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Return volatility usually presents a degree of persistence, which, although still consistent with an
essential stationary process, cannot be adequately captured by standard autoregressive specifications. In
this study, we examine the transmission mechanism across petroleum volatilities accounting for this
stylized fact. To do so, we compute both time and frequency domain measures of connectedness based
on variance decompositions from a fractionally integrated VAR (FIVAR). Our main findings summarize:
(1) there is strong evidence of long-memory in petroleum volatilities, but no evidence of infinite vari-
ances; (2) an adequate quantification of spillovers must consider long-memory persistence explicitly; (3)
spillovers are relatively high, but considerably lower than predicted in the traditional short-memory
framework, especially at low frequencies. Thus, accounting for long-memory has asymmetric implica-
tions for different market participants.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Researchers have investigated the volatility of petroleum com-
modities, finding significant cross-market spillover effects [1e10].
However, existing studies implicitly restrict volatilities to have
short-memory, imposing shocks to vanish at a fast, exponential
rate. A fast degree of mean-reversion is at odds with the observed
persistence, as there is overwhelming evidence that petroleum
markets take much time to forget volatility shocks.

For example, Choi and Hammoudeh [11] find strong evidence of
long-memory in the volatilities of oil, natural gas, and gasoline
futures. Support for long-memory is consistently found in many
other petroleum volatility studies [12e21]. The solid evidence of
long-memory questions the accuracy of spillover assessment in
earlier studies, all confined to short memory in their econometric
specifications.

This paper investigates volatility spillovers across petroleum
markets, making two significant contributions to the literature.
First, we relax the questionable assumptions on the persistence of
petroleum volatilities in previous spillover studies by accounting
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for the long-memory possibility. To do so, we rely on the
connectedness methodology of Diebold and Yilmaz [22,23]
(henceforth DY), like many other spillover studies in the literature.
However, instead of computing the connectedness indices from a
vector autoregression (VAR), as typically in DY, we employ a frac-
tionally integrated VAR (FIVAR).

The objective is twofold. First, we do not assume the persistence
of petroleum volatilities but estimate it from the data. Second,
unlike the VAR, which imposes short-memory, the FIVAR accom-
modates short-and long-term memory. The proposed model gen-
erates a realistic pattern for the responses of volatilities to shocks,
imparting substantial persistence without imposing explosive
trends, which is consistent with the empirical evidence.

The second contribution extends the frequency-domain
approach proposed in Barunik and Krehlik [24] (BK, henceforth)
to long-memory specifications. This extension, never considered
before, allows us to compare connectedness measures based on
short- and long-memory specifications across frequency ranges.
Assessing connectedness by frequency ranges is essential for
studying volatility spillovers because agents have preferences over
different trading horizons, as stressed in recent financial literature
[24e27]. Consider, for instance, that spillovers were significant at
high frequencies but negligible at low frequencies. In such a situ-
ation, shocks transmitted across markets would have short-term
effects only, not much of an issue for an agent looking for long-
run investment but critical for a short-term trader.

Our findings can be summarized as follows:
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 The literature relying on DY to assess volatility spillovers is too long to be
reviewed here. Energy studies within this framework include, among many others,
Zhang and Wang [4]; Barunik et al. [6]; Apergis et al. [50], Magonkis and Tsukindis
[8], Zhang [91], Antonakakis et al. [37], Ji et al. [54]; Krehlik and Barunik [7], Chulia
et al. [55]; Batten et al. [51,57]; Li et al. [52]; or Lovcha and Perez-Laborda [48].

2 Fractional co-integrated models, like the ones considered in Johansen [85] or
Johansen and Nielsen [86]; impose equal coefficients of fractional integration for all
variables and do not nest the FIVAR specification.
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1. Consistent with univariate studies, we find strong evidence of
long-memory in the weekly volatilities of petroleum futures,
with short-memory decisively rejected by the data. The esti-
mated long-memory orders lie within the stationary region.

2. Accounting for long-memory is essential to quantify spillovers.
The traditional (short memory) VAR largely understates the
contribution of own shocks to the variances, magnifying spill-
over effects, especially at low frequencies. Thus, although
contagion risk is relatively high, it is significantly smaller than
the traditional VAR stipulates. This result indicates that
although hedge holdings (a long position) in one market with a
short sell in another is possible, the hedge is considerably more
costly. This finding is particularly relevant for long-term traders,
as most of the discrepancies between the short- and long-
memory specifications are concentrated within medium and
low frequencies.

3. These findings are robust across rolling windows, accounting for
both (possible) spillover variation and structural changes.

Many other energy studies rely on the DY framework to assess
spillovers. However, none of these works have accounted for long-
memory persistence. Minimal attention has been paid to how
relaxing persistence assumptions impacts spillover indices, even
outside the energy literature. This is a priori surprising, given the
popularity of both the DY methodology and long-memory specifi-
cations in finance. GARCH-type studies have already stressed the
importance of long-memory in analyzing co-movement (e.g.,
Refs. [28e30]).

To our knowledge, only Cipollini et al. [31]; studying trans-
mission across country risk premia, have attempted to address this
issue. Their results suggest that the long-memory specifications
may lead to substantial spillover assessment differences when
persistence is strong. Our results also indicate that the degree of
persistence must be explicitly considered while computing
connectedness indices. However, connectedness measures in the
frequency domain, which Cipollini et al. [31] do not consider, show
that the differences between short- and long-memory specifica-
tions concentrate at specific frequencies, impacting asymmetrically
on different agents.

We organize the remainder of the paper as follows. Section 2
makes a concise review of the literature, placing this work in the
context of existing studies. Section 3 discusses the econometric
framework. Section 4 contains the empirical analysis and discusses
the implications of our findings, while Section 5 offers some
concluding remarks. Additional results and robustness tests are
furnished in a separate Supplement.

2. Literature review

Literature assessing volatility spillovers in energy markets fo-
cuses on the linkages between oil and the financial market (e.g.,
Refs. [32e44]. However, the volatility linkages across energy com-
modities have recently become an active field of research. For
critical markets, such as petroleum, this knowledge also concerns
policymakers, as petroleum futures play a fundamental role in
transferring the risk from energy producers and consumers to
speculators. Consequently, regulators must rigorously monitor
these volatilities to control excessive price variation, which may
otherwise jeopardize supply security.

Given the importance of oil in the economy, most of the existing
studies examining spillovers across energy markets concentrate on
petroleum (e.g., Refs. [1e10]. The general conclusion is that there
are strong volatility linkages across different petroleum commod-
ities and oil markets at various locations.

Researchers have examined volatility spillovers in other energy
2

markets as well, also finding significant linkages. For example,
Ewing et al. [45]; Karali and Ramirez [5]; Lin and Li [46]; Perifanis
and Dagoumas [47], or Lovcha and Perez-Laborda [48] study the
nexus between oil and gas volatilities. Volatility linkages across
electricity markets are considered, e.g., in Le Pen and Sevi [49] or
Apergis et al. [50]. Batten et al. [51] and Li et al. [52] have recently
analyzed the volatility connections in coal markets. Also, Liu and
Chen [29]; Reboredo [53]; Ji et al. [54]; Chang et al. [38]; Chulia et al.
[55]; Lin and Chen [56]; or Wang and Guo [57]; study volatility
spillovers between the carbon and other energy markets. The ex-
istence of volatility linkages across energy markets has also been
stressed in more general studies analyzing volatility spillovers
across a broad set of commodities (e.g., Refs. [58,59].

From the methodological perspective, the literature on volatility
spillovers traditionally relied on GARCH-type specifications, such as
Haigh and Holt [2]. However, the framework of DY is becoming the
standard nowadays, as it is particularly suited to analyze systems of
interrelated variables.1 The approach of BK is gaining favor fast
among researchers, as one obtains measures of connectedness by
frequency ranges in addition to standard (time-domain) DY indices
(e.g., Ref. [7,40,41,44,48,51,60,61]).

The most closely related works are Barunik et al. [6] and Krehlik
and Barunik [7]; which rely on DY to assess volatility spillovers
across petroleum commodities. Specifically, Barunik et al. [6]
employ realized semi-variances combined with DY indices, finding
strong spillover effects. Krehlik and Barunik [7] assess the linkages
across frequency ranges relying on the frequency-domain approach
of BK. We complement these two interesting studies by focusing on
another stylized fact of petroleum volatilities, long-range
dependence.

3. Econometric framework

3.1. The FIVAR model and its estimation procedure

The FIVAR model is a linear model for vector time series, which
is the multivariate extension of the well-known autoregressive
ARFIMA [62,63]. As in Abbritti et al. [64] or Lovcha and Perez-
Laborda [65]; we employ an unrestricted FIVAR specification that
allows volatilities to have different integration orders, consistent
with the results in univariate studies (e.g., Ref. [11].2

Let Yt ¼ ½y1t ;…; yNt �0 contain all the volatility series. An unre-
stricted FIVAR model for Yt can be written as:

DðLÞYt ¼ut

ut ¼ FðLÞut�1 þ xt ; (1)

where DðLÞ is a diagonal matrix with elements given by ð1� LÞdj ,
and dj2½0;1� is the order of fractional integration IðdjÞ of the n-th
series of the vector Yt. Finally, FðLÞ is a polynomial matrix of order p
of autoregressive coefficients governing the short-run dynamics
and xt is a vector of zero-mean errors with

P
variance-covariance

matrix.
The fundamental properties of the series yj in Yt can be

described in terms of its long-memory parameter dj. The larger this
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parameter, the more persistent the series is. If dj ¼ 0 or dj ¼ 1 ; yj
exhibits standard Ið0Þ or Ið1Þ properties. If 0<dj <1, the series has
long-memory, with the effect of a shock fading away considerably
slower than in the Ið0Þ case. In the particular case that 0< dj < 0:5,
yj is still covariance stationary. However, if 0:5 � dj <1, the series is
not stationary anymore, although still mean-reverting.

To estimate the model, we maximize the approximate
frequency-domain likelihood (‘Whittle’), as proposed by Hosoya
[66]. Following this methodology, the orders of integration of the
volatility series are not assumed from the outset but estimated
jointly with the other parameters, representing an efficiency gain
over two-step procedures, such as in Lobato [67].3 Lovcha and
Perez-Laborda [68] and Abbriti et al. [64] contain details on the
estimation procedure.
3.2. Connectedness indices from the FIVAR model

3.2.1. Time-domain connectedness
DY indices are based on forecast error decomposition of autor-

egressive specifications and measure the contribution that a shock
to one entity in the system has on the future uncertainty of the
others. These indices can be computed from the estimated FIVAR
accounting for the diagonal matrix containing fractional differ-
ences. Like in Diebold and Yilmaz [22,23]; we rely on generalized
impulse-response [69] to deal with possible correlated innovations.

Let the M.A. (∞) representation of the FIVAR model in (1) be:

Yt ¼DðLÞ�1½I � FðLÞ��1xt ¼LðLÞxt ; (2)

The matrix elements LðLÞ are infinite polynomials whose co-
efficients are the impulse responses (IRF) of the variables to in-
novations. IRFs in the FIVAR are computed by expanding the
diagonal elements of DðLÞ with the gamma function Gð ,Þ:

ð1� LÞdj ¼
X∞
k¼0

Dj;kL
k; (3)

where Dj;k ¼ Gðk � djÞ =Gðk þ 1ÞGð� djÞ.
From Eq. (3), we can calculate the percentage contribution of

innovations to yk on the h-step-ahead forecast error variance of the
variable yj:

sHjk ¼ s�1
kk

XH�1

h¼0

�
ej
0LhSek

�2 ,XH�1

h¼0

�
ej
0LhSLh

0ej
�2
: (4)

The contributions are normalized by the row-sums yielding a

matrix of normalized inputs ~sHjk ¼ sHjk=
PN

k¼1s
H
jk known as the

connectedness table. Each entry of this table is the pairwise direc-
tional connectedness measuring the uncertainty transferred from
the yk to yj

4:

CH
j)k≡~s

H
jk; (5)

The directional connectedness from others to yj is defined from
the off-diagonal row sum as:
3 Other method to quantify the long-memory dynamics of time series that was
extensively applied in empirical finance is fractal analysis (see e.g., Refs. [87e89].

4 In general, CH
i)jsCH

j)i and,
PN

j¼1d
H
ij ¼ 1 and

PN
i; j¼1d

H
ij ¼ N by construction.

3

CH
j)�≡

XN
k¼1;ksj

CH
j)k; (6)

and measures the total uncertainty received by the variable yj from
the other variables in the system. Likewise, the off-diagonal column
sum is the directional connectedness to:

CH
�)j≡

XN
k¼1;ksj

CH
k)j; (7)

measuring the uncertainty transmitted from yj to the others.
Finally, the total connectedness index:

CH ¼ 1
N

XN
k;j;ksj

CH
jk; (8)

provides a quantitative measure of the uncertainty transmitted (or
emitted) on average in the system. Thus, if CH ¼ 0 there are no
spillover effects. Conversely, if CH ¼ 1, the system is perfectly
connected and cross-market shocks explain all the system's
uncertainty.

3.2.2. Connectedness in the frequency domain
BK proposed connectedness measures in the frequency domain

based on the spectral decomposition of the VAR variance. This
decomposition measures the contribution that shocks in one entity
have on the fluctuations of another entity of the system at a given
frequency or range of frequencies.

This paper extends the BK methodology to the long-memory
framework computing the connectedness indices from the spec-
tral decomposition of the FIVAR variance. This extension allows us
to compare the FIVAR and VAR specifications over time and across
frequency ranges.

Let i be the imaginary unit. The generalized causation spectrum
of the FIVAR at the frequency u i:

fj;kðuÞ¼

�
s2kk

��1���nD�eiu��1�
I � F

�
eiu

���1
U
o
j;k

���2n
D
�
eiu

��1�I � F
�
eiu

���1
U
�
I � F 0

�
e�iu

���1D0�e�iu
��1

o
j;j

;

(9)

where DðeiuÞ ¼ Iþ D1eiu þ D2e2iu þ D3e3iu þ …;
FðeiuÞ ¼ Feiu þ Fe2iu þ…þ Fepiu and D0ðeiuÞ, F 0ðe�iuÞ are their
complex-conjugate transpose.

As in BK, we aggregate the causation spectrum over different
frequency bands. Consider a band of frequencies b ¼ ðu1;u2Þ : ui2
ð� p; pÞ; u1 <u2, and let the weighting function represents the
power of variable j at the frequency u:

PjðuÞ¼
�
L
�
eiu

�
UL0�e�iu

��
j;j

1
2p

ðp
�p

h
L
�
eil

�
UL0

�
e�il

�i
j;j
dl

The following expression gives the share of a shock to yk in the
fluctuations of yj at the band b:

Qb
j;k ¼

1
2p

ðu2

u1

PjðuÞfj;kðuÞdu; (10)
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where summations for Fourier frequencies uj ¼ 2pj=T , j ¼ 1;…T=2
belonging to the band can approximate integrals in the previous
two equations [70].

The shares Qb
j;k in (10) are normalized as ~Q

b
j;k ¼ Qb

j;k=
P

kQ
∞
j;k,

where Q∞
j;k denotes the contribution over all frequencies. Within

connectedness at the band b is defined from these normalized
contributions as:

WCb ≡1�
Tr
n
~Q
bo

P ~Q
b

: (11)

Within connectedness quantifies the contribution of shock
transmission on the system's fluctuations at the frequency band.
However, within connectedness does not account for the relative
importance of these fluctuations on total fluctuations.

As in BK, we account for the relative importance of the band
defining the frequency connectedness:

FCb≡WCb
P ~Q

b

P ~Q
∞; (12)

where within connectedness is weighted by the relative importance
of the band. The authors show that frequency connectedness de-
composes total connectedness in components at different ranges.
Specifically, let H/∞, and consider a set of frequency bands bs2 B
that form a partition of the space ð� p;pÞ. Then:

C¼
X
bs2B

FCbs ; (13)

where C is the total connectedness index defined in Eq. (8). Notice
that the horizonH plays no role in the previous formula because the
equality holds for H/∞. However, variance decompositions usu-
ally converge fast, and Eq. (13) generally delivers good approxi-
mations for finite horizons as well, provided those are not too short.

A caveat is necessary for the context of long-memory models, as
the decomposition in (13) requires the total variance to be finite. As
noted earlier, this condition is achieved in the FIVAR if the esti-
mated orders of integration lie inside the stationary region 0 � dj <
0:5. As shown in the empirical section (Section 4), stationarity holds
for the three petroleum volatilities. Nevertheless, the decomposi-
tion approximates total connectedness indices computed at finite
horizons even if this condition is not met.
4. Empirical analysis

4.1. Data description and model specification

We study volatility spillovers across three petroleum futures
contracts traded at the NYMEX: WTI crude oil, reformulated RBOB
gasoline, and heating oil. We use nearby futures, as these contracts
tend to be more liquid.5

As in Haigh and Holt [2]; we base our analysis on weekly vola-
tilities. It is to be expected that short- and long-memory models
differ at relative medium and long horizons. The use of weekly
volatility inside themodels helps to capture long-term interactions,
attenuating some high-frequency noises, such as the bid-ask effect
5 We use the “first day of month” as our roll date rule. This method attenuates
liquidity issues of rolling on the last trading date. However, our results are robust to
rolling over when the second month's future volume exceeds the first future month
volume.

4

[71]. However, our main results are robust to the use of daily fre-
quency (see Supplement).

As volatility is latent, it must be estimated. To do so, we employ a
Garman and Klass [72] range-basedweekly volatility based on high,
low, opening, and closing prices fromMonday open to Friday close,
as in Diebold and Yilmaz [73]:

~s2t ¼ 0:511ðHt � LtÞ2 � 0:019½ðCt � OtÞðHt þ Lt � 2OtÞ
�2ðHt � OtÞðLt � OtÞ� � 0:383ðCt � OtÞ2;

(14)

where Ht and Lt are the natural logarithms of Monday to Friday
high and low prices, Ot is the Monday open, and Ct is the Friday
close (also in natural logs). Our underlying daily quotes have been
extracted from Thomson-Reuters Eikon through Datastream and
run from April 2006 to March 2020, resulting in 732 weekly vola-
tility observations.6

Although the ideal estimator is realized volatility computed
from high-frequency intra-day data (e.g., [74]), Alizadeh et al. [75]
and Brandt and Diebold [76] show that range-based volatility is
nearly as efficient and robust to microstructure noise. As a practical
advantage, range-based volatility is more easily obtained, as it only
requires four readily available inputs per day. Also, range-based is
the standard volatility employed in DY studies (including the own
authors of the framework), which facilitates comparison with
existent studies.

Realized volatilities are right-skewed but approximately
Gaussian after taking logs (see, e.g., Refs. [28,75]. Following a long
tradition before us, we consider logarithmically transformed vola-
tilities as time series to estimate spillovers (e.g., Refs. [22,23,77,78].
Fig. 1 provides plots of the log-realized volatility series used for
estimation. The descriptive statistics and the results of the unit root
test for the full sample can be found in the separate Supplement.

We assess volatility spillovers estimating a FIVAR model of the
(log)volatility series over a rolling window. To help in the inter-
pretation, we also estimate a traditional VAR. As Diebold and Yil-
maz [22] argued, the dynamic assessment is important because it is
unlikely that any fixed-parameter model would apply over the
entire sample. Nevertheless, the Supplement contains static
connectedness results.

Concerning the model specifications, we select one lag for the
autoregressive part according to the Bayesian Information Criteria
(BIC). For the VAR, we choose two lags according to the same
criteria, giving this model more flexibility to capture persistence
than just imposing the same lag structure of the FIVAR. However,
the results are robust to using the same number of lags in the two
models.

We evaluate connectedness in the frequency domain at high,
medium, and low frequencies. The high-frequency band includes
frequencies with a period smaller than one month. The medium-
frequency band contains the frequencies between one- and
three-month period, and the low-frequency band the frequencies
with a period longer than three months.7 As in Barunik and Krehlik
[24]; total connectedness is computed aggregating frequency
connectedness over the three bands. However, we also calculate DY
indices using the finite-horizon formulas finding that the aggre-
6 The RBOB gasoline-type contract started in October 2005, but the volume of
trade was very low before April 2006 because the past gasoline-type contract
(based on Regular Reformulated Gasoline) stop trading in December 2006.

7 As standard practice, the zero frequency is excluded as the FIVAR spectrum is
infinite at this frequency.



Fig. 1. Log realized volatilities.
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gation by bands approximates well the indices computed at finite
horizons.8

We estimate the models over a rolling window to obtain dy-
namic indices of connectedness. The objective here is twofold. The
rolling estimations allow us to study the extent of spillover varia-
tion, assessing whether differences between the FIVAR and VAR
specifications remain across subsamples. Rolling estimates also
make our results robust to the possible existence of breaks in the
data. It has been argued that long-memory may sometimes appear
as a spurious phenomenon caused by a break [79]. However, the
opposite effect is also documented [80].9 Univariate studies suggest
that long-memory in petroleum volatilities is robust to breaks
[11,20]. The rolling windows analysis makes the importance of this
possible critique irrelevant in practice, as it accounts for possible
breaks (as well as smoother parameter drifting).

The length of the window corresponds to T ¼ 260 observations.
We consider this length a reasonable compromise between effi-
ciency in estimating the long-memory parameters and the flexi-
bility to track time variation. Nevertheless, we also repeat the
analysis with a broader window as a robustness check (see Sup-
plement), with no significant difference, except the well-known
higher smoothness of dynamic estimates. The main results of the
paper remain unchanged: the traditional VAR vastly overstates
connectedness, especially at high frequencies.
4.2. Empirical results

In this section, we present selected results from our FIVAR and
VAR estimations over the rolling windows. We discuss the impli-
cations of these results in the next section (Section 4.3).

Fig. 2 plots the estimated orders of fractional integration across
the different windows together with two standard error bands. As
8 In particular, the typical H ¼ 10 forecast horizon yields virtually identical
connectedness measures. See Supplement.

9 Although there are techniques aimed to distinguish between the two types of
processes, they have not yet been extended to the multivariate case. Notice that a
break in a univariate process may not be present in a multivariate. Besides, as noted
in Baillie and Morana [92] both long-memory and a break can be present in the
data. Our rolling window estimations account for this possibility.

5

the figure shows, we find strong evidence of long-memory in our
multivariate FIVAR specification. The fractional orders are high and
massively significant, with the Ið0Þ specification decisively rejected
by the data in all rolling windows. However, the estimated co-
efficients lie inside the stationary region (0 � dn <0:5) in all rolling
sample estimations, with the nonstationary null generally rejected
at standard confidence levels. Overall, our estimation results show
that petroleum volatilities are highly persistent but still stationary,
mean-reverting, with volatility shocks vanishing slowly in the long
run.

As for the evolution of the fractional orders over time, the three-
parameter estimates are relatively stable. There is, however, a slight
decrease in persistence at the end of 2013. This decline coincides in
time with the collapse of petroleum prices after the shale-oil glut.10

However, the estimated orders of integration are large and signif-
icant even during this episode. Overall, our results show a strong
presence of long-memory in petroleum volatilities, robust to
possible breaks.

Fig. 3 depicts the total connectedness index. Barunik et al. [6]
noted that petroleum market volatilities are expected to be linked
because gasoline and heating oil are sub-products of crude oil. As
Fig. 3 shows, the total connectedness index in the FIVAR is relatively
large across rolling estimations. On average, shocks transmitted
across markets explain around two-fifths of the total volatility
variances. Connectedness does present some variation over time.
The index increased in the post-financial crisis period, peaking at
52% in the late 2013s. The index decreased steadily from this date,
reaching a minimum of 40% by the end of 2017, and recovered after
that. Petroleum volatilities have recently become strongly con-
nected, coinciding with the 2020 Russia-Saudi Arabia oil price war,
but more data is required to confirm this result.

Fig. 3 also shows that neglecting long-memory persistence leads
to underrating the importance of own shocks in the system vari-
ance, magnifying spillovers. The total connectedness index in the
traditional VAR is higher than in the FIVAR model in most of the
rolling estimations. Interestingly, the index also presents a sudden
10 China's economic slowdown and some conflicts in the Middle East have also
been signalled as factors explaining the 2014 price collapse [90].



Fig. 2. Estimated long-memory parameters across subsamples. The dashed area is the two-standard error confidence band.

Fig. 3. TOTAL connectedness index: FIVAR and VAR. TOTAL connectedness quantifies the contribution of transmission in the overall system variance.
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drop at the end of 2013 but recovers relatively fast, while in the
FIVAR model keeps falling for a rather long period. As a result, the
most significant discrepancies between the two specifications lie in
the second half of the rolling estimations.

Differences between the FIVAR and VAR can also be appreciated
in Fig. 4, which presents time-varying indices of directional
connectedness. We collect FROM, TO, and NET connectedness indices
computed from the FIVAR model on the left-hand side panels of
Fig. 4. The corresponding indexes calculated in the VAR model are
depicted on the right.

Directional indices from the FIVAR model show that gasoline
and heating oil markets are not mere recipients of spillovers that
originate in the oil market. Although gasoline is generally the net
recipient in the system, we do not observe significant disparities in
the contribution of the different markets to total connectedness. As
6

a result, the net connectedness across subsamples is close to zero for
the three volatilities. Notice that the current episode of high-system
connectedness is originated in the three markets simultaneously.

Comparing the left and right panels of Fig. 4, we can observe
that the VAR magnifies transmission and leads to a misunder-
standing of the relative importance of the different markets. In the
VAR, shocks that originated in the oil market contribute signifi-
cantly more than those in the other two markets, both in total and
net terms. Notice that the discrepancies in net connectedness are
huge in the second half of the rolling estimations, consistent with
Fig. 3.

As a final step, we study the volatility linkages in the frequency
domain. The results are depicted in Fig. 5. The first row of the figure
presents within connectedness at the high, medium, and low-
frequency bands. We report in the second row the decomposition



Fig. 4. Directional TO, FROM, and NET connectedness: FIVAR and VAR. Directional TO (FROM) measures the percentage contribution of shocks transmitted to (from) a given market.
NET connectedness is the difference between the FROM and TO indices.

Fig. 5. Connectedness in the frequency domain: FIVAR and VAR. WITHIN connectedness quantifies the relative contribution of transmission for the fluctuations of petroleum
volatilities within the band. FREQUENCY connectedness measures the contribution of transmission at the given range in the total variance and adds up the TOTAL connectedness
index when aggregated over the bands.
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of total connectedness into the corresponding three frequency
connectedness components.11

Within connectedness measures the relative importance of
spillovers in petroleum volatilities' fluctuations at high, medium,
and low frequencies. As shown in Fig. 5 below, volatilities are
11 The estimated integration orders remain in the stationary region in all rolling
samples; therefore, variances are finite.
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similarly connected across bands in the FIVAR model. On average,
spillovers explain around 40% of the fluctuations at high fre-
quencies. Connectedness is slightly higher at medium and low
frequencies, but the difference is not large. Moreover, connected-
ness evolves similarly within the three bands, presenting the same
pattern as the total connectedness index in Fig. 3.

Comparing the FIVAR and the VAR results, we see that, although
the degree of connectedness within high and medium frequency
ranges is similar in the two specifications, the VAR model vastly



12 Under relatively weak assumptions, Krehlik and Barunik [7] show that volatility
shocks across petroleum markets may have effects of different signs, only if
increasing costs of one commodity reduce the price of the other, which is hard to
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overstates connectedness within low frequencies.
The difference between the two specifications becomes even

more critical when considering the bands' relative importance on
the aggregate fluctuations. This result is observed in the second row
of Fig. 5. The grey shadowed area is the total connectedness index,
which, as noted earlier, is higher in the VAR. The figure also plots
frequency connectedness indices at high-, medium-, and low-
frequency bands. Notice that frequency connectedness split up to-
tal connectedness into three components. Namely, a short-, a me-
dium-, and a long-term component, each quantifying the part of
the total variance in the system explained by shock transmission at
high, medium, and low frequencies, correspondingly.

In the FIVAR model, connectedness is mainly created at low
frequencies, consistent with Krehlik and Barunik [7]. The short-
term and medium-term components of total connectedness ac-
count, on average, around ten percent of the fluctuations each. The
contribution of the long-term component is notoriously larger
(about 20%). Thus, we find that, although shocks transmitted across
markets explain similar percentages of the high, medium, and low-
frequency fluctuations, transmission at low frequencies is more
important for the total fluctuations. As the right-hand side plot
shows, this result qualitatively stands for the VAR, but with an
enormous discrepancy in the magnitudes. Notice that the long-
term component in the VAR explains around 40% of the total sys-
tem variance, which is twice as large as in the FIVAR.

4.3. Discussion and implications of the empirical findings

The volatilities of petroleum commodities are critical inputs for
option pricing, portfolio construction, and risk management oper-
ation. Consequently, the results of the previous section have
important implications for both investors and policymakers. For
example, Fig. 2 shows that petroleum volatilities are best described
by a mean-reverting fractionally integrated process. This result
implies that petroleum volatilities take substantial time to forget
shocks, no matter the market they originated. Visual illustration of
the long memory in volatility series can be found even in Fig. 1:
series diverge from their means for long periods of time that means
that the phases of strong volatility have a long duration. Thus, the
long memory must be explicitly considered for adequate tracking
and forecasting of volatility that is important for all market par-
ticipants. From a practical point of view, long memory in volatilities
indicates that trends in prices, or periods of the information
transmission, last considerable periods of time, in the same way as
relatively calm periods. The strong evidence of long-memory also
matters from an investor's perspective since it has significant im-
plications for asset pricing as volatility enters the risk premium
[81e83].

Given the enormous importance of petroleum for the economy,
strong evidence of long memory is crucial for policymakers. Since
volatility is associated with risk, instability, information trans-
mission, and its absorption by the market, its efficient forecast may
serve as a warning system for the oncoming crisis and its posterior
propagation to the economy. For example, if a new observation on
volatility is much higher (outside of the accepted confidence bands)
than its forecast made with a long memory model, it can be
considered as a signal for strong changes in the market, possible
crises of the beginning of a boom. As well, volatility forecasts can be
used to track the current economic situation and the way the new
information, such as announcements about the introduction of new
policies, is processed by the public.

If the volatilities are restricted to be I(0), the forecasts derived
from the misspecified model are going to be erroneous since they
implicitly restrict that past is forgotten fast and do not influence the
8

future estimates. Thus, the conclusions on the future behavior of
volatilities are going to be misleading.

Concerning connectedness indices, we find that volatilities are
highly connected, as shown in Fig. 3. The degree of connectedness
was stable across sub-samples (slightly over 40%), except for a
slight decline after the oil crash of 2014. Therefore, a large part of
the volatility fluctuations of petroleum commodities is due to
shocks originating in another petroleum market.

Although often disregarded, high volatility connectedness does
not directly imply systemic risk. The reason is that shocks may have
an opposite sign in the emitter and recipient markets, making them
correlate negatively. However, as Krehlnik and Barunik [7] argued,
shocks are expected to induce responses of the same sign in all
petroleum commodities.12

Following this interpretation, our estimates indicate that the
risk of contagion is relatively high. Also, directional indices from the
proposed FIVAR indicate that all markets are equally important in
transmitting volatility. Thus, the gasoline and heating-oil markets
should not be and should not be overlooked by stakeholders in the
oil market. Overall, these findings are consistent with the view that
gasoline and heating-oil commodities should be an integral part of
a diversified portfolio of oil assets, increasing the risk-adjusted
performance of the hedged portfolio. As connectedness between
petroleum volatilities is high and shocks are expected to have the
same sign in all markets, an investor may hedge holdings (a long
position) in one market with a short sell in any of the other two
markets.

However, our results also indicate that petroleumvolatilities are
significantly less connected than estimated in the traditional VAR.
Short-memory specifications, such as the VAR, understate the
importance of own-shocks, magnifying spillovers. Disregarding the
persistence of petroleum volatilities may lead to misunderstanding
their reaction to shocks transmitted across markets and, therefore,
inaccurate risk management. In practice, the result suggests that
more gasoline or heating-oil assets are required in short positions
to reduce investors' risk with crude oil long position (or vice versa)
and, thus, higher hedging costs. Consequently, the hedge is less
effective than the traditional VAR model stipulates. This result is
particularly relevant for the market participants acting in the long
run, as the most considerable discrepancies between the FIVAR and
VAR specifications are found in the low-frequency range.

The most important long-term participants are governments,
different types of regulatory organisms, and big financial in-
stitutions. In either case, the precise estimate of the spillovers be-
tween markets may strongly influence the participants' decisions.
Thus, for example, policymakers may want to apply fuel-prices
stabilization mechanisms to smooth price variations. While there
are different ways to implement such policies, they all have high
fiscal costs during periods of sustained increases in international
petroleum prices. Thus, a reliable forecast of the future price and
knowledge on how these markets interrelate may alleviate the
fiscal burden of such policies. Also, as Marchese et al. [21] point out,
high volatility transmission between crude oil and refined products
markets is essential for agents trading in crack spreads, i.e., refiners
or oil trading companies, as they are exposed to oil and other
refined product shocks. According to our results, it is therefore
crucial for these companies to account for the actual persistence of
petroleum volatilities, as the large discrepancy between VAR and
FIVAR connectedness matters for their hedging strategies,
sustain.
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especially as they care about the long-term.
Finally, it is to be observed that omitting persistence also leads

to a misjudging of the relative contribution of different markets.
The FIVAR results indicate that gasoline and heating-oil cannot be
understood as mere recipients of volatility shocks arising in the oil
market and must be closely monitored in combination with oil.

5. Conclusion

This paper has assessed weekly volatility spillovers across pe-
troleum futures in a FIVAR model, thus relaxing the questionable
assumptions on volatility persistence in previous studies. To do so,
we have relied on Diebold and Yilmaz [22,23] framework, the
standard method to assess volatility spillovers. However, unlike
previous studies, we have computed connectedness measures
based on a FIVAR to account for long-memory volatility persistence.
We have also evaluated connectedness by frequency ranges by
extending the Barunik and Krehlik [24] methodology to long-
memory multivariate specifications.

We have found that petroleumvolatilities are well characterized
by a combination of short- and long-memory, with the long-
memory component imparting substantial persistence to the
volatility series. Connected measures have shown that while pe-
troleum volatilities are significantly connected, they are much less
connected than indicated by the standard VAR, particularly at low
frequencies.

Overall, our results have shown that the proper modeling of
persistence is vital for risk management. As long-memory is a
stylized characteristic of many financial assets, additional studies
considering this issue are required. It would be an interesting
extension to investigate volatility spillovers between the oil and the
financial market within the DY framework, as in Xu et al. [43]; but
explicitly considering long-memory. Structural identification of
demand and supply in the oil market, as by Kilian and Park [84];
might be included in the analysis, which would help disentangle
whether spillover effects from oil come from supply or demand.We
consider this an exciting avenue for future research.
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