DL because, in other computer vision systems, the final classification is based on the fea-
tures designed by the engineer. Then, the final quality of the system depends on this previous knowledge of the best fea-
tures. However, in the case of study, the most important features are very difficult to determine. Therefore, it was
considered more appropriate to use CV-DL.

In the agronomic sector, the use of computer vision along with deep learning algorithms is recent but is becoming a
promising technique with growing popularity.6 This technology is fast and does not modify or destroy the samples.
Moreover, it can be easily implemented or adapted to the production line, enabling the collection of useful information
that can be used as a quality control tool or to monitor a process. These advantages make computer vision an attractive
tool for the agricultural industry. Despite being an emerging technology, there are several studies where CV-DL has
been applied, for example, for crop type classification7,8: crop yield estimation,9,10 plant phenological estimation,11,12 or
even plant recognition.13,14 In short, CV-DL techniques have great potential in the automation of the agronomic indus-
try, and their capacities and efficiency have been improved in the last decade.15,16

The objective of this study was to develop a methodology to implement computer vision system for the control of plant
varieties in the nursery plant industry and evaluate its capabilities. The study was developed working with two varieties
of Prunus dulcis, Pentacebas and Soleta, which are genetically close and almost morphologically indistinguishable. Three
datasets of different image scales were used, namely, whole plant, leaf, and venation. It is important to note that this study
focuses on the automatic control of nursery plants in the greenhouse, which means we have avoided the manipulation of
the plants. This way, we tried to simulate a possible automatic line of image acquisition without sampling. The specific
objectives were (1) to compare between different image scales: whole plant, leaf, and venation, to determine which is
most suitable for varietal discrimination; (2) to determine which morphological characteristics are most relevant for the
classification of varieties; and (3) to evaluate the neural network complexity required for the case of study.

2 | MATERIAL AND METHODS

2.1 | Image acquisition

The RGB images used were acquired using a Nikon D5300 camera. To keep homogeneous light conditions, plants were
introduced inside a professional photo studio box with a dimension of 80 � 80 � 80 cm. The photo studio had inte-
grated two LED lamps (color temperature 5,500 K, color rendering index of 93%, and 13,000 lumens), which were
placed at the bottom of the box. The idea was to illuminate the leaves from the bottom up to highlight their venous
architecture. A textile diffuser was positioned between the canopy plant and the light source to avoid the reflectance of
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the LED lights on the leaves. The camera was placed over the box and subjected by a holder; this way, apical images
were collected. This method was developed in a previous study.17 A balanced sampling was performed and 412 images
per variety were used, which means 824 images for each dataset. In total, 2,472 images were employed in the study.
Table 1 shows more details about the number of samples used in the study.

2.2 | Image preparation

The whole plant image dataset was cropped in 4,000 � 4,000, 3,000 � 3,000, and 2,500 � 2,500 pixels; the leaf dataset
was composed of images with a range between 2,000 � 2,000 and 1,125 � 1,125 pixels; finally, the images of the vena-
tion dataset were cropped in a range of 600 � 600 and 300 � 300 pixels. Different images sizes were used to increase
the robustness of the model against scale variations. The leaf and venation datasets were obtained from the same set of
original images by different cropping factors, so that leaf and venation datasets were constituted by cropping the images
contained in the whole plant dataset. This strategy was chosen to reduce the acquisition time of the photos and to
increase the robustness of the comparison. In addition, the resolution of all images in all sets was reduced to 224 � 224
pixels before introducing them into the model. Moreover, the pixels were normalized (1.0/255) with numeric values
between zero and one. The reduction of resolution was performed to reduce the computational cost and the normaliza-
tion to accelerate learning in the deep learning models, thereby decreasing computational time. Figure 1 shows exam-
ples of the images of the three data sets used.

The set of images used in this study was randomly split into a training set (75% of the images), a validation set (15%
of the images), and a test set (10% of the images). Table 1 shows more details about the datasets. The validation set was
used to verify the correct convergence of the model and to optimize the selection of hyper-parameters. The test set was
used for the final assessment of the network performance.

2.3 | Data augmentation

Overfitting tends to occur when neural networks work with small datasets (<1,000 images), and the model fits very spe-
cific features of the training images that are not representative of the whole class. Therefore, it reduces the capability of
the model to correctly classify images that do not belong to the training dataset. Hence, overfitting means that the sys-
tem achieves excellent accuracy in modeling the training set at the cost of reducing accuracy in the prediction of valida-
tion and test datasets. To reduce overfitting, data augmentation was employed.

Data augmentation allows increasing the training data set from the available data. This method consists of generat-
ing additional images by modifying the original ones using pre-established random transformations.18 In this way, it is
possible to increase the diversity and the number of images during the training process. Data augmentation reduces
overfitting and helps the model to better predict validation/test data and to improve its classification accuracy and
robustness.19 Data augmentation was only applied to the training set, and it consisted of shear in a range of 0.2, zoom
in a range of 0.4, horizontal flip, random rotation in a range of 180�, width and height shift in a range of 0.2.

2.4 | Convolutional neural network

A convolutional neural network (CNN) is a type of network architecture that is widely used in image analysis; for this
reason, CNN is commonly used in computer vision for image recognition.20 Its structural design made it possible to

TABLE 1 Description of the study

Percentage % Pentacebas Soleta Overall dataset Overall study

Training set 75 309 309 618 1,854

Validation set 15 62 62 124 372

Test set 10 41 41 82 246

Total 412 412 824 2,472

BORRAZ-MARTÍNEZ ET AL. 3 of 10



reduce the number of parameters of our model, which means a significant reduction in cost and computation time. The
layers of a convolutional network have neurons arranged in three dimensions, so the layers have width, height, and
depth. Neurons in a convolutional layer are applied using convolution to small local regions of the previous layer, so
we avoid wasting completely connected neurons.5 The convolution is translationally invariable, and kernels may detect
different types of features at different scales in every layer. Furthermore, CNN also contains pooling layers that reduce
the amount of information obtained from the convolutional layers, creating a condensed version of the information
they contain.

In this study, two convolutional neural networks have been used: the VGG16 convolutional neural network21 and
the Shallow network. Both networks have the same types of layers, but with different structural complexity. Figure 2
shows the scheme of both neural networks.

The Shallow CNN was created specifically for this study. The goal was to build a CNN with less structural complexity
than the VGG16 network, that is, with a lower number of parameters. The convolutional base of the Shallow CNN is
organized in five blocks. Blocks 1 and 2 contain two convolutional layers, and blocks 3–5 contain one convolutional layer.
Concerning the number of filters, blocks 1 and 2 have 32 and 64 filters, respectively. Blocks 3–5 have 128 filters. Every
convolutional layer uses a filter with a receptive field of 3 � 3. The convolution stride is one pixel, and the spatial padding
of the convolutional layer input is such that the spatial resolution is preserved after convolution. In addition, one max-
pooling layer over a 2 � 2 pixel window is located at the end of each block. The classifier is composed of two fully con-
nected layers. The first one has 512 neurons with ReLu activation. The last one has one neuron with sigmoid activation.

VGG16 was developed by the Geometry Group at the University of Oxford to obtain the state-of-the-art results in
the Large Scale Visual Recognition Challenge (LSVRC-2014) competition.21 This architecture has become very popular
and widely used in many image recognition problems. It consists of 16 layers divided into five blocks, which are named
convolutional base, together with a fully connected layer named classifier. Every block in the VGG16 is formed by a
concatenation of two or three convolutional layers followed by a pooling layer with a stride of 2 � 2. The classifier is

FIGURE 1 Examples of images used in the study
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composed of three fully connected layers. The convolutional base of the VGG16 neural network was downloaded from
Keras (https://keras.io/). Then, it was inserted into a new classifier, which consisted of one flattened layer followed by
two dense layers. The convolutional neural networks learn local features of the input image. For this reason, the pur-
pose of these fully connected layers is to collect the local information. The flatten layer allows transforming the 3D ten-
sor of the CNN to a 1D tensor, which is required by the dense layer. The first dense layer contained 256 neurons with
ReLU activation. This layer integrates all the local features learned by the last CNN layer, taking into account nonlinear
combinations. Otherwise, without this inner layer, outputs would be a form of regression of the convolutional layers.
The second dense layer had one neuron with sigmoid activation. The sigmoid activation means that the output of the
neural network will be in a range between zero and one. As in this case, there are two classes; each image was encoded
with a value above 0.5 if the image belonged to the Soleta class and below 0.5 if the image belonged to the Pentacebas
class.

The complexity of the structure increases the time and the difficulties during the training process. Therefore, it was
considered interesting to compare both CNN to assess the complexity required to develop the plant varietal
control tool.

2.5 | The training steps

2.5.1 | Training of the VGG16 CNN

To facilitate the training process and try to get better results, the transfer learning technique was used. Transfer learn-
ing22 is one of the most important techniques in deep learning as it allows us to use a pre-trained neural network.23,24

FIGURE 2 Schema of the two convolutional neural networks used. (A) VGG16; (B) Shallow
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This is an advantage because training a neural network from scratch requires a huge dataset and a lot of computation
time due to the large number of parameters that need to be adjusted. Through transfer learning, it is possible to down-
load a pre-trained network and use its parameters as an initial good weight guess, and the fine tune the model by train-
ing it with our dataset. In this way, the representations previously learned by the network can be used to extract
interesting features from new samples. In this study, a VGG16 convolutional network model, pre-trained with the
dataset of ImageNet, was downloaded. This database includes 1.4 million labeled images from 1,000 different classes.
ImageNet is one of the most common datasets used to pre-train CNNs in computer vision.

There are two modalities of transfer learning, feature extraction and fine-tuning. Based on the results obtained in
previous tests,17 fine-tuning was chosen. Fine-tuning4 consists of freezing the parameters from the initial layers and
training the last layers of the convolutional base, specifically the layers from block 5, together with the classifier. In this
way, it is possible to slightly adjust the more abstract representations of the model being reused, in order to make them
more relevant for the problem at hand.4 Through this strategy, the trainable parameters were reduced by 45.4%, from
more than 16 million to 9 million.

The three datasets were trained using the same strategy, except for the number of epochs, which was chosen based
on the convergence between training and validation, shown by the accuracy and loss. The model of the whole plant
dataset was trained during 90 epochs because it tended to suffer from overfitting above 100 epochs. In contrast, the leaf
and venation models were trained during 110 epochs. The batch size was 30 for the three datasets, and a learning rate
of 10�5 was used. Regarding the optimizer, an Adam with a beta 1 = 0.9, beta 2 = 0.999, and epsilon = 1e�0.7 was
used. Besides, a dropout of 0.5 was applied to avoid the overfitting and to increase the robustness of the models.

2.5.2 | Training of the shallow CNN

Since the Shallow network has fewer parameters than VGG16, it was preferred to train it from scratch, allowing us to
simplify the process. The strategy followed consisted of training the model using an RMSprop optimizer with a learning
rate of 10�5 during 40 epochs. Then, the CNN was trained again with 30 epochs but changing the RMSprop optimizer
by the Adam optimizer (beta 1 = 0.9, beta 2 = 0.999, and epsilon = 1e�0.7). Throughout the training process, a batch
size of 30 epochs was used.

2.6 | Gradient-weighted class activation mapping (grad-CAM)

It is not just important to know what type of dataset works best, but it is also interesting to assess why this happens. In
the same way, visualization of the activation maps may help to understand missclassifications. The interpretation of
how CNN works to assign a label is usually difficult.25 Grad-CAM26 is a technique that consists of producing heat maps
of class activation over input images. A class activation heat map is a 2D grid of scores associated to a specific output
class, computed for every location in any input image, indicating how important each location is for the class under
consideration.4 This way, false color images are used to highlight the most significant regions of the image used in the
final classification. Therefore, we relied on the information provided by the Grad-CAM technique to know what fea-
tures the model used to classify the two classes of each dataset.

3 | RESULTS AND DISCUSSION

3.1 | Comparison between datasets

The images were collected simulating a typical production line that could be found in any nursery plant company. The
idea was to mimic an automatic image acquisition process. Table 2 shows the results obtained in the deep learning
models.

The model for the leaf dataset provided the best result in the test. The plant and venation datasets got the same
accuracy, slightly below the leaf dataset.

Before starting the discussion, it is important to remark that there is a resolution reduction step just before the
images are introduced in the CNN. So that, in the images of the whole plant dataset, the features related to the
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edge of the leaves and the venation are negligible. This means that the whole plant only provides information about
the color, the shape, the relation between length/width of the leaf, and the disposition of the leaves. Concerning the
images of the leaf dataset, they contain information about the shape, edge features, and principal veins of the leaves.
These characteristics seem to be the most critical to discriminate between the two classes, Soleta and Pentacebas.
Using the leaf dataset, a 98.8% of accuracy was achieved in the test, which means the model only misclassified one
image. This misclassification corresponds to a Pentacebas image that was erroneously assigned to the Soleta class
with a value of 0.61. It is important to remark that the rest of the images, which were correctly classified in both
Soleta and Pentacebas classes, had confidence values very close to one and zero, respectively. This result is surpris-
ingly good considering that they are two genetically very close varieties of P. dulcis. This agrees with the botanical
science that uses leaf feature taxonomic keys for plant identification.27,28 Regarding venation, some studies highlight
the usefulness of the venation pattern for the identification of vegetal species.29 In our study, the venation model
provided good results but worse than the ones of the leaf dataset. We believe that the methodology chosen to collect
the venation images might not be the most suitable. Although the source of light was positioned under the plant to
emphasize the venation characters, the illumination was not homogeneous in all the leaves. This lack of homogene-
ity may have increased the variability within a class, thus increasing the difficulty of varietal identification. Perhaps
this approach is underestimating the real potential of venation for varietal discrimination, but this study focused on
the automatic acquisition of plant images. Thus, we did not consider sampling individual leaves to obtain better
images of the venation.

3.2 | Important features

The class activation heat map for each class is shown in Figure 3. For the whole plant, high activation regions of the
CNN can be appreciated. These areas were located mainly in the center of the leaves. Leaves with greater activation
than others can also be seen, which is because the grad-CAM image represents the features analyzed by one neuron.
Other CNN neurons generate complementary activation, so this heat map is extrapolated to the other leaves.

Concerning the leaf dataset, a high activation was observed in the center and edges of the leaves. This indicates that
the shapes of the edge of the leaves, along with the venation, are interesting features for identification and discrimina-
tion between the two classes. By comparing the heat map activation of leaves and whole plants, it is easy to find similar-
ities. This implies the model searches and uses the same features in both cases. The main difference between leaf and
whole plant datasets is the scale. In the whole plant dataset, more leaves can be used, each with its own features, but
the clarity of the edge shape and the venation is less than in the leaf dataset due to the reduced resolution. In contrast,
in the leaf dataset, there is less information due to the limited vision field that is focused on fewer leaves, but the edges
and venation are observed with a better resolution than when the image is of the entire plant. Plant-scale images pro-
vide a global image compared to leaf-scale images. Despite this, the leaf scale ones offer better information to classify
the images correctly because they show better the characteristics that differentiate both classes.

The venation dataset did not show any high activation zone, in contrast to what was observed in the other two
cases. This indicates that there are no specific features useful for classification other than the entire image. Thus, all the
information contained in the image is important for discrimination. By looking at Figure 3 from top to bottom, it can
be observed that the model is focused on the center of the leaves in the three datasets, which means the most important
characteristics are located in the center of the leaf, that is, the venation. Despite the result obtained with the venation
dataset being good, it is not the best due to the variability caused by the position of the leaves in respect to the source of
light, which affected the visualization of the veins of the leaves. The way the beam of light pass through the leaves
makes the veins are clearly observed in some images but are difficult to appreciate in others. This issue could have
made classification difficult as there was no clear pattern. The leaf dataset was the best in the comparison, which can

TABLE 2 Results obtained in the comparison of datasets

Dataset Test accuracy (%)

Whole plant 97.6

Leaf 98.8

Venation 97.6
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be explained because leaves contain information extracted from the venation, together with other important features,
such as the shape of the edge. Due to the method chosen to collect the images, edge shape was a more robust character-
istic than venation, and this can help to improve the discrimination between Soleta and Pentacebas varieties.

3.3 | Comparative between CNNs

The leaf dataset was used to compare the VGG16 and Shallow neural networks, because it was the dataset producing
the best results in the previous section. Table 3 shows the results of the comparison between both CNNs.

Concerning the classification rate, the Shallow network reached a 93.9% of accuracy, which is a good result given
the difficulties to discriminate both P. dulcis varieties. Despite the successful classification, the Shallow network pro-
vided a classification rate of almost 5% lower than the VGG16 network. This means five images misclassified by the
Shallow network against only one image erroneously classified by the VGG16 network. To evaluate these results, it is
important to remark that during the training process, 13.5 million parameters were adjusted in the VGG16 network,
against only 1.5 million parameters in the Shallow network. Training the VGG16 network requires more time and has
a higher computational cost, and definitely, we always have a trade-off between training time and accuracy of the
model.

The Shallow network proved to be effective, but in the industry, accuracy is very important, even more than the
time required to develop an innovation. In addition, once the VGG16 network has been trained, there is not a signifi-
cant difference in the time required to do a prediction between both networks. For this reason, the VGG16 network
seems to be more appropriate in this case.

FIGURE 3 Heat map activation from the three datasets

TABLE 3 Comparison between Shallow and VGG16 networks

Accuracy Number of images misclassified Number of parameters (x106)

VGG16 98.8 1 13.5

Shallow 93.9 5 1.5
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4 | CONCLUSIONS

In this study, computer vision and deep learning models have been applied for plant varietal discrimination. Three
datasets (whole plant, leaf, and venation) have been compared, each of them containing images with a different scale
from two varieties of P. dulcis, Soleta and Pentacebas, in nursery plant state. The best results were obtained for the leaf
data set, with a classification accuracy of 98.8%, while whole plant and venation datasets obtained 97.6% of accuracy in
the test. It was shown that the edge shapes of the leaves, and especially the venation, are the most important character-
istic for the identification and discrimination of the classes. Although the venation features had great importance, the
image acquisition method used in the study may have limited their potential. Finally, the performances of two CNNs
were compared. The VGG16 network performed better than the Shallow network, indicating that the enormous diffi-
culty of discriminating both varieties of P. dulcis requires a complex neural network architecture.

These results show that computer vision together with deep learning is a promising technique for automatic control
of varietal mixtures. Moreover, it will be interesting to develop a method that allows us to obtain good images of the
venation of the leaves without having to take individual leaf samples.

Finally, although these models were built using images of nursery almond trees, the idea is to extend the models to
other plant species.
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