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A B S T R A C T   

In this study, MgO-doped CNC-g-PAA hydrogel was synthesized by grafting poly (acrylic acid) (PAA) onto cel-
lulose nanocrystals (CNC) and then doped Magnesium oxide (MgO) using pH 7.0 and 12.0 to obtain an efficient 
nanocomposite hydrogel for antibacterial and anti-cancer activities. The synthesized nanocomposite hydrogels 
were evaluated by detailed characterization and confirmed the formation of a well-interconnected porous 
structure. MgO/CNC-g-PAA (pH = 12.0) exhibited improved bactericidal tendencies towards gram-negative and 
gram-positive bacteria, which was further investigated by in-silico molecular docking analyses and also examined 
the reactive oxygen species production by photocatalysis and free radical-scavenging assay. After this, Doxo-
rubicin (DOX), a model anticancer drug, was successfully loaded into nanocomposites (~79 %) by electrostatic 
interaction and confirmed pH-triggered based release, which was over 53.7 % in 24 h. Finally, in vitro 
cytotoxicity-based analysis confirmed the improved antitumor efficacy of nanocomposite hydrogels. These 
findings revealed that MgO/CNC-g-PAA hydrogels might be prospective carriers for controlled drug delivery.   

1. Introduction 

Cancer, the world's second most significant cause of mortality [1], 
encompasses a variety of illnesses that emerge as a consequence of un-
controlled proliferation of malignant cells and can infiltrate or spread to 
other body areas [2]. Conventional cancer drug delivery is hampered by 
non-specific dispersion in biological systems, poor target selection, low 
bioavailability [3], pervasive toxicity, and most critically, the develop-
ment of multiple drug resistance (MDR) [2,4–6]. In recent years, re-
searchers frequently used nanotechnology to overcome these barriers 
[7], which is considered an emerging frontier in developing multifunc-
tional and robust nanomaterials, such as nanoparticle-filled polymer 
composites (< 100 nm) [8–10], hydrogels, nanosphere and microsphere, 

micelles, and liposome for targeted drug delivery [11]. Hydrogels are 
chemically or physically cross-linked networks that can absorb a sub-
stantial quantity of liquid such as water or biological fluid without 
dissolving [12–14]. Thus, high swelling property of hydrogels permits 
them to retain an enormous volume of liquid and soft consistency 
[15,16], additionally, high porosity enables efficient drug loading and 
subsequent drug-releasing at a determined rate through gel matrix 
[17,18]. 

Among natural polymers, cellulose, composed of glucose-based 
repeating β-1,4-glycosidic bonds, is most appealing because of its 
unique qualities, including its biodegradability, nontoxicity, abundance 
on the planet, and presence of hydroxyl groups (OH) on its backbone, 
which enables chemical modification using variety of functional 
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components [19]. Strong acid hydrolysis of this linear polymer signifi-
cantly affects surface chemistry along with the reduction of its size to a 
nano-level and finally, shifted to a rod-shaped structure, known as cel-
lulose nanocrystals (CNCs) [20,21]. Nevertheless, various studies 
revealed that natural polymers-based hydrogels like alginate, chitosan, 
or CNCs have weak mechanical properties [22], destabilizing drug de-
livery process, resulting in simultaneous release of a drug. The fusion of 
CNC with synthetic biopolymer may help cover this research gap and 
provide opportunities to obtain desired mechanical properties. Poly-
acrylic acid (PAA), a typical hydrophilic and pH-sensitive biopolymer, 
contains pendant carboxylic acid groups adequate for interacting with 
hydroxyl groups on the CNC surfaces [23]. CNCs are mostly insoluble 
fibres because of their partially to fully crystalline structure, while 
incorporating CNC into PAA significantly reduced fiber diameter and 
allowed it to well disperse in PAA matrix [24]. So, the copolymerized 
hydrogel exhibits a great variety of unique and novel properties, 
including considerable swelling capacity with improved mechanical and 
stimuli-responsive properties, which allow them to become efficient for 
drug administration and other biological applications [25]. 

Parallel to hydrogel advancements, various research groups have 
successfully integrated several kinds of inorganic nanoparticles with 
hydrogel to develop a hydrogel-based hybrid system and obtain specific 
functional and mechanical properties [26,27]. The incorporation of 
nanoparticles into a hydrogel matrix is regarded to provide structural 
diversity and a variety of properties enhancements as well as reduce risk 
factors associated with human health and the environment [28,29]. 
Among the several inorganic metal oxides, magnesium oxide (MgO) 
nanoparticles (NPs) are well-known for their biological potential as an 
antibacterial, anti-oxidant, and anticancer agent, with added benefit of 
being nontoxic and very simple to produce [30]. Additionally, the US 
Food and Drug Administration recognizes MgO as safe material 
(21CFR184.1431) [31–33]. Like other metal ions, MgO nanomaterials 
have also been attributed to generating reactive oxygen species (ROS) 
(Leung et al., 2014). Photogenerated ROS considered as efficient anti-
microbial and anticancer agents, can damage cell membrane by lipid 
peroxidation resulting in cell death because of the loss of respiratory 
activity [34–37]. In addition, free radicals also can remove organic 
pollutants (dye degradation) from polluted water, which has become a 
worldwide concern owing to pesticides, industrial waste, and water- 
borne pathogens, such as Staphylococcus aureus (Gram-positive) and 
Escherichia coli (E. coli) (Gram-negative) bacteria. Several studies 
revealed that varying concentrations of Mg-doped with either CNC, 
graphene oxide (GO), or ZnO nanorods result in enhanced photo-
catalytic and bactericidal properties [38–40]. Numerous nano-
composites have been used to deliver cancer vaccines and adjuvants 
[41], which respond specifically to the tumour microenvironment, 
resulting in increased drug accumulation at the tumour site, decreased 
side effects on non-cancerous tissues, and enhanced therapeutic effect, 
such as the modified MoS2-nanocomposite [42]. Similarly, magnesium 
may operate as a preventive agent in colorectal carcinogenesis [43], and 
co-assembly of DOX and nanomedicines can form temperature-sensitive 
polymers for targeted treatment of liver cancer [44]. However, a drug- 
loaded copolymerized hydrogel (CNC-g-PAA)-based hybrid system 
with doped MgO nanoparticles has not been elucidated for evaluating 
the multifunctional properties including targeted drug delivery. 

In this study, we grafted vinyl monomers such as PAA (-COOH) onto 
surface of CNCs to enhance its absorption capacity and then doped CNC- 
g-PAA with MgO, which binds to carboxyl groups, to improve its me-
chanical property for efficient drug delivery system. The synthesized 
material was evaluated by detailed characterization of morphological, 
optical, structural, functional, and chemical composition analyses. In 
addition, molecular docking-based analyses performed to investigate 
mechanism behind bacterial strains inhibition through synthesized 
MgO/CNC-g-PAA. Then, drug delivery potential of metal-doped copo-
lymerized hybrid system was evaluated with effect of pH. Doxorubicin 
(DOX) used as standard drug against cancer therapy which bound 

efficiently with MgO/CNC-g-PAA and confirmed in vitro cytotoxicity and 
release rate of bound DOX from nanocomposite. This system signifi-
cantly improves drug loading and releasing efficacy for cancer therapy 
which could be a great promise for further improvement of targeted 
drug delivery by copolymerized hydrogel-based hydride system. 

2. Materials and methods 

2.1. Synthesis of cellulose nanocrystals (CNC) 

CNC was prepared via H2SO4 hydrolysis of Avicel using a reported 
protocol [45,46]. Briefly, 10 g Avicel was hydrolyzed for 30 min at 45 ◦C 
in 64 % (w/w) H2SO4 solution with a total volume of 100 mL. The re-
action was terminated through the addition of 1900 mL cooled deion-
ized (DI) water to a yellow-brown mixture and allowed to settle down 
the suspended particles overnight at ambient temperature 
(25 ◦C–28 ◦C). The surplus water was decanted and remaining sediment 
was collected by centrifugation (3100 g, 15 min), washed 3–4 times with 
water until suspension became clear, and then neutralized by 0.25 M 
NaOH. Finally, the leftover suspension was sonicated using Vibracell 
Sonicator for 15 min and determined the total solid content by drying at 
105 ◦C to attain a constant weight. The stock of synthesized CNC was 
prepared to 97.5 mg/mL and stored at 4 ◦C for further experiments. 

2.2. Synthesis of hydrogel (CNC-g-PAA) 

CNC-g-PAA was prepared using a slightly modified version of the 
reported method described by [23]. Fig. 1a illustrates the synthesis 
procedure of CNC-g-PAA. Briefly, ~5 mL of synthesized CNC was 
introduced to 75 mL DI water. The final CNC concentration in mixture 
was ~6 mg/mL, which was sonicated for 40 min and degassed under 
vacuum. Then, 5 mL of sodium persulfate solution (13 mg/mL) poured 
into reaction container and mixture was stirred at 50–55 ◦C for 25 min. 
Subsequently, PAA was introduced, with a weight ratio of CNC to PAA 
(1:6), dropwise to the reaction mixture within 1 h under incubation at 
60–65 ◦C. After addition, the mixture was further incubated for another 
hour. Then the mixture was cooled at ambient temperature and centri-
fuged at 3100 g for 15 min to harvest the synthesized CNC-g-PAA, which 
was highly stable and not precipitated by centrifugation. The synthe-
sized hydrogel was redispersed in DI water two times to eliminate the 
impurities and unbound polymer [47] then lyophilized the sample prior 
to storage. 

2.3. Synthesis of hybrid hydrogel (MgO/CNC-g-PAA) 

MgO/CNC-g-PAA nanocomposite hydrogel was synthesized using a 
slightly modified method version [48,49], illustrated in Fig. 1b. Briefly, 
200 mg of synthesized powder of CNC-g-PAA was dispersed in 5 mL 
ddH2O and final concentration was 40 mg/mL. Then, 25 mL of 100 mM 
MgCl2⋅6H2O was added to dispersed CNC-g-PAA under heating at 
80–85 ◦C with continuous stirring, adjusted the pH (7.0 and 12.0) of the 
hydrogel mixture using aqueous NaOH (0.5 M) solution and incubated 
for 30 min. Subsequently, the synthesized MgO/CNC-g-PAA was har-
vested using centrifugation (3100 g, 15 min) and redispersed in DI water 
three times to remove residual. Samples were dried at 105 ◦C and ob-
tained a fine powder. 

All other materials and methods are described in detail in the sup-
porting information, experimental section. 

3. Results and discussion 

3.1. Characterization of synthesized nanocomposite hydrogels 

MgO/CNC-g-PAA was fabricated by graft polymerization of PAA on 
CNC, and doped with MgO by co-precipitation method (Fig. 1). The 
fabricated nanocomposite hydrogel was evaluated with detailed 

I. Shahzadi et al.                                                                                                                                                                                                                                



International Journal of Biological Macromolecules 220 (2022) 1277–1286

1279

characterizations as FTIR, XRD, SAED, UV–vis spectroscopy, HR-TEM, 
EDS, and DSC. These results demonstrated successful doping of MgO 
on CNC-g-PAA, with improved bactericidal potential and drug loading 
or release efficiency of nanocomposite hydrogel against cancer 
treatment. 

The chemical constituents and functional characterization of syn-
thesized nanocomposite hydrogels were evaluated through FTIR anal-
ysis (Fig. 2a). CNC presented characteristic peaks at 3000–3600 cm− 1 

(O–H stretching), 1050 cm− 1 (C–O–C vibrations) [50], and >C=O 
stretching at 1645 cm− 1 [51]. Moreover, PAA characteristic bands at 
2951 cm− 1 indicate (-CH- stretching vibrations), 1711–1721 cm− 1 

(C––O stretching), as well as peak after oxidation of carboxylic group at 
1570–1600 cm− 1 (C=O) [23,52–54]. CNC-g-PAA exhibited similar FTIR 
spectra comprising OH, COC, and C––O (COOH) peaks of CNC and PAA, 
indicating the effective graft polymerization of PAA onto CNC backbone 
linkages. Highs at 1418 cm− 1 are attributed towards symmetrical and 
asymmetrical stretching vibrations of carboxylate (OC=O) [55], 
whereas absorption band of cubic MgO found at 854 cm− 1 [56]. The 
FTIR spectra of MgO/CNC-g-PAA display all the predicted peaks, 
including -COOH (or -COONa), -OH, and -MgO; however, the intensity 
of MgO peak enhanced significantly at pH = 12.0 (around 854 cm− 1), 
suggesting enhanced binding between COOH (acrylic acid) and MgO 
throughout reaction. This result validated successful substitution of 
MgO in CNC-g-PAA as shown by shift in signal intensity. 

X-ray diffraction in 2θ range of 10◦-70◦ was employed to investigate 
the structural characteristics and phase composition of CNC, CNC-g- 
PAA, and MgO/CNC-g-PAA at pH = ~7.0 and 12.0, as shown in 
Fig. 2b. The major characteristic crystalline peaks in CNC sample were 
found at 2θ of 12◦, 19.5◦, 22.4◦, and 33.9◦ [57,58]. CNC possesses 
crystalline structure because cellulose Avicel was depolymerized more 
successfully in amorphous zone than crystalline region, which retained 
intact after acid hydrolysis [59,60]. After grafting polymerization of 
PAA with backbone CNC chains, almost all peaks were seen in XRD 
patterns of CNC-g-PAA, however, signal strength was drastically 
decreased due to an amorphous structure of PAA [59]. This result 
depicted CNC successful incorporation via graft polymerization [61]. In 
diffraction spectra of MgO-loaded CNC-g-PAA at pH 7.0 and 12.0, the 
characteristic heights at 38.4◦ (222), 44.37◦ (400), 59.17◦ (511), 64.52◦

(440) confirmed existence of doped MgO in CNC-g-PAA corroborated 
cubic structure of MgO as indicated by (JCPDS File 00-030-0794) [62]. 

Following this the optical characteristics (Fig. S3) and thermal sta-
bility (Fig. S4) of synthesized materials were validated through UV–Vis 
spectroscopy and DSC, separately, and were explained including SAED 
analysis in supporting information, supporting text. 

3.2. Size, shape, and morphology of nanocomposite hydrogels 

The surface topography of pure (CNC), grafted (CNC-g-PAA), and 

Fig. 1. Schematic illustration of synthesized MgO/CNC-g-PAA. Panel (a) shows the chemical interaction between CNC and PAA in the presence of Na2S2O8. Panel (b) 
illustrates the synthesis of MgO/CNC-g-PAA. 
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doped (MgO/CNC-g-PAA at pH = 12.0) composites were observed by 
HR-TEM (Fig. 3). TEM images clearly revealed rod-shape of CNC, and 
CNC-g-PAA as highly porous materials. Agglomeration could be seen in 
MgO/CNC-g-PAA (Fig. 3c), which occurred due to particles strong in-
teractions at nanoscale in existence of MgO [63]. Subsequently, as 
shown in Fig. 3(d-f), highly magnified TEM images (10 nm) were used to 
compute interlayer d-spacing of synthesized samples by displaying lat-
tice fringes for crystallographic planes. The calculated d-spacing for 
CNC, CNC-g-PAA, and MgO/CNC-g-PAA measured as ~0.284, 0.288, 
and 0.207 nm, correspondingly, and satisfy theoretical d-spacing of 
(400) MgO planes (JCPDS File 00–030-0794). 

EDS used to ascertain the constituent components of pure, grafted, 
and doped samples (Fig. 3). The existence of Mg and O peaks verified 
production of MgO, which is well incorporated with CNC-g-PAA nano-
composite. While, O and C signal peaks show successful integration of 
PAA and CNC into the lattice. Moreover, Na peak could ascribe from 
NaOH solution added during nanocomposite hydrogel fabrication pro-
cess. The appearance of extra elements (Au, Cl) could be attributed to 
detector's coating material and high background count elements. 

3.3. Anti-microbial and in silico analysis 

The in-vitro bactericidal efficiency of CNC, CNC-g-PAA, and MgO/ 
CNC-g-PAA (pH 7.0 and 12.0) was evaluated by measuring inhibition 
regions (mm) diameter against isolated strains via well diffusion method 
(Table S1). The inhibition areas found for all samples were 0.35–3.15 
mm and 0.40–5.45 mm against E. coli and S. aureus, seaprately. The 
MgO/CNC-g-PAA (pH = 12.0) exhibited maximum inhibition area of 
3.15 and 5.45 mm at maximal concentration (1000 μg/50 μL) while, null 
inhibition region observed at minimum (500 μg/50 μL) concentration. 
The bactericidal efficacy of all samples against G + ve was significantly 

high compared to G –ve, owing to differences in bacterial outer- 
membrane structure. Bactericidal efficiency of nanocomposite can be 
attributed to various phenomena, like electrostatic interactions with 
OH− and H2O fascinated at surface, resulting in reactive oxygen species 
(ROS) production, as depicted in Fig. S8. DI water (0 mm) and cipro-
floxacin (4.25 mm, 5.35 mm) were used as a negative and positive 
control (Table S1). Additionally, DPPH assay and photocatalytic 
behavior were employed to examine free radical scavenging activity of 
synthesized sample (Fig. S7, Fig. S6), as elaborated in supporting text. 

In silico molecular docking analysis are widely documented for 
evaluating possible mechanisms underlying diverse biological actions. 
Herein, docking analysis predicted MgO/CNC-g-PAA significantly 
blocked active site of DHFR and DNA gyrase B enzymes by strong 
binding interaction, which could inhibit the growth of E. coli. The best- 
docked conformation of DHFR enzyme displayed H-bonding in-
teractions with Thr123, Ile14, Ile5, Ile94, Tyr100, Ala7, and Arg98 
through a binding score of 5.70, as shown in Fig. 4(a-c) while binding 
score for a best-docked complex of MgO/CNC-g-PAA with DNA 
gyraseE. coli was 5.54 and formed a hydrogen bond with key amino acid 
residues Gly77, Thr165, Glu50, Val43, and Asn46, shown in Fig. 4(d-f). 

Additionally, MgO/CNC-g-PAA interaction patterns were evaluated 
against DHFR and Tyrosyl-tRNA synthetase from S. aureus. Binding 
score of 8.60 were found in well-docked conformations of the selected 
compound into a DHFR active pocket. Thr46, Gln95, Ile14, Trp22, Ala7, 
and Asp27 interacted with MgO/CNC-g-PAA (Fig. 4 (j-l)). In tyrosyl- 
tRNA synthetase, following residues showed H-bonding with synthe-
sized hydrogels; Gln190, Tyr36, Asp40, Tyr170, and Arg88 with highest 
binding score of 8.73, as depicted in Fig. 4 (g-i). Docking scores of each 
ligand-receptor complex, including the engaged key residues in binding 
interaction, is listed in Table S2. So, a substantial binding score and 
interaction indicated that MgO/CNC-g-PAA might be a potential 

Fig. 2. (a) FTIR spectra, (b) XRD pattern, (c-e) SAED pattern of CNC, CNC-g-PAA, and MgO/CNC-g-PAA nanocomposites  
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inhibitor of selected proteins. 

3.4. DOX loading and pH-triggered based releasing efficiency 

DOX was entrapped in synthesized nanocomposite hydrogels (CNC- 
g-PAA and MgO/CNC-g-PAA) (Fig. 5) by electrostatic interaction be-
tween positive and negative charges of DOX and –COOH-based nano-
composite hydrogels, respectively, and DOX loading results are 
described with detail in supporting text. 

The pH-triggered based release of DOX from DOX-loaded hydrogels 
was evaluated using PBS with two different conditions (pH ~7.4 and 
5.8) [11], which were chosen correspondingly to provide slightly alka-
line and mild acidic environment for healthy and intra-tumoral cells 
(endosomes). Consequently, release rate of DOX was significantly lower 
at pH 7.4 compared to pH 5.8, as seen in Fig. 5. Regarding the DOX 
release efficiency, MgO/CNC-g-PAA (pH = 12.0) exhibited enhanced 
release rate than MgO/CNC-g-PAA (pH = 7.0) and CNC-g-PAA. Under 
neutral to slightly alkaline conditions (pH 7.4), DOX loaded MgO/CNC- 
g-PAA (pH = 12.0) hydrogel released drug <25 % after 24 h (Fig. 5d). In 
contrast, the system revealed a relatively rapid drug release rate in mild 

acidic environment (pH 5.8) as shown in Fig. 5(e, f). The observed rate 
of released DOX after first hour found 11.60 %, and after 24 h, released 
drug amount reached up to 53.7 %, ~2.2-fold higher than release rate at 
pH 7.4. The rapid release of DOX from nanocomposite hydrogels under 
mildly acidic conditions is related to enhancement of drug's hydrophi-
licity by boosting protonated amine groups and decreasing its electro-
static interaction. However, at pH 7.4, a significant electrostatic 
interaction between positively charged DOX molecules and negatively 
charged -COOH would inhibit DOX release from hydrogel. Therefore, 
nanocomposite hydrogels might be stable carriers for targeted drug 
administration with low leakage during blood circulation (pH 7.4); 
nevertheless, a considerable quantity of drug releases at the moderate 
acidic pH, as in intratumoral cells of lysosomes (pH 4–5) and endosomes 
(pH 5–6). 

3.5. In vitro Cytotoxicity analyses 

The MTT assay was conducted at breast cancer cells (MDA-MB-231) 
to evaluate in-vitro biocompatibility and anti-tumour potential of free 
DOX, DOX loaded CNC-g-PAA and DOX loaded MgO/CNC-g-PAA (pH =

Fig. 3. (a-c) TEM and (d-f) d-spacing of synthesized nanocomposites; (a, d) CNC, (b, e) CNC-g-PAA, and (c, f) MgO/CNC-g-PAA (pH = 12.0), (g-i) EDS analysis of 
CNC, CNC-g-PAA, MgO/CNC-g-PAA, (j-l) Elemental mapping of (j) MgO/CNC-g-PAA (pH = 12.0), (k) O, and (l) Mg. 
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12.0). The dose-dependent response of cell cytotoxicity assessed using 
various concentrations (3.9–500 μg/mL) of samples is shown in Fig. 6. 
The cytotoxic influence of drug-loaded nanocomposites (Fig. 6b) is 
significantly higher in contrast to drug-free nanocomposites (Fig. 6a), 
suggesting interference of nanocarriers by decreasing cancer cells 

viability as well as increasing drug update through endocytic process. 
These findings suggest MgO/CNC-g-PAA (pH = 12.0) synergistically 
enhanced DOX therapeutic efficacy by binding with DNA through 
intercalation and triggering a cascade of biochemical reactions resulting 
apoptotic cell death. Post-treatment 24 h, samples cell viability at 

Fig. 4. Binding interaction pattern of the ligand (MgO/CNC-g-PAA) within the binding region of Dihydrofolate reductase (teal) shown in panels (a-c) and DNA gyrase 
B (violet) in panels (d-f) from E. coli. A docked ligand in the binding domain of both proteins is represented in panels (a, d), binding interaction pattern (b, e), and 2D 
view (c, f). Obtained ligand (MgO/CNC-g-PAA) binding modes in Tyrosyl-tRNA synthetase (light pink) binding domain in panels (g-i) and DHFR (light green) shown 
in panels (j-l) from S. aureus. A docked ligand in the binding domain of both proteins is represented in panels (g, j), binding interaction pattern (h, k), and 2D view (i, 
l). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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numerous drug concentrations revealed substantially dose-dependent 
pattern. CNC-g-PAA acted as agonist with DOX to achieve synergetic 
effect against MDA-MB-231 cancer cells. The simultaneous release of 
DOX and CNC-g-PAA following internalisation into breast cancer cells 
and improved accumulation at tumour site could be reason for improved 
cytotoxicity [64]. The therapeutic efficacy of DOX and MgO/CNC-g-PAA 
formulation resulted substantial synergistic effect in contrast with CNC- 
g-PAA hydrogel, revealed through findings of in vitro cytotoxicity studies 
[23]. 

4. Conclusion 

A novel metal-doped hydrogel (MgO/CNC-g-PAA) was successfully 
fabricated and evaluated for efficient antibacterial activity and targeted 
drug delivery. Morphological analyses revealed that generated CNC-g- 
PAA showed a porous sponge-like structure. Prepared nanocomposites 
revealed significant bactericidal efficiency against gram-positive bac-
teria. In silico analyses were performed to examine the mechanism 
behind bactericidal activity by binding interaction of nanocomposites 
with targeted proteins, and results revealed a good agreement with in 

Fig. 5. (a) UV–vis spectra based drug loading profile of DOX into nanocomposites, (b) comparison of LC and LE of loaded drug. Schematic illustration of pH-triggered 
based DOX releasing from nanocomposites at (c) pH 7.4 and (e) 5.8. DOX release behavior from drug loaded samples (CNC-g-PAA, MgO/CNC-g-PAA (pH = 7.0), 
MgO/CNC-g-PAA (pH = 12.0)) at (d) pH 7.4 and (f) pH 5.8. Shown values are means ± standard deviation (n = 3). 
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vitro bactericidal activity. Moreover, these negatively charged hydrogels 
effectively entrapped the hydrophilic drug DOX by electrostatic in-
teractions with LE of up to 79 %. In vitro release behavior of drug from 
DOX-loaded nanocomposite hydrogels revealed an efficient, stable, and 
controlled drug release at acidic pH 5.8. Because carboxyl groups pro-
tonate under acidic circumstances, so dropping the pH from 7.4 to 5.8, 
greatly increases the releasing rate of DOX. Finally, in vitro cytotoxicity 
study demonstrated that synergistic effect of DOX and MgO/CNC-g-PAA 
might trigger apoptosis in breast cancer cells (MDA-MB-231). Based on 
these findings, MgO/CNC-g-PAA hydrogels are potential candidates for 
targeted and controlled hydrophilic drug delivery. 
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