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Abstract

The aim of this paper is to obtain closed formulas for the perfect domination num-

ber, the Roman domination number and the perfect Roman domination number of lexi-

cographic product graphs. We show that these formulas can be obtained relatively easily

for the case of the first two parameters. The picture is quite different when it concerns the

perfect Roman domination number. In this case, we obtain general bounds and then we

give sufficient and/or necessary conditions for the bounds to be achieved. We also discuss

the case of perfect Roman graphs and we characterize the lexicographic product graphs

where the perfect Roman domination number equals the Roman domination number.

Keywords: Roman domination; perfect domination; perfect Roman domination; lexicographic

product

1 Introduction

Given a graph G, a set S ⊆ V (G) of vertices is a dominating set if every vertex in V (G) \ S

is adjacent to at least one vertex in S. Let D(G) be the set of dominating sets of G. The

domination number of G is defined to be,

γ(G) = min{|S| : S ∈D(G)}.

Now, S ⊆ V (G) is a perfect dominating set of G if every vertex in V (G) \ S is adjacent to

exactly one vertex in S. Let Dp(G) be the set of perfect dominating sets of G. The perfect

domination number of G is defined to be,

γ p(G) = min{|S| : S ∈D
p(G)}.

Notice that Dp(G)⊆D(G), which implies that γ(G)≤ γ p(G).
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The domination number has been extensively studied. For instance, we cite the following

books, [17, 18]. The theory of perfect domination was introduced by Livingston and Stout in

[26] and has been studied by several authors, including [9, 11, 13, 15, 22, 24].

Cockayne, et al. [10] defined a Roman dominating function, abbreviated RDF, on a graph

G to be a function f : V (G)−→{0,1,2} satisfying the condition that every vertex u for which

f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of f is defined to

be

ω( f ) = ∑
v∈V (G)

f (v).

For X ⊆V (G) we define the weight of X as f (X) = ∑v∈X f (v). The Roman domination num-

ber, denoted by γR(G), is the minimum weight among all Roman dominating functions on G,

i.e.,

γR(G) = min{ω( f ) : f is an RDF on G}.

An RDF of weight γR(G) is called a γR(G)-function. Obviously, γR(G) ≤ 2γ(G) for every

graph G. A Roman graph is a graph G with γR(G) = 2γ(G).
Recently, a perfect version of Roman domination was introduced by Henning, Kloster-

meyer and MacGillivray [20]. They defined a perfect Roman dominating function, abbreviated

PRDF, as an RDF f satisfying the condition that every vertex u for which f (u) = 0 is adjacent

to exactly one vertex v for which f (v) = 2. The perfect Roman domination number, denoted

by γ p
R(G), is the minimum weight among all perfect Roman dominating functions on G, i.e.,

γ p
R(G) = min{ω( f ) : f is a PRDF on G}.

For results on perfect Roman domination in graphs we cite [3, 12, 19, 33].

A PRDF of weight γ p
R(G) is called a γ p

R(G)-function. Observe that γR(G) ≤ γ p
R(G) ≤

2γ p(G) for every graph G. Those graphs attaining the equality γ
p
R(G) = 2γ p(G) are called

perfect Roman graphs. All perfect Roman trees were characterized in [29].

Figure 1 shows three copies of a graph G with γR(G) = γ
p
R(G) = 4. Notice that the la-

bellings correspond to the positive weights of all γR(G)-functions. In particular, the labellings

on the center and on the right correspond to the positive weights of γ p
R(G)-functions.
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Figure 1: The labellings associated to the positive weights of all γR(G)-functions on the same

graph. The labellings on the center and on the right correspond to the case of γ
p
R(G)-functions.

Figure 2 shows a Roman graph G, namely, γR(G)= 6= 2γ(G). In this case, γ p(G)= 6 and

γ
p
R(G) = 9. The set of labelled vertices form a γ p(G)-set and the labels describe the positive

weights of a γ p
R(G)-function.

The aim of this paper is to obtain closed formulas for the perfect domination number, the

Roman domination number and the perfect Roman domination number of lexicographic prod-

uct graphs. The paper is organised as follows. In Section 2 we declare the general notation,
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Figure 2: The set of labelled vertices form a γ p(G)-set and the labels correspond to the positive

weights of a γ p
R(G)-function.

terminology and basic tools needed to develop the remaining sections. In Section 3 we obtain

closed formulas for the perfect domination number and the Roman domination number of lex-

icographic product graphs. Finally, Section 4 is devoted to provide tight bounds and closed

formulas for the perfect Roman domination number of lexicographic product graphs.

2 Notation, terminology and basic tools

Throughout the paper, we will use the notation Kk and Nk for a complete graph and an empty

graph of order k, respectively. We use the notation u ∼ v if u and v are adjacent vertices,

and G ∼= H if G and H are isomorphic graphs. For a vertex v of a graph G, N(v) will denote

the set of neighbours or open neighbourhood of v, i.e., N(v) = {u ∈ V (G) : u ∼ v}. The

closed neighbourhood, denoted by N[v], equals N(v)∪{v}. Given a set S ⊆V (G) and a vertex

v ∈ S, the external private neighbourhood epn(v,S) of v with respect to S is defined to be

epn(v,S) = {u ∈V (G)\S : N(u)∩S = {v}}.

We denote by deg(v)= |N(v)| the degree of vertex v, as well as δ (G)=minv∈V (G){deg(v)}
the minimum degree of G, ∆(G) = maxv∈V (G){deg(v)} the maximum degree of G and n(G) =
|V (G)| the order of G. Given a set S ⊆ V (G), N(S) = ∪v∈SN(v), N[S] = N(S)∪ S and the

subgraph of G induced by S will be denoted by G[S].
A set S ⊆ V (G) is a total dominating set of a graph G without isolated vertices if every

vertex v ∈V (G) is adjacent to at least one vertex in S. Let Dt(G) be the set of total dominating

sets of G. The total domination number of G is defined to be,

γt(G) = min{|S| : S ∈Dt(G)}.

By definition, Dt(G) ⊆ D(G), so that γ(G) ≤ γt(G). Furthermore, γt(G) ≤ 2γ(G). We

define a γt(G)-set as a set S ∈Dt(G) with |S| = γt(G). The same agreement will be assumed

for optimal parameters associated to other characteristic sets defined in the paper. For instance,

a γ(G)-set will be a set S ∈D(G) with |S|= γ(G).
A graph invariant closely related to the domination number is the packing number. A set

S ⊆V (G) is a packing if N[u]∩N[v] =∅ for every pair of different vertices u,v ∈ S. We define

℘(G) = {S ⊆V (G) : S is a packing of G}.
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The packing number, denoted by ρ(G), is the maximum cardinality among all packings of G,

i.e.,

ρ(G) = max{|S| : S ∈℘(G)}.

Obviously, γ(G)≥ ρ(G). Furthermore, Meir and Moon [27] showed in 1975 that γ(T ) = ρ(T )
for every tree T . We would point out that, in general, these γ(T )-sets and ρ(T )-sets are not

identical. Notice that D(G)∩℘(G) 6= ∅ if and only if there exists a γ(G)-set which is a

ρ(G)-set. A graph G is an efficient closed domination graph if D(G)∩℘(G) 6=∅.

A set S ⊆V (G) is an open packing, if N(u)∩N(v) =∅ for every pair of different vertices

u,v ∈ S. We define

℘o(G) = {S ⊆V (G) : S is an open packing of G}.

The open packing number of G, denoted by ρo(G), is the maximum cardinality among all open

packings of G, i.e.,

ρo(G) = max{|S| : S ∈℘o(G)}.

By definition,℘(G)⊆℘o(G), so that ρ(G)≤ ρo(G) for every graph G, and ρo(G)≤ γt(G) for

every graph G without isolated vertices. Besides, if S ∈℘o(G), then every vertex of G[S] has

degree at most one, which implies that we can write S = S0∪S1, where S0 is the set of isolated

vertices of G[S] and S1 = S \S0. Obviously, S1 =∅ if and only if S ∈℘(G).
A graph G is an efficient open domination graph if there exists a set D, called an efficient

open dominating set, for which V (G) = ∪u∈DN(u) and N(u)∩N(v) = ∅ for every pair of

distinct vertices u,v ∈ D. As shown in [23], if G is an efficient open domination graph with an

efficient open dominating set D, then γt(G) = |D|. Hence, the following remark holds.

Remark 2.1. A graph G is an efficient open domination graph if and only if there exists

S ∈Dp(G) such that G[S]∼= ∪K2. In such a case, |S|= γt(G) = ρo(G).

Corollary 2.2. If G is an efficient open domination graph, then γ p(G)≤ γt(G).

Given two nontrivial graphs G and H, we define the following properties, which will

become important tools in the next sections.

P1(G,H): δ (H) = 0 and G is an efficient open domination graph.

P2(G,H): γ(H) = 1 and G is an efficient closed domination graph.

P3(G,H): δ (H) = 0, G is an efficient open domination graph and γ p(G) = γt(G).

Let f : V (G) −→ {0,1,2} be a function on G and let Vi = {v ∈ V (G) : f (v) = i}, where

i ∈ {0,1,2}. We will identify f with the subsets V0,V1,V2, and so we will use the unified

notation f (V0,V1,V2) for the function and these associated subsets.

An RDF f (V0,V1,V2) on G is a total Roman dominating function if V1 ∪V2 ∈Dt(G) [1].

The total Roman domination number, denoted by γtR(G), is the minimum weight among all

total Roman dominating functions on G. By definition, γR(G)≤ γtR(G).
The lexicographic product of two graphs G and H is the graph G ◦H whose vertex set is

V (G ◦H) = V (G)×V (H) and (u,v)(x,y) ∈ E(G ◦H) if and only if ux ∈ E(G) or u = x and
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vy ∈ E(H). For simplicity, the neighbourhood of (x,y) ∈V (G◦H) will be denoted by N(x,y)
instead of N((x,y)), and for any PRDF f on G◦H we will write f (x,y) instead of f ((x,y)).

Notice that for any u ∈V (G) the subgraph of G◦H induced by {u}×V (H) is isomorphic

to H. We will denote this subgraph by Hu. For any u ∈V (G) and any function f on G◦H we

define

f (Hu) = ∑
v∈V (H)

f (u,v) and f [Hu] = ∑
x∈N[u]

f (Hx).

For basic properties of the lexicographic product of two graphs we suggest the books

[16, 21]. A main problem in the study of product of graphs consists of finding exact values or

sharp bounds for specific parameters of the product of two graphs and express them in terms

of invariants of the factor graphs. In particular, we cite the following works on domination

theory of lexicographic product graphs. For instance, the reader is referred to [25, 28] for the

domination number, [4] for the double domination number, [30] for the Roman domination

number, [6, 8] for the total Roman domination number, [31] for the rainbow domination num-

ber, [14] for the super domination number, [32] for the weak Roman domination number, [7]

for the total weak Roman domination number and the secure total domination number, [5] for

the Italian domination number and [2] for the doubly connected domination number.

For the remainder of the paper, definitions will be introduced whenever a concept is

needed.

3 Perfect domination and Roman Domination in lexicographic

product graphs

The next theorem merges two results obtained in [30] and [34].

Theorem 3.1 ([30] and [34]). For any graph G with no isolated vertex and any nontrivial

graph H,

γ(G◦H) =

{

γ(G) if γ(H) = 1,

γt(G) if γ(H)≥ 2.

As the following result shows, when computing the perfect domination number of lexico-

graphic product graphs G◦H, where G is connected and H is not trivial, we have to take into

account that the class of graphs G ◦H satisfies a certain trichotomy, as it is divided into three

categories, i.e., the class of graphs G◦H for which P1(G,H) holds, the class of graphs G◦H

for which P2(G,H) holds, and the class where neither P1(G,H) nor P2(G,H) holds.

Theorem 3.2. For any connected graph G and any nontrivial graph H,

γ p(G◦H) =











γt(G) if P1(G,H) holds,

γ(G) if P2(G,H) holds,

n(G)n(H) otherwise.
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Proof. Let S be a γ p(G◦H)-set and define W0 = {x ∈V (G) : V (Hx)∩S =∅} and W1 = {x ∈
V (G) : |V (Hx)∩S|= 1}. We differentiate, the following two cases.

Case 1. There exists x ∈ V (G) such that |V (Hx)∩ S| ≥ 2. Since n(H) ≥ 2, we deduce that

N[x]×V (H)⊆ S, which implies that S =V (G◦H), i.e., γ p(G◦H) = |S|= n(G)n(H).

Case 2. |V (Hx)∩S| ≤ 1 for every x ∈V (G). Obviously, W1 ∈Dp(G) and, since V (Hx)\S 6=∅

for every x ∈V (G), we conclude that S ∈℘o(G◦H). Let (x,y) ∈ S. If x is an isolated vertex of

G[W1], then y is a universal vertex of H, while if x has degree one, then y is an isolated vertex

of H. Therefore, we have the following two complementary subcases.

Subcase 2.1. P1(G,H) holds, i.e., y is an isolated vertex of H, W1 ∈Dp(G) and G[W1]∼= ∪K2.

In this case, Remark 2.1 leads to |W1|= γt(G). Hence, γ p(G◦H) = |S|= |W1×{y}|= |W1|=
γt(G).

Subcase 2.2. P2(G,H) holds, i.e., y is a universal vertex of H, W1 is ρ(G)-set and also a

γ(G)-set. In this case, γ p(G◦H) = |S|= |W1 ×{y}|= |W1|= γ(G).

The Roman domination number of the lexicographic product of two connected graphs

G and H was studied in [30]. Obviously, the connectivity of G ◦ H only depends on the

connectivity of G. Since we need to consider the case where H is not necessarily connected,

we make next the necessary modifications to adapt the results obtained in [30] to the general

case in which H is not necessarily connected.

Lemma 3.3. Let G be a graph with no isolated vertex and H a nontrivial graph. Let f (V0,V1,V2)
be a γR(G ◦ H)-function, A f = {x ∈ V (G) : V (Hx)∩V2 6= ∅} and B f = {x ∈ V (G) \ A f :

V (Hx)∩V1 6= ∅}. If |V2| is maximum among all γR(G ◦H)-functions, then A f ∈ D(G) and

B f =∅.

Proof. Let f (V0,V1,V2) be a γR(G ◦H)-function such that |V2| is maximum among all γR(G ◦
H)-functions. If x ∈ V (G) \ (A f ∪B f ), then V (Hx) ⊆ V0, which implies that N(x)∩A f 6= ∅.

Hence, A f ∪B f ∈D(G).
Now, suppose that there exists u ∈ B f . Observe that (N(u)×V (H))∩V2 = ∅, and so

V (Hu) ⊆ V1. Given u′ ∈ N(u) and v ∈ V (H), we define a function f ′(V ′
0,V

′
1,V

′
2) on G ◦H by

f ′(Hu) = 0, f ′(u′,v) = 2 and f ′(x,y) = f (x,y) for the remaining vertices. Notice that f ′ is a

RDF on G◦H with |V ′
2|> |V2| and, since H is a nontrivial graph, f (Hu) = |V (Hu)| ≥ 2, so that

ω( f ′)≤ ω( f ), which is a contradiction. Therefore, B f =∅ and A f ∈D(G).

The following result is a direct consequence of Lemma 3.3.

Corollary 3.4. For any graph G without isolated vertices and any nontrivial graph H,

γR(G◦H)≥ 2γ(G).

Theorem 3.5. [30] For any graph G without isolated vertices and any graph H,

γR(G◦H)≤ 2γt(G).
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Now, we introduce the definition of domination couple given in [30]. We say that an

ordered couple (A,B) of disjoint sets A,B ⊆V (G) is a dominating couple of G if every vertex

x ∈V (G)\B satisfies that N(x)∩ (A∪B) 6=∅. Also, we define the parameter ζ (G) as follows.

ζ (G) = min{2|A|+3|B| : (A,B) is a dominating couple of G}.

We say that a dominating couple (A,B) of G is a ζ (G)-couple if ζ (G) = 2|A|+3|B|. With this

notation in mind, we state the following result.

Theorem 3.6. For any graph G without isolated vertices and any nontrivial graph H,

γR(G◦H) =











2γ(G) if ∆(H) = n(H)−1,

ζ (G) if ∆(H) = n(H)−2,

2γt(G) if ∆(H)≤ n(H)−3.

Proof. As shown in [30], if γ(H) = 1 and G is a connected nontrivial graph, then γR(G◦H) =
2γ(G). Obviously, the same equality holds if G is not connected.

In order to discuss the remaining cases, let f (V0,V1,V2) be a γR(G◦H)-function such that

|V2| is maximum. By Lemma 3.3, A f = {x ∈ V (G) : V (Hx)∩V2 6= ∅} is a dominating set of

G and B f = {x ∈V (G)\A f : V (Hx)∩V1 6=∅}=∅. Let A′
f = {x ∈ A f : N(x)∩A f =∅}.

Assume ∆(H)= n(H)−2. Since (A f \A′
f ,A

′
f ) is a dominating couple of G, we deduce that

ζ (G)≤ 2|A f \A′
f |+3|A′

f | = ω( f ) = γR(G ◦H). Now, let v ∈ V (H) be a vertex of maximum

degree and {v′}=V (H)\N[v]. Since for any ζ (G)-couple (A,B), the function g(W0,W1,W2),
defined by W2 = (A∪B)×{v} and W1 = B×{v′}, is an RDF on G◦H, we deduce that γR(G◦
H)≤ ω(g) = |W1|+2|W2|= 2|A|+3|B|= ζ (G). Therefore, γR(G◦H) = ζ (G).

Finally, assume ∆(H)≤ n(H)−3. By Theorem 3.5 we only need to prove that γR(G◦H)≥
2γt(G). In this case, if x ∈ A′

f , then f (Hx) ≥ 4, while if x ∈ A f \A′
f , then f (Hx)≥ 2. Since G

does not have isolated vertices and A f ∈D(G), we have that γt(G)≤ |A f \A′
f |+2|A′

f |. Hence,

2γt(G)≤ 2|A f \A′
f |+4|A′

f | ≤ ω( f ) = γR(G◦H), which completes the proof.

Two simple characterizations of Roman graphs were given in [10], but the authors sug-

gest finding classes of Roman graphs. The following result is an immediate consequence of

Theorems 3.1 and 3.6.

Theorem 3.7. Let G be a graph with no isolated vertex. If H is a graph such that ∆(H) 6=
n(H)−2, then G◦H is a Roman graph.

As ζ (G) has not been extensively studied, we next obtain tight bounds on γR(G ◦H) for

the case in which ∆(H) = n(H)−2.

Theorem 3.8. Let G a graph with no isolated vertex and H a graph. If ∆(H) = n(H)−2, then

max{γtR(G),γt(G)+ γ(G)} ≤ γR(G◦H)≤ min{3γ(G),2γt(G)}.

Proof. Let f (V0,V1,V2) be a γR(G ◦ H)-function with |V2| maximum. As above, let A f =
{x ∈ V (G) : V (Hx)∩V2 6= ∅}, B f = {x ∈ V (G) \A f : V (Hx)∩V1 6= ∅} and A′

f = {x ∈ A f :
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N(x)∩ A f = ∅}. By Lemma 3.3, B f = ∅ and A f ∈ D(G). Furthermore, if x ∈ A′
f , then

f (Hx) = 3, while if x ∈ A f \A′
f , then f (Hx) = 2. Thus,

γR(G◦H) = 3|A′
f |+2|A f \A′

f |.

We first prove the lower bounds. Let S ⊆ V (G) be a set of minimum cardinality among the

sets satisfying that A f ⊆ S and S∩N(x) 6= ∅ for every vertex x ∈ A′
f . Since S ∈ Dt(G), we

deduce that γt(G)≤ |S| ≤ 2|A′
f |+ |A f \A′

f |. Hence, γt(G)+γ(G)≤ (2|A′
f |+ |A f \A′

f |)+ |A f |=

3|A′
f |+2|A f \A′

f |= γR(G◦H).
Now, let g(W0,W1,W2) be a function on G defined by W2 =A f and W1 = S\A f . Notice that

g is a TRDF on G. Thus, γtR(G)≤ ω(g) = 2|A f |+ |S \A f | ≤ 3|A′
f |+2|A f \A′

f |= γR(G◦H),
which completes the proof of the lower bounds.

In order to prove the upper bounds, let D be a γ(G)-set, and let v,v′ ∈V (H) such that v is

a vertex of maximum degree and {v′} = V (H) \N[v]. Notice that the function f ′(V ′
0,V

′
1,V

′
2),

defined by V ′
2 = D×{v} and V ′

1 = D×{v′}, is an RDF on G ◦H. Therefore, γR(G ◦H) ≤
ω( f ′) = 3|D|= 3γ(G).

Finally, the bound γR(G ◦H) ≤ 2γt(G) is already known from Theorem 3.5. Therefore,

the proof is complete.

The bounds above are tight. Notice that, if γt(G) = γ(G), then γR(G ◦H) = γtR(G) =
2γt(G), while if γt(G) = 2γ(G), then we have γR(G◦H) = γt(G)+ γ(G) = 3γ(G).

4 Perfect Roman domination in lexicographic product graphs

This section is organised as follows. First we obtain tight bounds on γ
p
R(G ◦H) and then we

give sufficient and/or necessary conditions for the bounds to be achieved. We also discuss the

case of perfect Roman graphs and we characterize the graphs where γ
p
R(G◦H) = γR(G◦H).

Theorem 4.1. For any graph G without isolated vertices and any graph H,

γ p
R(G◦H)≤ γ p(G)(n(H)+1).

Proof. Let S be a γ p(G)-set and v ∈V (H). Let f (V0,V1,V2) be a function on G◦H defined by

V2 = S×{v} and V1 = S×(V (H)\{v}). Clearly, f is a PRDF, which implies that γ p
R(G◦H)≤

ω( f ) = 2|S|+ |S|(n(H)−1) = γ p(G)(n(H)+1). Therefore, the result follows.

In order to see that the bound above is tight, we can consider the corona graph G∼=G′⊙Nk,

where k ≥ 2, G′ is any graph of minimum degree at least two, and H is a nontrivial graph. In

this case, γ
p
R(G◦H) = n(G′)(n(H)+1) = γ p(G)(n(H)+1).

Theorem 4.2. Let G be a graph without isolated vertices and H a graph. The following

statements hold.

(i) For any γ
p
R(G)-function f (V0,V1,V2),

γ
p
R(G◦H)≤ γ

p
R(G)+(|V1|+ |V2|)(n(H)−1).
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(ii) If there exists a γ p
R(G)-function f (V0,V1,V2) such that V2 is a γ(G)-set, then

γ
p
R(G◦H)≤ γ

p
R(G)n(H)− γ(G)(n(H)−1).

(iii) If S is a γ p(G)-set, S′ = {x ∈ S : epn(x,S) =∅} and S′′ = S \S′, then

γ
p
R(G◦H)≤ |S′|+2|S′′|+ γ p(G)(n(H)−1).

(iv) If there exists a γ
p
R(G)-function f (V0,V1,V2) such that V1 ∪V2 is a γ p(G)-set, then

γ p
R(G◦H)≤ γ p

R(G)+ γ p(G)(n(H)−1).

Proof. From any γ p
R(G)-function f (V0,V1,V2), we can define a function g(W0,W1,W2) on G◦H

as W2 =V2 ×{v} and W1 =V2 × (V (H)\{v})∪V1 ×V (H). It is readily seen that g is a PRDF

and, as a result, γ p
R(G ◦H) ≤ ω(g) = 2|V2|+ |V2|(n(H)− 1) + |V1|n(H) = γ p

R(G)+ (|V1|+
|V2|)(n(H)−1). Therefore, (i) follows.

Now, since γ
p
R(G)+ (|V1|+ |V2|)(n(H)−1) = γ

p
R(G)n(H)−|V2|(n(H)−1), from (i) we

deduce (ii).

In order to prove (iii), we only need to observe that for any γ p(G)-set S, the function

h(V (G) \ S,S′,S′′) is a PRDF on G. Thus, we conclude the proof of (iii) by analogy to the

proof of (i), by using h instead of f .

Finally, (iv) follows from (i).

The bounds above are tight. For instance, let G be the graph shown in Figure 2, V2 = S′′

the set of vertices labelled with 2, V1 = S′ the set of vertices labelled with 1 and V0 = V (G) \
(V1 ∪V2). In this case, V2 is a γ(G)-set, f (V0,V1,V2) is a γ p

R(G)-function, S = S′ ∪ S′′ is a

γ p(G)-set and γ
p
R(G ◦H) = 6n(H)+ 3 for every graph H. Therefore, the bounds above are

achieved.

Theorem 4.3. For any graph G without isolated vertices and any graph H,

γ
p
R(G◦H)≤ min

S∈℘o(G)
{|S0|(n(H)−∆(H)+1)+ |S1|(2+δ (H))+n(H)(n(G)−|N[S]|)}.

Proof. Let S = S0 ∪ S1 ∈℘o(G) and y1,y2 ∈ V (H) such that deg(y1) = δ (H) and deg(y2) =
∆(H). From S, y1 and y2, we can construct a function f (V0,V1,V2) on G ◦H as follows. Let

V2 = S0×{y2}∪S1×{y1} and V1 = S0×(V (H)\N[y2])∪S1×N(y1)∪(V (G)\N[S])×V (H).
It is readily seen that f is a PRDF on G ◦H. Therefore, γ

p
R(G ◦H) ≤ ω( f ) = |S0|(n(H)−

∆(H)+ 1)+ |S1|(2+ δ (H))+ n(H)(n(G)− |N[S]|). Since the inequality holds for any open

packing of G, the result follows.

The following result is an immediate consequence of Theorem 4.3.

Corollary 4.4. Given a graph G without isolated vertices, the following statements hold.

(i) If G is an efficient open domination graph, then for any graph H,

γ p
R(G◦H)≤ γt(G)(2+δ (H)).
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(ii) If G is an efficient closed domination graph, then for any graph H,

γ p
R(G◦H)≤ γ(G)(n(H)−∆(H)+1).

Proof. First, we proceed to prove (i). Let S ∈ Dp(G) such that G[S] ∼= ∪K2. Notice that

S = S1 ∈℘o(G) and N[S] = V (G). Hence, by Theorem 4.3 and Remark 2.1 we deduce that

γ p
R(G◦H)≤ |S|(2+δ (H)) = γt(G)(2+δ (H)).

Finally, we proceed to prove (ii). Let S be a γ(G)-set which is a ρ(G)-set. Since S = S0 ∈
℘o(G) and N[S] =V (G), by Theorem 4.3 we deduce that γ p

R(G◦H)≤ |S|(n(H)−∆(H)+1)=
ρ(G)(n(H)−∆(H)+1).

As we will show in Theorems 4.5 and 4.8, the bounds above are tight.

Theorem 4.5. Given a nontrivial graph G with γ(G) = 1, the following statements hold.

(i) If δ (G)≥ 2 , then for any graph H,

γ
p
R(G◦H) = n(H)−∆(H)+1.

(ii) If δ (G) = 1, then for any graph H,

γ p
R(G◦H) = min{2δ (H)+4,n(H)−∆(H)+1}.

Proof. Let f (V0,V1,V2) be a γ
p
R(G◦H)-function. We assume first that δ (G)≥ 2. Notice that,

in such a case, N(x)∩N(x′) 6=∅ for any x,x′ ∈V (G). We differentiate three cases for V2.

Case 1. There exists x ∈ V (G) such that |V2 ∩V (Hx)| ≥ 2. In this case, f (Hx′) = n(H) for

every x′ ∈ N(x), and so γ
p
R(G◦H) = ω( f ) ≥ f [Hx]≥ 4+n(H), which is a contradiction with

Corollary 4.4-(ii).

Case 2: There exist two different vertices (x,y),(x′,y′) ∈ V2 such that x 6= x′. In this case,

f (Hz) = n(H) for any z ∈ N(x)∩N(x′), and so γ p
R(G◦H) = ω( f ) ≥ f [Hz]≥ 4+n(H), which

is again a contradiction with Corollary 4.4-(ii).

Case 3: V2 = {(x,y)}. In this case, f (x,v) = 1 for every v ∈V (H)\N[y]. Hence, γ p
R(G◦H) =

ω( f ) ≥ f (Hx) ≥ n(H)− deg(y)+ 1 ≥ n(H)−∆(H)+ 1. By Corollary 4.4-(ii) we conclude

that γ p
R(G◦H) = n(H)−∆(H)+1.

According to the three cases above, (i) follows.

From now on we assume that δ (G) = 1 and we consider the following three cases for V2.

Case 1’: There exists x ∈ V (G) such that |V2 ∩V (Hx)| ≥ 2. As in Case 1, we obtain a contra-

diction.

Case 2’: There exist two different vertices (x,y),(x′,y′) ∈ V2 such that x 6= x′. If deg(x) <
∆(G)− 1 and deg(x′) < ∆(G)− 1, then f (Hz) = n(H) for every z ∈ N(x) ∩N(x′), and so

γ p
R(G◦H) = ω( f )≥ f [Hz]≥ 4+n(H), which is a contradiction with Corollary 4.4-(ii).

Now, assume that deg(x) = ∆(G)− 1. If deg(x′) ≥ 2, then as above f (Hz) = n(H) for

every z ∈ N(x)∩N(x′), and we have again a contradiction with Corollary 4.4-(ii). Finally, if

deg(x′) = 1, then f (x,b) ≥ 1 for every b ∈ N(y) and f (x′,b′) ≥ 1 for every b′ ∈ N(y′). Thus,
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γ p
R(G◦H) = ω( f ) ≥ f (Hx)+ f (Hx′)≥ 2δ (H)+4, and by Corollary 4.4-(i) we conclude that

γ
p
R(G◦H) = 2δ (H)+4.

Case 3’: V2 = {(x,y)}. As in Case 3, we deduce that γ p
R(G◦H) = n(H)−∆(H)+1.

According to these last three cases, (ii) follows.

Lemma 4.6. Let f (V0,V1,V2) be a γ
p
R(G◦H)-function and x ∈V (G). If V (Hx)∩V2 =∅, then

either V (Hx)⊆V0 or V (Hx)⊆V1.

Proof. Suppose that V (Hx)∩V2 = ∅ and there exist y1,y2 ∈ V (H) such that f (x,y1) = 0 and

f (x,y2) = 1. In such a case, there exists exactly one vertex (u,v) ∈ V2 which is adjacent to

(x,y1). Hence, u ∈ N(x) and (u,v) is the only vertex belonging to V2 which is adjacent to

(x,y2). Thus, the function g(W0,W1,W2), defined by W2 = V2, W1 = V1 \V (Hx) and W0 =
V0 ∪V (Hx), is a PRDF on G ◦H, which is a contradiction, as ω(g) < ω( f ). Therefore, the

result follows.

Theorem 4.7. For any graph G without isolated vertices and any nontrivial graph H,

γ p
R(G◦H)≥ γ(G)min{n(H)−∆(H)+1,2+δ (H)}.

Proof. Let f (V0,V1,V2) be a γ p
R(G ◦H)-function, and define W0 = {x ∈ V (G) : V (Hx) ⊆ V0},

W1 = {x ∈V (G) : V (Hx)⊆V1} and W2 =V (G)\ (W0∪W1). In fact, by Lemma 4.6, W2 = {x ∈
V (G) : V (Hx)∩V2 6= /0}. Let W2,0 be the set of isolated vertices of G[W2], W2,1 =W2 \W2,0 and

W 0
2,0 = {x ∈W2,0 : N(x)×V (H)∩V0 6=∅}.

Thus, if x ∈W0, then V (Hx) ⊆V0 and there exists exactly one vertex (u,v) ∈V2 such that

u ∈ N(x)∩W2. Also, if x ∈W2,0 \W 0
2,0, then N(x)∩W1 6=∅. Hence, W1 ∪W2,1 ∪W 0

2,0 ∈D(G).

Notice that if x ∈W 0
2,0, then f (Hx)≥ n(H)−∆(H)+1 and if x ∈W2,1, then f (Hx)≥ 2+δ (H).

Therefore,

γ p
R(G◦H) = ∑

x∈V (G)

f (Hx)

≥ ∑
x∈W 0

2,0

f (Hx)+ ∑
x∈W2,1

f (Hx)+ ∑
x∈W1

f (Hx)

≥ |W 0
2,0|(n(H)−∆(H)+1)+ |W2,1|(2+δ (H))+ |W1|n(H)

≥ (|W 0
2,0|+ |W2,1|+ |W1|)min{n(H)−∆(H)+1,2+δ (H)}

≥ γ(G)min{n(H)−∆(H)+1,2+δ (H)}.

From Corollary 4.4 and Theorem 4.7 we deduce the following result.

Theorem 4.8. Given a graph G without isolated vertices, the following statements hold.

(i) If G is an efficient closed domination graph, then for any graph H with 2 ≤ n(H) ≤
∆(H)+δ (H)+1,

γ p
R(G◦H) = γ(G)(n(H)−∆(H)+1).
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(ii) If γ p(G) = γt(G) = γ(G) and G is an efficient open domination graph, then for any

nontrivial graph H with n(H)≥ ∆(H)+δ (H)+1,

γ
p
R(G◦H) = γ(G)(2+δ (H)).

Corollary 4.9. Given a graph G without isolated vertices and a nontrivial graph H, the fol-

lowing statements hold.

(i) If P2(G,H) holds, then γ
p
R(G◦H) = 2γ(G).

(ii) If γ p(G) = γ(G) and P3(G,H) holds, then γ
p
R(G◦H) = 2γ(G).

Theorem 4.10. Given two nontrivial graphs G and H, the following statements hold.

(i) γ p
R(G◦H)≥ max{γ p

R(G),2γ(G)}.

(ii) γ p
R(G◦H) = γ p

R(G) if and only if γ p
R(G) = 2γ p(G) and either P2(G,H) holds or P3(G,H)

holds.

(iii) If H has order at least three, then γ p
R(G ◦H) = 2γ(G) if and only if γ p(G) = γ(G) and

either P2(G,H) holds or P3(G,H) holds.

Proof. By Theorem 4.7 we deduce that γ p
R(G◦H)≥ 2γ(G). From now on, let f (V0,V1,V2) be a

γ
p
R(G◦H)-function, and define the function g(W0,W1,W2) on G by W0 = {x ∈V (G) : V (Hx)⊆

V0}, W1 = {x ∈ V (G) : V (Hx) ⊆V1} and W2 =V (G)\ (W0 ∪W1). If x ∈W0, then V (Hx)⊆ V0

and there exists exactly one vertex (u,v) ∈V2 such that u ∈ N(x)∩W2. Hence, g is a PRDF on

G, and so γ
p
R(G)≤ ω(g)≤ ω( f ) = γ

p
R(G◦H). Therefore, (i) follows.

In order to prove (ii), assume γ p
R(G ◦H) = γ p

R(G). Notice that in this case the function

g(W0,W1,W2) defined above is a γ p
R(G)-function. We first show that the γ p

R(G ◦H)-function

f (V0,V1,V2) satisfies V1 =∅. Suppose to the contrary, that there exists (u,v) ∈V1. If V (Hu)∩
V2 = ∅, then by Lemma 4.6 we have that V (Hu) ⊆ V1 and since |V (Hu)| ≥ 2, we deduce

that γ
p
R(G) ≤ ω(g) < ω( f ) = γ

p
R(G ◦H), which is a contradiction. The same contradiction is

reached if V (Hu)∩V2 6= ∅, as in such a case f (Hu) ≥ 3. Hence, V1 = ∅, which implies that

W1 =∅ and W2 ∈Dp(G).
Furthermore, 2γ p(G) ≤ 2|W2| ≤ γ

p
R(G ◦H) = γ

p
R(G) ≤ 2γ p(G), and so we conclude that

W2 is a γ p(G)-set and γ p
R(G) = 2γ p(G). We differentiate two cases for x ∈W2.

Case 1. There exists x′ ∈N(x)∩W2. In this case, there exist y,y′ ∈V (H) such that (x,y),(x′,y′)∈
V2, and so no vertex in V (Hx) \ {(x,y)} is adjacent to (x,y). Hence y is an isolated vertex of

H. Notice that N(x)∩W2 = {x′}, otherwise every vertex in V (Hx)∩V0 = V (Hx) \ {(x,y)} is

adjacent to two vertices in V2, which is a contradiction.

Case 2. N(x)∩W2 = ∅. In this case, there exists y ∈ V (H) such that (x,y) ∈ V2 and every

vertex in V (Hx)∩V0 = V (Hx) \ {(x,y)} has to be adjacent to (x,y). Hence, y is a universal

vertex of H and so γ(H) = 1. Notice also that N(x)∩N(x′) =∅ for every x′ ∈W2 \{x}.
According to the two cases above, either H has at least one isolated vertex or γ(H) = 1.

Thus, either Case 1 holds for every vertex x ∈ W2 or Case 2 holds for every vertex x ∈ W2.

In the first case, it is readily seen that P3(G,H) holds, while if Case 2 holds for every vertex
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x ∈ W2, then W2 is a packing, and so γ p(G) = |W2| ≤ ρ(G) ≤ γ(G) ≤ γ p(G), which implies

that P2(G,H) holds.

Conversely, assume that γ
p
R(G) = 2γ p(G). If P3(G,H) holds, then Corollary 4.4-(i) and

the lower bound (i) lead to γ p
R(G ◦H) = γ p

R(G). Finally, if P2(G,H) holds, then Theorem

4.8-(i) leads to γ
p
R(G◦H) = γ

p
R(G), which completes the proof of (ii).

We proceed to prove (iii). Assume γ p
R(G◦H) = 2γ(G). Since |V (H)| ≥ 3 and W1 ∪W2 ∈

D(G), we deduce that if W1 6= ∅, then 2γ(G) < |V (H)||W1|+ 2|W2| ≤ ω( f ) = γ p
R(G ◦H),

which is a contradiction. Hence, W1 = ∅ and W2 ∈ Dp(G). Furthermore, 2γ(G) ≤ 2|W2| =
γ p

R(G◦H) = 2γ(G), which implies that W2 is a γ(G)-set and also a γ p(G)-set. We differentiate

two cases for x ∈W2.

Case 1’. There exists x′ ∈ N(x)∩W2. As in Case 1, we can see that H has an isolated vertex

and N(x)∩W2 = {x′}.

Case 2’. N(x)∩W2 =∅. By analogy to Case 2 we deduce that γ(H) = 1.

Thus, either Case 1’ holds for every vertex x ∈ W2 or Case 2’ holds for every vertex

x ∈ W2. In the first case, we deduce that P3(G,H) follows, while if Case 2’ holds for every

vertex x ∈ W2, then W2 is a packing, and so γ p(G) = |W2| ≤ ρ(G) ≤ γ(G) ≤ γ p(G), which

leads to P2(G,H).
Conversely, assume γ p(G)= γ(G). If P3(G,H) holds, then Corollary 4.4-(i) and the lower

bound (i) lead to γ
p
R(G◦H) = 2γ(G). Finally, if P2(G,H) holds, then Theorem 4.8-(i) leads to

γ
p
R(G◦H) = 2γ(G), which completes the proof.

Theorem 4.11. Let G and H be two graphs. If G is an efficient open domination graph and

n(H)≥ ∆(H)+2δ (H)+3, then

γ
p
R(G◦H) = γt(G)(2+δ (H)).

Proof. Let S ∈Dp(G) such that G[S]∼= ∪K2 and assume that n(H)≥ ∆(H)+2δ (H)+3.

Let x,x′ ∈ S be two adjacent vertices, and define Xx = {x}∪ epn(x,S) = N[x] \ {x′} and

Xx′ = {x′} ∪ epn(x′,S) = N[x′] \ {x}. Let f (V0,V1,V2) be a γ p
R(G ◦ H)-function and define

ε(x,x′) = f (Xx ×V (H))+ f (Xx′ ×V (H)). In order to prove that ε(x,x′) ≥ 2(2+ δ (H)), we

differentiate the following cases.

Case 1: V2 ∩V (Hx) = V2 ∩V (Hx′) = ∅. By Lemma 4.6 we have that V (Hx) ⊆V0 or V (Hx) ⊆
V1, and also V (Hx′) ⊆ V0 or V (Hx′) ⊆ V1. The case V (Hx) ⊆ V1 and V (Hx′) ⊆ V1 leads to

ε(x,x′)≥ f (Hx)+ f (Hx′) = 2|V (H)| ≥ 2(2+δ (H)).
If V (Hx) ⊆ V0 and V (Hx′) ⊆ V1, then |V2 ∩ (epn(x,S)×V (H)) | = 1, which implies that

ε(x,x′)≥ f (Xx ×V (H))+ |V(Hx′)| ≥ 2+ |V (H)| ≥ 5+2δ (H)> 2(2+δ (H)).
Finally, if V (Hx) ⊆ V0 and V (Hx′) ⊆ V0, then |V2 ∩ (epn(x,S)×V (H)) | = 1 and also

|V2 ∩ (epn(x′,S)×V(H)) | = 1. Since n(H)≥ ∆(H)+2δ (H)+3, the vertex of weight two in

epn(x,S)×V (H) is not able to dominate every vertex in epn(x,S)×V(H), which implies that

f (epn(x,S)×V (H))≥ δ (H)+2 or f (epn(x,S)×V (H))≥ n(H)−∆(H)+1 ≥ 2(2+δ (H)).
By applying the same reasoning to epn(x′,S)×V (H) we conclude that ε(x,x′)≥ f (epn(x,S)×
V (H))+ f (epn(x′,S)×V (H))≥ 2(2+δ (H)).

Case 2: V2∩V (Hx) 6=∅ and V2∩V (Hx′) =∅. By Lemma 4.6, either V (Hx′)⊆V0 or V (Hx′)⊆
V1. If V (Hx′) ⊆ V1, then ε(x,x′) ≥ 2+ |V (Hx′)| ≥ 5+ 2δ (H) > 2(2+ δ (H)). Now, assume
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V (Hx′) ⊆ V0. In this case,|V2 ∩V (Hx)| = 1 and, since n(H) ≥ ∆(H)+ 2δ (H)+ 3, we have

that (V (Hx) \N[x])∩V0 = /0 or |V2 ∩ (epn(x,S)×V (H))| = 1. In both cases we deduce that

ε(x,x′)≥ 2(2+δ (H)).

Case 3: V2∩V (Hx) 6=∅ and V2∩V (Hx′) 6=∅. In this case, |V2∩V (Hx)|= 1 and |V2∩V (Hx)|=
1, which implies that ε(x,x′)≥ f (Hx)+ f (Hx′)≥ 2(2+δ (H)).

According to the three cases above we conclude that ε(x,x′)≥ 2(2+δ (H)) for every pair

of adjacent vertices x,x′ ∈ S. Hence,

γ
p
R(G◦H) = ω( f )≥ ∑

x∈S

f (Xx×V (H))≥ |S|(2+δ (H)) = γt(G)(2+δ (H)).

Therefore, Corollary 4.4-(i) leads to γ p
R(G◦H) = γt(G)(2+δ (H)).

From the following inequalities we can derive results on the perfect Roman domination

number of G◦H.

γR(G◦H)≤ γ
p
R(G◦H)≤ 2γ p(G◦H).

Next we discuss the cases in which the bounds are sharp.

Theorem 4.12. Given a connected nontrivial graph G and H a nontrivial graph, the following

statements hold.

(i) If ∆(H) = n(H)−1, then γ p
R(G◦H) = 2γ p(G◦H) if and only if P2(G,H) holds.

(ii) If ∆(H) = n(H)−2, then the following statements hold.

(a) If γ p
R(G ◦ H) = 2γ p(G ◦H), then P1(G,H) holds and 2γt(G) ≤ 2|S1|+ 3|S0| for

every S ∈℘o(G)∩D(G).

(b) If γ p
R(G) = 2γt(G) or γt(G) = γ(G), then γ p

R(G ◦H) = 2γ p(G ◦H) if and only if

P1(G,H) holds.

(iii) If ∆(H)≤ n(H)−3, then γ p
R(G◦H) = 2γ p(G◦H) if and only if P1(G,H) holds.

Proof. Assume γ p
R(G ◦H) = 2γ p(G ◦H). Since G is a graph without isolated vertices and

H a nontrivial graph, γ
p
R(G ◦H) < n(G)n(H), so that from Theorem 3.2 we have that either

P1(G,H) holds or P2(G,H) holds. Notice that, by definition, P2(G,H) is associated with

∆(H) = n(H)−1.

Now, if P2(G,H) holds, then Theorem 3.2 leads to γ
p
R(G◦H)≤ 2γ p(G◦H) = 2γ(G). In

such a case, from Theorem 4.10-(i) we conclude that γ p
R(G ◦H) = 2γ p(G ◦H). Therefore, (i)

follows.

From now on, assume that P1(G,H) holds. Notice that, in this case, Theorem 3.2 leads to

γ
p
R(G◦H)≤ 2γ p(G◦H) = 2γt(G). (1)

First, consider the case ∆(H) = n(H)−2. Let v,v′ ∈ V (H) such that deg(v) = n(H)−2

and deg(v′) = 0. Now, if there exists S ∈℘o(G)∩D(G) such that 2γt(G)> 2|S1|+3|S0| then

the function g(X0,X1,X2), defined by X2 = S1×{v′}∪S0 ×{v} and X1 = S0×{v′}, is a PRDF
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on G◦H, and so γ p
R(G◦H)≤ ω(g) = 2|S1|+3|S0|< 2γt(G) = 2γ p(G◦H). Therefore, (ii)-(a)

follows.

Furthermore, if γ
p
R(G) = 2γt(G), then by Theorem 4.10-(i), 2γt(G) = γ

p
R(G)≤ γ

p
R(G◦H)

and so Eq. (1) implies that γ p
R(G ◦H) = 2γ p(G ◦H). The case γt(G) = γ(G) is analogous to

the previous one. Therefore, (ii)-(b) follows.

Finally, if ∆(H) ≤ n(H)− 3, then by Theorem 4.11 we have that γ p
R(G ◦H) = 2γt(G).

Hence, Eq. (1) implies that γ p
R(G◦H) = 2γ p(G◦H), which completes the proof of (iii).

In order to state the next result, we define the following parameter.

ζ ′(G) = min
S∈℘o(G)∩D(G)

{4|S0|+2|S1|}.

A set S ∈℘o(G)∩D(G) of cardinality |S|= ζ ′(G) will be called a ζ ′(G)-set.

The following straightforward lemma will be used in the proof of our next result.

Lemma 4.13. A graph G is a perfect Roman graph if and only if there exists a γ
p
R(G)-function

f (V0,V1,V2) such that V1 =∅.
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Theorem 4.14. The following statements hold for a connected nontrivial graph G and any

graph H of order at least three.

(i) If ∆(H) = n(H)−1, then γ
p
R(G◦H) = γR(G◦H) if and only if P2(G,H) holds.

(ii) If ∆(H) = n(H)−2, then γ p
R(G◦H) = γR(G◦H) if and only if there exists a ζ (G)-couple

(A,B) such that A∪B ∈℘o(G) and A =∅ whenever δ (H)≥ 1.

(iii) If ∆(H) = n(H)− 3, then γ p
R(G ◦H) = γR(G ◦H) if and only if either δ (H) = 0 and

ζ ′(G) = 2γt(G) or δ (H)≥ 1 and γt(G) = 2γ p(G) = 2ρ(G).

(iv) If ∆(H)≤ n(H)−4, then γ
p
R(G◦H) = γR(G◦H) if and only if P1(G,H) holds.

Proof. First, assume γ p
R(G ◦H) = γR(G ◦H). Let f (V0,V1,V2) be a γ p

R(G ◦H)-function, and

define W0 = {x ∈V (G) : V (Hx)⊆V0}, W1 = {x ∈V (G) : V (Hx)⊆V1} and W2 =V (G)\ (W0∪
W1). Notice that f is also a γR(G◦H)-function. If there exists u ∈W1, then for any u′ ∈ N(u)
and v ∈ V (H), the function g, defined by g(Hu) = 0, g(u′,v) = 2, and g(x,y) = f (x,y) for the

remaining vertices, is an RDF on G ◦H of weight ω(g) < ω( f ) = γ
p
R(G ◦H) = γR(G ◦H),

which is a contradiction. Hence, W1 = ∅. Now, suppose that G[W2] has a vertex x of degree

at least two. Since f is a γ
p
R(G ◦H)-function, V (Hx)∩V0 = ∅ and, since f is a γR(G ◦H)-

function, V (Hx)∩V1 = ∅, which is a contradiction. Therefore, W2 ∈℘o(G)∩Dp(G). We

differentiate two cases. From each case, we will get partial conclusions and, once both cases

have been analysed, we will be able to complete the proof of each statement separately.

Case 1. V1 =∅. Lemma 4.13 leads to γ p
R(G ◦H) = 2γ p(G ◦H). Hence, if ∆(H) = n(H)−1,

then by Theorem 4.12-(i) we deduce that P2(G,H) holds. Analogously, if ∆(H) ≤ n(H)−2,

then by Theorem 4.12-(ii) we deduce that P1(G,H) holds. Notice that in this latter case

δ (H) = 0 and also Theorem 3.2 leads to γR(G◦H) = γ
p
R(G◦H) = 2γ p(G◦H) = 2γt(G).

Case 2. V1 6= ∅. Let u ∈ V (G) such that V (Hu)∩V1 6= ∅. Since W1 = ∅, by Lemma 4.6 we

have that u∈W2. Since f is also a γR(G◦H)-function, N(u)∩W2 =∅ and so N(u)⊆W0, which

implies that W ′
2 = {x ∈W2 : V (Hx)∩V1 6=∅} is a packing. Notice also that |V (Hu)∩V2|= 1.

With these facts in mind, we differentiate the following subcases.

Subcase 2.1. ∆(H) = n(H)−1. Let V (Hu)∩V2 = {(u,v)} and (u,v′) ∈ V (Hu)∩V1. Notice,

that v′ 6∈ N(v), as f is a γR(G◦H)-function. Now, let v′′ be a universal vertex of H and define

a function g′ as g′(u,v′′) = 2, g′(u,v) = g′(u,v′) = 0 and g′(x,y) = f (x,y) for the remaining

vertices. Obviously, g′ is an RDF on G ◦ H with ω(g′) < ω( f ) = γR(G ◦ H), which is a

contradiction. Therefore, ∆(H) = n(H)−1 leads to V1 =∅.

Subcase 2.2. ∆(H) = n(H)−2. By Theorem 3.6, γR(G◦H) = ζ (G), and since W2 ∈℘o(G)∩
D

p(G), we have that (W2 \W ′
2,W

′
2) is a dominating couple, which implies that γR(G ◦H) =

ζ (G) ≤ 2|W2 \W ′
2|+ 3|W ′

2| = 2|W2|+ |W ′
2| ≤ 2|V2|+ |V1| = γR(G ◦ H), which implies that

(W2 \W ′
2,W

′
2) is a ζ (G)-couple.

Now, assume δ (H)≥ 1. Suppose that there exists x ∈W2 \W ′
2, and let (x,y) ∈V2. In such

a case, (V (Hx) \ {(x,y)})⊆ V0, which implies that N(x)∩W2 = ∅, but this is a contradiction

as deg(y)≤ n(H)−2. Thus, W2 =W ′
2.

Subcase 2.3. ∆(H)= n(H)−3. Assume first that δ (H)= 0. By Theorem 4.3, for any ζ ′(G)-set

S = S0∪S1 we have γ p
R(G◦H)≤ 2|S1|+4|S0|= ζ ′(G). Now, from Theorem 3.6 we have that
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γR(G◦H)= 2γt(G), and since W2 ∈℘o(G)∩Dp(G) and f (Hx) = 4 for every vertex x ∈W ′
2, we

have that 2γt(G)= γR(G◦H)= γ
p
R(G◦H)≤ ζ ′(G)≤ 2|W2\W ′

2|+4|W ′
2| ≤ γR(G◦H)= 2γt(G).

Therefore, ζ ′(G) = 2γt(G).
On the other side, if δ (H) ≥ 1, then we can proceed as in Subcase 2.2 to deduce that

W2 = W ′
2 is a packing and also a perfect dominating set of G, which implies that γ p(G) =

γ(G) = ρ(G). Thus, f (Hx) = 4 for every vertex x ∈W2, and so by Theorem 3.6 we have that

2γt(G) = γR(G ◦H) = γ p
R(G ◦H) = 4|W2| = 4γ p(G) = 4ρ(G). Therefore, γt(G) = 2γ p(G) =

2ρ(G).

Subcase 2.4. ∆(H) ≤ n(H)−4. In this case, |V (Hu)∩V1| ≥ 3. Hence, for any u′ ∈ N(u) and

v ∈V (H), the function g′, defined by g′(Hu) = g′(Hu′) = g′(u,v) = g′(u′,v) = 2 and g′(x,y) =
f (x,y) for the remaining vertices, is an RDF on G ◦H of weight ω(g′) < ω( f ) = γR(G ◦H),
which is again a contradiction. Therefore, ∆(H)≤ n(H)−4 leads to V1 =∅.

We proceed to summarize the conclusions derived from the cases above, and to prove the

statements.

Proof of (i). Assume ∆(H) = n(H)−1. As we have shown in Case 1 and Subcase 2.1, from

γ p
R(G◦H) = γR(G◦H) we deduce that P2(G,H) holds.

Conversely, if ∆(H) = n(H)−1 and P2(G,H) holds, then by Theorems 4.12-(i), 3.2 and

3.6, γ
p
R(G◦H) = 2γ p(G◦H) = 2γ(G) = γR(G◦H). Therefore, (i) follows.

Proof of (ii). Assume ∆(H) = n(H)−2. If γ p
R(G ◦H) = γR(G ◦H), then we have to consider

Case 1 and Subcase 2.2.

From Case 1, γR(G ◦H) = 2γt(G) and P1(G,H) holds. Thus, δ (H) = 0 and there exists

an efficient open dominating set S of G with |S|= γt(G). Since (S,∅) is a dominating couple

and 2|S|= 2γt(G) = γR(G◦H), by Theorem 3.6 we conclude that (S,∅) is a ζ (G)-couple and,

obviously, S ∈℘o(G).
On the other hand, in Subcase 2.2 we concluded that (W2 \W ′

2,W
′
2) is a ζ (G)-couple and

W2 ∈℘o(G). Also, W2 =W ′
2 whenever δ (H)≥ 1.

Conversely, let (A,B) be a ζ (G)-couple such that A∪B∈℘o(G). Let v ∈V (H) be a vertex

of maximum degree and let {v′}=V (H)\N[v].
Notice that if v′ is an isolated vertex, then the function g(X0,X1,X2), defined by X2 =

A×{v′}∪B×{v} and X1 = B×{v′}, is a PRDF on G ◦H. Hence, by Theorem 3.6, ζ (G) =
γR(G◦H)≤ γ

p
R(G◦H)≤ ω(g) = 2|A|+3|B|= ζ (G). Therefore, γ

p
R(G◦H) = γR(G◦H).

Now, if deg(v′) ≥ 1 and A = ∅, then B is a packing and also a dominating set, which

implies that the function g(X0,X1,X2), defined by X2 = B×{v} and X1 = B×{v′}, is a PRDF

on G ◦H. Hence, by Theorem 3.6, ζ (G) = γR(G ◦H) ≤ γ
p
R(G ◦H) ≤ ω(g) = 3|B| = ζ (G).

Therefore, γ p
R(G◦H) = γR(G◦H), as required.

Proof of (iii). Assume ∆(H) = n(H)−3. If γ p
R(G◦H) = γR(G◦H), then we have to consider

Case 1 and Subcase 2.3.

In Case 1 we deduced that δ (H) = 0, γ p
R(G ◦H) = 2|W2| = 2γt(G). Furthermore, since

P1(G,H) holds, W2 ∈℘o(G)∩D
p(G). Thus, ζ ′(G) ≤ 2|W2| and, by Theorem 4.3, 2|W2| =

γ
p
R(G◦H)≤ ζ ′(G)≤ 2|W2|, which implies that ζ ′(G) = 2γt(G).

In Subcase 2.3, we deduced that if δ (H) = 0, then ζ ′(G) = 2γt(G), while if δ (H) ≥ 1,

then γt(G) = 2γ p(G) = 2ρ(G).
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Conversely, assume that ζ ′(G) = 2γt(G) and δ (H) = 0. Let S = S0 ∪ S1 be a ζ ′(G)-set.

By Theorems 4.3 and 3.6 we have that 2γt(G) = γR(G ◦H) ≤ γ
p
R(G ◦H) ≤ 2|S1|+ 4|S0| =

ζ ′(G) = 2γt(G), which implies that γR(G◦H) = γ
p
R(G◦H).

Now, assume δ (H)≥ 1 and γt(G) = 2γ p(G) = 2ρ(G). Let v ∈V (H) be a vertex of maxi-

mum degree, {v1,v2}=V (H)\N[v] and D a γ p(G)-set. Notice that the function g(X0,X1,X2),
defined by X2 = D×{v} and X1 = D×{v1,v2}, is a PRDF on G ◦H. Hence, by Theorem

3.6 we have that 2γt(G) = γR(G◦H)≤ γ p
R(G◦H)≤ ω(g) = 2|X2|+ |X1|= 4γ p(G) = 2γt(G).

Thus, γ
p
R(G◦H) = γR(G◦H), which completes the proof of (iii).

Proof of (iv). Assume ∆(H) ≤ n(H)−4. As shown in Case 1 and Subcase 2.4, from γ p
R(G ◦

H) = γR(G◦H) we deduce that P1(G,H) holds. Conversely, if P1(G,H) holds, then by The-

orems 4.12-(iii), 3.2 and 3.6 it follows that γ
p
R(G ◦H) = 2γ p(G ◦H) = 2γt(G) = γR(G ◦H).

Therefore, (iv) follows.

5 Concluding remarks

This paper is part of a larger project in which the aim is to propose closed formulae for the

domination parameters of product graphs. In general, these formulae are expressed in terms

of various parameters of the graphs involved in the product. The specific aim of this paper is

to study the case of the perfect domination number, the Roman domination number and the

perfect Roman domination number of lexicographic product graphs. We show that this goal

can be achieved relatively easily for the case of the first two parameters, while for the case of

the perfect Roman domination number the picture is completely different. The impossibility

of achieving the target in the case of the latter parameter led us to obtain general bounds,

and then to give some sufficient and/or necessary conditions for the bounds to be achieved.

As a consequence of the results obtained, there are several challenges for future work. Some

of them are the traditional ones in domination theory and consist of improving the obtained

bounds or trying to characterise the families of graphs that reach them. In our opinion, a more

important challenge is to try to look from another angle to try to achieve the initial objective

by trying to find relationships with graph parameters that we have not considered, or with

parameters that have not yet been defined and studied.
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