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Abstract—A closed-form and physics-based compact model
is presented for calculating the DC characteristics of Schottky
barrier field-effect transistors and dual gated reconfigurable field-
effect transistors. The given model calculates the charge-carrier
injection over the Schottky barriers. This current is separated
into a field emission current, given by charge carriers tunneling
through the Schottky barriers and a thermionic emission current,
given by charge carriers overcoming the Schottky barriers. The
model verification is done by comparing the model results to
measurements and TCAD simulations.
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I. INTRODUCTION

THE reconfigurable field-effect transistor (RFET) tech-
nology that has been demonstrated in [1] gained at-

tention, because of the application possibilities which differ
from regular metal oxide semiconductor field-effect transistors
(MOSFETs). Those devices come with an additional gate,
which is used to control the device’s polarity, leading to an
increased device functionality, and can potentially reduce the
complexity of electronic circuits [1]–[3]. The given RFET
devices rely on the same charge carrier injection principle over
Schottky barriers as Schottky barrier field-effect transistors
(SBFETs) [4]. However, with the two gates of those devices,
where one gate covers the source-channel sided and the other
gate covers the drain-channel sided Schottky junction, the
charge carrier injection at both contacts can be controlled
individually, so one gate - the program gate (PG) - can be
used to determine the polarity of the device, while the other
gate - the control gate (CG) - controls the actual current flow
like in regular MOSFET [1], [5]. The possibility of changing
the device’s polarity, which means switching between n- and
p-type characteristics by changing the PG’s bias, enables their
usage in reconfigurable logic circuits, like those shown in [2],
[3].
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The demand for a compact model, which consists of simple
and numerically efficient equations while providing a good
fit to measured device characteristics, arises from the need of
circuit simulations in a SPICE environment featuring RFET
devices. In [6] we introduced the basics of a closed-form and
physics-based compact model that fulfills the given conditions
and is applicable to SBFETs and configured RFETs. This work
gives a more detailed view of the model derivation, provides
extensions regarding a consistent modeling of the transistor’s
output characteristics, and shows additional results for the
application of this model.

In order to validate the compact model, based on the
measurements from [7], Technology Computer-Aided Design
(TCAD) simulations are done with TCAD Sentaurus [8].
These simulations, that use the parameters from [9], are
used to simulate the device under various bias conditions.
Section II gives a quick overview of the covered device
structure. Section III shows the derivation of the compact
model and section IV the results, followed by a conclusion
in section V.

II. DEVICES

The presented model works uniformly on SBFET and RFET
devices. These devices are usually omega-shaped gate or
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Fig. 1. Schematic cross-section of (a) an SBFET and (b) an RFET with
the relevant geometric parameters for the compact model. Typical geometric
parameters are shown in table I.
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Fig. 2. Example band diagrams of an SBFET device. (a) band diagram in the device’s off-state with the relevant band diagram parameters for the compact
model. The parameter Φ0,surf determines an initial band bending caused by the work functions of the materials and is compensated in the model by a flatband
voltage Vfb. (b) on-state band diagram with the current contributions, considered in the compact model.

gate-all-around nanowire or nanosheet structures, where the
nanowire channel consists of a semiconductor that is attached
to the metallic source and drain regions [1], [5], [10]–[13].
The metal-semiconductor junctions form Schottky barriers,
that block a charge-carrier current flow in the device’s off-
state. While the SBFET consists of one gate area covering the
entire device, the RFET has two independently controllable
gate contacts, each covering one Schottky junction. A cross-
section of those devices is shown in Fig. 1. Typical device
parameters used with this model are shown in table I. Figure
2 demonstrates the basic working principle of those devices
(in this case of an SBFET). While Fig. 2a shows the important
band diagram parameters used in the compact model, Fig. 2b
shows the device in the on-state with the associated current
contributions, that are explained in the next section.

III. MODELING APPROACH

The current characteristics of the devices under investigation
is mainly dominated by the Schottky barriers, which means
that in the device’s off-state the Schottky barriers at the source
and drain junctions block the current flow, while in the on-
state the Schottky barriers are permeable for charge carriers.
The current over the Schottky barriers is separated into two
different types of current. The current which is dominant in
the device’s off-state is the thermionic emission (TE) current,
given by charge carriers that are able to overcome the Schottky
barrier [14]. The dominating current contribution in the on-
state is the field Emission (FE) current, which is given by the
charge carriers tunneling through the Schottky barriers [14].
Those contributions are shown as an example in the energy
band diagram in Fig. 2b as FE current for electrons (JFE,n), as
well as TE current for electrons (JTE,n) and holes (JTE,p). The
compact model, that is introduced in this paper, is based on
the charge carrier injection through Schottky barriers and uses
both types of current contribution in order to calculate the total
device current. Therefore, it is valid as long as the Schottky
barriers are the dominant current blocking mechanisms in the
device, compared to the device’s channel resistance, which is

usually given for devices with a channel length smaller than
one micrometer.

A. Potential Model

In a first step, the electrostatic potential in the device’s
channel region is calculated and thereto the band diagram
and the electric field close to the junctions. The determination
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Fig. 3. Electrostatic potential of the device from section IV at Vds = Vpg =
Vcg = 2 V. (a) device structure with the simulated 2D potential along the
channel. The 2D potential was simulated using TCAD Sentaurus. (b) potential
along the cut line shown in (a) and comparison of the TCAD simulated value
(blue) to the result of the 2D analytic closed-form potential model (orange)
and the compact potential solution (green) from (2). The dashed box shows
a zoom of the potential at the Schottky barrier.
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of the potential is split into two steps. First, an adapted
version of the 2D analytical closed-form potential model from
[15], [16] is used to calculate the electrostatic potential at
some auxiliary points close to the Schottky junctions and in
the middle of the channel. This model uses the Schwarz-
Christoffel transformation method to calculate the potential
inside a double-gate field-effect transistor structure, like the
one shown in Fig. 1 [15], [16]. However, this potential model
does not consider accumulated charges in the channel at higher
gate-source voltages Vgs. In order to increase the accuracy of
this calculation even for higher Vgs, an effective gate-source
voltage V ′gs is calculated, which shall include the effect of
accumulated charges in the device’s channel. For this effective
gate-source voltage Vgs,TFET is adapted, which is used in
the tunnel field-effect transistor model from [17]. However,
compact model comparisons to measurements and TCAD
simulations showed that V ′gs = Vgs,TFET is not applicable
on the tested RFET devices for all used bias conditions.
Therefore, an empirical equation was included, given by

V ′gs = [α · Vgs,TFET + (1− α) · Vgs]− Vfb , (1)

where α is a fitting parameter to increase or reduce the effect
of the V ′gs saturation and Vfb is the flatband voltage which
is a fitting parameter that compensates the band bending at
Vgs = 0 V. The later can be induced by the gate material’s
work function.

With the auxiliary points from the 2D analytical closed-
form potential model, similar to [17], in a second step a
compact analytical expression (ϕcomp) for the potential along
the channel is introduced:

ϕcomp(x) =
k

x− l +m . (2)

This expression is evaluated at the oxide-channel interface and
in the middle of the channel for each Schottky junction (source
and drain), where the x-direction is the source-drain direction.
k, l and m are the reconstructed parameters by auxiliary
points calculated in the first step. With this expression for the
compact potential, it is possible to calculate the electric field
along the channel by

Ex(x) = −dϕcomp(x)

dx
(3)

and the band diagram by adding or subtracting the band
parameters ΦB,n or ΦB,p. Figure 3b shows the 2D analytical
closed-form potential model as well as the compact potential
compared to TCAD Sentaurus simulations at the given bias
conditions for the device from section IV. This comparison
shows that both potential models have a deviation compared to
the TCAD simulation between the source-channel junction and
the control gate, which is most likely caused by the influence
of the accumulated charges in the channel at the given bias
condition, due to their empirical consideration. However, the
most important part is close to the source-channel junction in
order to estimate the Schottky barrier thickness correctly for
the tunneling process. In this region the potentials calculated
by the compact model show an acceptable agreement to the
TCAD simulation.

B. Field Emission Current

The FE current is given by charge carriers tunneling through
the Schottky barriers. For this case the bands have to be
sufficiently bent so the thickness of the barrier becomes small
enough, as it is shown in Fig. 2b. In order to find a way to
describe the FE current density (JFE) analytically, an approach
from [4] is used. In this approach the equation

JFE =
qµtnNC

kbϑ
·
∫ E0
Emin

fm(E)[1− fch(E)]

×| ~E(E)| · T ( ~E, E) · dE ,
(4)

that describes the tunneling process through the Schottky
barrier, but is not solvable analytically, is approximated by

JFE ≈
qµtnNC

kbϑ
·
∫ E0
Emin

1

4
exp(−a(E − Ef)

2)

×b · exp(−c(E0 − E)) · dE ,
(5)

where q is the elementary charge, NC is the effective density
of states in the conduction band (for tunneling holes the
effective density of states in the valence band NV is used),
kb is the Boltzmann constant and ϑ is the temperature. The
mobility µtn for electrons (or µtp for holes) is an adjustable
fitting parameter of the model, which is part of (4), because
this equation combines tunneling with drift-diffusion effects
[4]. The first part of the integral in (4) is the product of
the Fermi functions and represents the occupation probability
fm(E) for electrons in the source region at energy epsilon and
[1 − fch(E)] for holes in the channel region [4], [14]. In the
approximation from (5) this first part is approximated by a
Gaussian distribution function 1

4exp(−a(E −Ef)
2), where Ef

is the Fermi energy level [4]. The second part of the integral in
(4) is the electric field multiplied with the tunneling probability
| ~E(E)| · T ( ~E, E), which is approximated by an exponential
function b ·exp(−c(E0−E)) in (5) [4]. The Fermi energy level
Ef used for the tunneling calculation is the Fermi level of the
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Fig. 4. Visualization of the tunneling equation components at the source-side
Schottky barrier for tunneling of electrons. The figure shows some important
variables of the compact model, as well as the components of (4) as a function
of the energy E , which are the electric field multiplied with the tunneling
probability (green) and the product of the Fermi functions (red).
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metal. The x-position where the bent conduction band EC (or
the valence band EV in case of tunneling holes) reaches the
metal’s Fermi level is called xf . This position is estimated to
have the highest FE-current contribution per energy level, as
shown in Fig. 4. The relation between Ef and xf is expressed
by using (2) as

Ef = −q · ϕcomp(xf) + q · ΦB,n , (6)

in case of tunneling of electrons where the conduction band
is bent below Ef . For tunneling of holes the valence band is
relevant for the tunneling process and −q ·ΦB,p is used in (6)
instead of +q ·ΦB,n. If the conduction band is not bent below
the metal’s Fermi level, xf will be limited to lch/2. The upper
boundary of the integrals (E0), is the highest energy value
where tunneling can occur, which is the top of the Schottky
barrier (see also E0 in Fig. 4). The lower limit of the integrals
in (4) and (5) is positioned in the middle of the channel, so
that Emin = −q ·ϕcomp(lch/2)+q ·ΦB,n. This lower boundary
is the lowest energy value where tunneling charge carriers
are theoretically possible. However, due to the increasing
tunneling lengths, the tunneling current contributions lower
than Ef are decreasing rapidly, so that Emin is a formal
minimum. a, b and c of (5) are energy independent coefficients,
which are reconstructed like shown in [4] and given by

a = γn ·
π

16 · (kbϑ)2
, (7)

b = Ex(0) · T (0) (8)

and
c = ln

(
1

b
· Ex(xf) · T (xf)

)
· 1

(Ef − E0)
(9)

Ex(x) is the compact electric field in x-direction from (3)
and T (x) is the tunneling probability at position x [4]. The
fitting parameter γn for electrons (or γp for holes) is in the
range of 0 . . . 1 and shall compensate the error for low V ′gs

caused by the Gaussian approximation from (5). The tunneling
probability T (x = 0) must be 1, because x = 0 is exactly the
top of the barrier where the tunneling thickness is zero. The
tunneling probability at x = xf , which is at the peak of the
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Fig. 5. Energy barriers for the electron TE current at the source-side Schottky
barrier. The blue line shows the device in the on-state. In this state, Φbar

is as high as the Schottky barrier height. The purple line shows the device
with negative gate bias. In this state Φbar equals the highest potential in the
channel.

Gaussian distribution (see Fig. 4), is calculated by a modified
version of the Wentzel-Kramers-Brillouin approximation for
triangular tunneling barrier shapes [4], that is given by

T (xf) = exp

(
−4

3
·
√

2qm∗ · (∆Φ(xf))
3/2

h̄ · |Ex(0)|

)
. (10)

h̄ is the reduced Planck’s constant and m∗ is either the
electron (mn · m0) or the hole (mp · m0) tunneling mass,
which are both used as fitting parameters in the compact
model. The parameter ∆Φ is the height of the barrier to be
tunneled through by charge carriers, which is either given as
the potential difference ∆Φ(xf) = ϕch(xf) − ϕch(0), in case
∆Φ(xf) is bigger than ΦB,n, or it is fixed to ΦB,n otherwise.

Finally, with the equations (7)-(10) the FE current density
JFE can be calculated. As it is demonstrated in [4], (5) can
be solved to

JFE ≈
qµtnNC

8kbϑ
· b
√
π√
a
· exp

(
c(Ef − E0) +

c2

4a

)
× [jerfc(E0)− jerfc(Emin)] ,

(11)

with

jerfc(E) = erfc

(−2a(E − Ef) + c

2
√
a

)
, (12)
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Fig. 6. Example band diagrams at different bias conditions to demonstrate
the total FE current calculation. (a) device state that allows an electron FE
current (JFE,s,n) at the source side and a hole FE current (JFE,d,p) at the
drain side. Both currents are contributing to the total FE current (JFE,tot).
(b) device state with a Schottky barrier for electrons on both sides. In the
compact model a virtual drain-side FE current (JFE,d,n) is calculated and
subtracted from the source-side injection current (JFE,s,n), to calculate the
total FE current (JFE,tot).
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Fig. 7. Transfer characteristics of an RFET device calculated from the compact model (red) compared to TCAD simulations (blue) and measurements (green)
from [7] in linear (left axis) and logarithmic (right axis) scale. (a) p-type operation mode (Vds = Vpg = −2 V). (b) n-type operation mode (Vds = Vpg = 2 V).

where erfc(x) is the complementary error function. This
equation for the FE current density is valid for electrons,
tunneling through Schottky barriers at the conduction band.
The FE current density for holes works similarly, but with
different parameters.

C. Thermionic Emission Current

The TE current consists of the charge carriers which over-
come the energy barriers, instead of tunneling through them.
In case of electrons it is calculated by

JTE = A∗ϑ2 · exp

(
−qΦbar

kbϑ

)
·
[
1− exp

(
−qVds

kbϑ

)]
, (13)

where A∗ is the effective Richardson constant and Φbar is the
calculated barrier height that charge carriers have to overcome
[4], [14]. The gate voltage in (13) is considered in terms of
the parameter Φbar, as demonstrated in Fig. 5. If a Schottky
barrier forms where the charge carriers can tunnel through,
the barrier height Φbar will be given by ΦB,n itself (see q ·
Φbar(Vgs > 0) in Fig. 5). In case of a reversed electric field at
the interface, it is given by the potential barrier in the channel
(see q·Φbar(Vgs < 0) in Fig. 5), calculated with the 2D closed-
form potential model from section III-A. For the TE current
of holes an equation similar to (13) is defined.

D. Total Current

The so far described current components (FE and TE
current) are both contributing to the total device current (Ids).
While the previous sections mainly focused on the FE and TE
current calculations at the source junction, those currents also
appear at the drain junction. In n-type operation mode there is
an electron current at the source side and a hole current at the
drain side of the device and vice versa for p-type operation
mode. While the TE current, given by (13), depends on the
drain-source voltage Vds, the FE current according to (5) is
independent of Vds. This means that even for low Vds high FE
currents would be possible, in case of high gate voltages Vgs.

In order to prevent this effect and bring a Vds dependency into
the expression for the FE current, a current balancing model
is included at the drain side. In case that the drain potential
is bigger than the potential in the middle of the channel (see
Fig. 6a), both FE current contributions are included regularly
into the total current. In case that the potential in the channel
of the device is bigger than the drain potential, a virtual FE
current is calculated which gets subtracted from the source
current (see Fig. 6b). So if Vds = 0 and a gate voltage was
applied, the source FE current and the virtual drain FE current
would be equally high and cancel out each other. For the total
FE current density of the device this results in

JFE,tot =

 JFE,s,n − JFE,d,n, Ex(x = lch) < 0
JFE,s,n, Ex(x = lch) = 0
JFE,s,n + JFE,d,p, Ex(x = lch) > 0

(14)

in the n-type operation mode and the on-state and similarly
for other operation modes. Ex(x = lch) is the electric field in
x-direction at the drain-channel junction.

The total TE current density is calculated with the TE
current contributions from electrons and holes, given by

JTE,tot = JTE,n + JTE,p. (15)

Considering both total current densities from (14) and (15) the
total drain current of the device is calculated by

Ids = Wch · tch(JFE,tot · teff,FE + JTE,tot · teff,TE), (16)

where Wch is the channel width and tch is the channel
thickness of the DG structure (see Fig. 1). The channel width
Wch is needed, because the used potential model from section
III-A works with a 2D planar structure. Therefore, instead
of calculating a nanowire structure, the model calculates the
currents inside the planar structure from Fig. 1, which gets
stretched in the third dimension by Wch. To consider the fact
that the FE current is the main on-current where the current
flow is mostly located at the channel-oxide interface and the
TE current flows mainly in the center of the device, two
effective thicknesses (teff,FE and teff,TE) are introduced in
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Fig. 8. Transfer characteristics calculated from the compact model (red) compared to TCAD simulations (blue). (a) p-type operation mode with Vpg = −2 V
and (b) n-type operation mode with Vpg = 2 V in linear scale. (c) and (d) results from (a) and (b) in logarithmic scale. (e) transfer characteristics for various
negative drain voltages and (f) transfer characteristics for various positive drain voltages, while the device is driven in SBFET mode, in logarithmic scale.
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Fig. 9. Output characteristics calculated from the compact model (red) compared to TCAD simulations (blue). (a) p-type operation mode for various CG
voltages with Vpg = −2 V. (b) n-type operation mode for various CG voltages with Vpg = 2 V.

(16), each in the range of 0 . . . 1. Equation (16) leads to the
total drain current which is valid for SBFET devices.

In order to make the model applicable to RFETs, that have
been configured as n-type or p-type, one of the two charge
carrier types get suppressed in the FE current calculation,
depending on the PG bias. In case of Vpg � 0 the FE current
density for holes JFE,p is set to 0 and in case of Vpg � 0 the
FE current density for electrons JFE,n is set to 0.

IV. MODEL RESULTS AND VERIFICATION

The model verification is done by TCAD simulations and
measurements. Therefore, the measurement of the device from
[7] is used. In order to obtain additional results, the TCAD
simulation from [9] is used to simulate the device with various
bias conditions. Table I shows the geometric and material
parameters and table II shows the fitting parameters that are
used for the compact model. While the real and the simulated
structures are gate-all-around nanowire structures, the compact
model calculates a double gate structure. Therefore, in the
model a channel width Wch is used which is in the same order
of magnitude than the nanowire’s diameter. The discrepancy
between those two structures is compensated by the model’s
fitting parameters.

TABLE I
DEVICE GEOMETRIES AND MATERIAL PARAMETERS OF THE DEVICE

UNDER INVESTIGATION IN FIG. 7-9

Parameter Value
Lch [nm] 220
Wch [nm] 12
tch [nm] 12
tox [nm] 8
teff,FE [-] 0.2
teff,TE [-] 0.8
εr,ox [-] 3.9
εr,ch [-] 11.7
Eg,ch [eV] 1.1696
ΦB,n [V] 0.5800
ΦB,p [V] 0.5896

TABLE II
FITTING PARAMETERS USED IN THE COMPACT MODEL OF THE DEVICE

UNDER INVESTIGATION IN FIG. 7-9

Parameter Value
Vfb [V] 0.0
α [-] 0.5
µtn [cm2 V−1 s−1] 59.78
µtp [cm2 V−1 s−1] 43.59
mn [-] 0.10
mp [-] 0.09
γn [-] 0.2
γp [-] 0.2

Figure 7 shows the device transfer characteristics with the
actual measurement, the corresponding TCAD fit and the
model fit, in linear and logarithmic scale. Figure 7a shows
the p-configured version with a program gate voltage of Vpg =
−2 V and a drain voltage of Vds = −2 V. Figure 7b shows the
n-configured version with a program gate voltage of Vpg = 2 V
and a drain voltage of Vds = 2 V. The model shows a good
agreement compared to the TCAD simulation results. There
are slight deviations in the p-type characteristics, because of
the unsteadiness in the measured curve. Figure 8 and 9 depict
various TCAD simulation scenarios compared to the model.
Figure 8a to 8d show the same transfer characteristics as Fig. 7,
but with additional drain voltages. Figure 8e and 8f show the
results of the SBFET calculation. In these two simulations the
PG was not fixed, but biased similarly to the CG (Vpg = Vcg),
which leads to a device behavior like an SBFET. Figure 9
shows one simulated output characteristics per operation mode
(with a fixed PG voltage). Although the model shows some
deviations in the curvature, which may be attributed to the
neglected effect of current control by the channel conductivity,
the overall behavior is well captured by the compact model.

V. CONCLUSION

In this paper a physics-based compact model that is applica-
ble uniformly on SBFETs and RFETs in a fixed configuration
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is derived and presented. The model, which is based on the
current injection at the Schottky barriers and applicable on
devices with a negligible channel resistance influence, can be
switched between SBFET-, p- or n-type operation mode easily.
Additionally, with a set of analytical closed-form equations
and a total number of eight fitting parameters, the model can
be implemented and used in circuit simulation tools for time-
efficient simulations of this technology. Finally, the function-
ality of the model has been demonstrated by comparisons
with measurements and TCAD simulations, which show good
agreement.
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