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Featured Application: The method presented can be used to estimate sex attributes from a small
set of cranial metric traits.

Abstract: The morphology of the human cranium allows for reconstructing important information
about the identity of an individual, such as age, ancestry, sex, and health status. The estimation of
sex from morphology is a key component of the work of physical anthropologists, and in the last
decade, the field has witnessed an increase in the use of novel algorithm-based methodologies to
tackle the aforementioned task. Nevertheless, several limitations (e.g., small training/testing sample
size, training-test data relatedness, limited population inclusiveness, overfitting) have hampered the
application of such methods as a standardised procedure in the field. Here, we propose a population-
inclusive protocol for estimating sex from a small set of cranial metric traits (10 measurements) based
on a neural network architecture trained to maximise the probability of sex attribution and prevent
overfitting. The cross-validation returned an accuracy of 86.7% ± 0.02% and log loss of 0.34 ± 0.03.
The protocol developed was tested on data unrelated to that of the training and validation phase and
returned an estimated accuracy of 84.3% and log loss of 0.348. The model and the related code to use
it are made publicly available.

Keywords: sexual dimorphism; neural network analysis; human cranium; physical anthropology; protocol

1. Introduction

One fundamental task of physical anthropologists is that of reconstructing the biologi-
cal identity of human remains from the incomplete information provided by the skeleton
or parts of it [1]. Available methods to establish the sex from the skeleton include protocols
based on the visual inspection of morphological traits differing between males and females
or quantitative methods often relying on linear measurements used to discriminate between
sexes by means of specific algorithms. Such methods have been successfully applied to
attribute sex from several different elements within the human skeleton (i.e., femur [2],
humerus [3], pelvis [4], teeth [5], talus and calcaneus [6], upper limb [7], and the metacarpal
bones [8]). To achieve the highest accuracy, the analysis of the most dimorphic skeletal
regions is desirable, such as the coxal bone and other post-cranial elements [9]; when these
are not available, another useful source of information is found in the cranium [1,10]. Some
important sources of information regarding sexual dimorphism in the human cranium
reside in the occipital protuberance, the mastoid process, and the glabellar region [11,12],
among others. To provide a standardised approach, potentially less prone to individual
bias, it is essential to refine the quantitative methodologies currently available, defining
their limitations and establishing the expected performance achievable. In traditional
anthropology, a common procedure for estimating sex from the cranium uses a scoring
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system of morphological traits evaluated visually [11,13]. Despite being a straightforward
and practical method, the success of these traditional approaches depends directly on the
experience of the observer, and errors due to subjectivity tend to be higher than in quantita-
tive methods [14,15]. To overcome such obstacles, the use of quantitative measurements
and algorithm-based methods have received considerable attention in the last decades.

Previous studies have highlighted the challenges of extrapolating sex information
from cranial morphology and variability. The cranium, by its own nature, is a sum of multi-
variate factors, such as ontogeny, ageing, diet, genetics, epigenetics, and pathologies [16],
and it is, therefore, difficult to isolate sex-related information from those confounding
factors. Another great challenge comes from the relationship between morphology and
ancestry. For example, some studies define small and gracile skulls as females, while the
attributes of a large size and robust appearance are associated with males [12,17,18]. These
differences cannot be applied to humans tout court because the association between the
robust/gracile appearance is never perfectly binary: depending on the population, it is pos-
sible to find small males and robust females and overlapping morphological variability be-
tween sexes is common in modern humans [16], as it is the general overlapping among pop-
ulations [19]. These circumstances led several authors to focus their studies on individual
populations [20–24], which produce results that can hardly be extrapolated to the whole
human variability.

The last few decades have witnessed a remarkable development in quantitative meth-
ods such as geometric morphometrics and machine learning, which have been successfully
applied to Biological and Forensic Anthropology [25–27]. Those methods have triggered a
tremendous growth in the search for new quantitative solutions to the problem of estimat-
ing sex from the human skeleton [19,28–31]. In particular, machine learning (ML) provides
a flexible approach to estimating attributes such as sex from skeletal measurements—an
approach adopted more and more in the field [25–32].

All too often, though, algorithm-based studies addressing sex estimation from the
human cranium suffer from a lack of “generalisability” and the absence of a solid testing
framework. Part of the issue derives from the use of only limited human variability, for
example, during the training phase of the ML applications: as mentioned above, studies on
individual populations, or groups of populations, have been prioritised [29,32,33], probably
because of the difficulty of accessing worldwide data of known sex [34]. Furthermore,
testing is often performed on samples too small to provide statistical reliance [35–37], and
those samples are often part of the same body of data (e.g., collected by the same observer,
belonging to the same population/group) used during the training phase [38], which
potentially limits the population-inclusive application of the estimation achieved.

The shortcomings of previous approaches are not only limited to the source and size
of the sample. The number of variables considered can be problematic for several reasons.
Cranial variables can be highly correlated with each other because of morphological inte-
gration [24], and this can make the dataset redundant. The more the number of variables,
the higher the redundancy, which increases the risk of overfitting (i.e., when the prediction
performs well on the training data but cannot generalise on unseen data [39]). Furthermore,
the use of several variables can become problematic when dealing with incomplete cranial
remains, a common occurrence with archaeological and forensic material.

An additional limitation is the over-reliance on “accuracy” as a measure of perfor-
mance. The accuracy of an estimation reflects the proportion of cases correctly assigned to
their class: in a binary situation, such as the estimation of sex, the accuracy is computed
by counting how many males and females are identified as males or females, respectively.
Quantitative algorithms, though, provide the estimation in terms of probability, and, in
a binary case, observation is attributed to a class if it has a probability higher than 0.5 for
that class, although the threshold can be different. Therefore, accuracy does not account
for the probability of the estimation (its “strength”, in other words) because the same
result is obtained regardless of whether the probability of an observation being male or
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female is 0.51 or 0.99. The usefulness of accuracy is dependent on where we set the cut-off
probability [40].

The result of the abovementioned limitations is that, as of today, we lack a clear
understanding of the potential of quantitative applications for the estimation of sex from
the human cranium. In fact, although previous applications have fuelled research on
the subject, the training and testing frameworks they used were prone to potential bias
to an extent difficult to pinpoint, thus limiting their use as standardised methods for
estimating sex. Here, we try to overcome those limitations using a population-inclusive
neural network approach based on large training and testing datasets from different sources,
requiring a limited number of traits and maximising the probability of estimation rather
than accuracy. The advances produced by this work are three-fold: (I) it provides an
estimation easy to transfer to other datasets, regardless of ancestry; (II) it clarifies the
potential of quantitative, algorithm-based estimation of sex from human crania, maximising
probability over accuracy; (III) it presents a step-by-step protocol for the application of
ML-based predictions to solve basic problems in the field of physical anthropology.

2. Materials and Methods
2.1. The Datasets

Machine learning applications make use of three sets of data, namely Training, Validat-
ing, and Testing. The training set is used to provide the algorithm with “learning material”,
on which it iteratively improves its performance to build an optimal model; the perfor-
mance during training is assessed on the validating set; finally, the testing set is an external
source of data for evaluating the ability of the model to generalise its performance. This
work relies on two sources of cranial measurements: Howell’s craniometric dataset [41–43]
and the University of Tennessee (UT) Database for Forensic Anthropology in the United
States [44]. Here, Howell’s data is used during the training and validation steps, while
the UT Forensic dataset is used for testing. Howell’s dataset consists of 82 craniomet-
ric measurements recorded on 2524 human crania from 30 populations with worldwide
distribution. The UT Database for Forensic Anthropology includes 36 craniomandibular
variables recorded on 1396 individuals of mixed ancestry (identified or unidentified) from
forensic cases (from 1962 to 1991) in the United States.

2.2. Data Preparation

Ten craniometric measurements were selected from the datasets, and their definitions
are reported in Table 1. The measurements were chosen to represent most of the morphology
of the human cranium using only a reduced number of variables (to reduce redundancy
across measurements); at the same time, the measurements were chosen to account for
some cranial traits previously associated with high levels of sexual dimorphism in modern
humans (e.g., mastoid and orbital shape [1,45,46]. The measurements are shown in Figure 1.
Only adult individuals were included in the analysis. The sex attribution in Howell’s
dataset is not known with certainty but is estimated based on non-metric traits by the
same William Howell, using a procedure described in [43]. Although it is not ideal to
train the model on specimens whose sex is estimated, this choice was necessary due to
the difficulties of finding cranial metric datasets of suitable size and with worldwide
representation; therefore, this limitation may be reflected in the final model. To balance
population representation within the dataset, we removed populations including only one
or the other sex. In the UT database, sex information is based on direct identification or on
soft tissue estimation—only individuals whose sex is identified directly are included in our
dataset—thus, the sex of the individuals included in this dataset is known. To avoid biases
during the training and testing phases, in both datasets, the female and male sample size
was balanced by randomly reducing the male subsample (originally more abundant).
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Table 1. Cranial measurements used in the analysis, abbreviations, and definitions.

Measurement Abbreviation Definition

Biauricular breadth AUB The shortest distance across the roots of the
zygomatic processes

Basion-bregma height BBH The linear distance from basion to bregma

Glabella-occipital length GOL The linear distance from glabella to opisthocranion
along the midsagittal plane

Mastoid height MDH The linear distance between porion and
mastoidale points

Nasal breadth NLB The maximum breadth of the nasal aperture

Nasal height NLH The height from the nasion to the lowest point on
the rim of the nasal aperture

Orbit breadth OBB The linear distance from dacryon to ectoconchion
points

Orbit height OBH
The linear distance between the superior and
inferior margins of the orbits, measured
perpendicularly to orbital breadth

Lambda-opisthion chord OCC The linear distance from lambda to opisthion
along the mid-sagittal plane

Bizygomatic breadth ZYB The maximum breadth across the zygomatic
arches, perpendicular to the mid-sagittal plane
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Figure 1. Graphical representation of the 10 cranial measurements used in the analysis. The measure-
ments respect the anthropological standard established by Howells [36]. Definitions are provided in
Table 1. (ZYB: bizygomatic breadth; MDH: mastoid height; AUB: biauricular breadth; OBH: orbit
height; GOL: glabella-occipital length; NLB: nasal breadth; OCC: lambda-opisthion chord; OBB: orbit
breadth; BBH: basion-bregma height; NLH: nasal height).

To account for outliers in Howell’s dataset, all the observations that exceed three
standard deviations from the mean of at least one of the 10 measurements were removed.
Outliers were not removed from the UT dataset because it constitutes the test data and
because of the need for evaluating the performance of the eventual model on a realistic vari-
ability of the human cranium. Missing data were present in the subset obtained for the UT
dataset; those individuals missing 50% of data or more (at least 5 out of 10 measurements)
were discarded from the dataset. The other incomplete observations were estimated using
Additive Regression, performed using the R package “Hmisc” [47]. The percentage of
missing data in each measurement did not exceed 7.9%. In both datasets, the 10 linear mea-
surements were adjusted for the isometric effect of size using Mosimann transformation,
which weighs each measurement on the geometric mean of all measurements [48]. The
geometric mean was included as an additional measurement in both datasets to explicitly
represent size. The measurements were then standardised by z-score transformation (scaled
to zero mean and unit variance).
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The transformed measurements are henceforth referred to as features, in line with
the current use in machine learning applications. The final size of Howell’s dataset is
2292 individuals, including 1146 females and 1146 males; the final UT dataset consists
of 606 individuals, 303 females and 303 males. Each dataset includes 11 metric features
generated from 10 measurements. Specifics of the sample are also reported in Table 2.

Table 2. Details of the sample used. Source, population (if known), and sex attribution are reported.
Sample sizes refer to the datasets after the transformations operated for the scopes of the current study.

Dataset Source Population Sex (F:M)

Training and
Validation

William W. Howell’s
craniometric dataset Ainu 38:46

Andaman 31:33
Arikara 27:36
Atayal 17:26
Australia (aboriginals) 49:50
Berg 53:53
Buriat 54:45
Bushman 46:39
Dogon 51:45
Easter Island 37:42
Egypt (600–200 B.C.) 53:53
Eskimo 55:43
Guam 27:28
Hainan 38:43
Mokapu 49:45
Moriori 51:54
Japan (North) 32:52
Japan (South) 41:45
Norse (medieval) 54:52
Peru 55:49
Santa Cruz 51:47
Tasmania (aboriginals) 42:40
Teita 50:32
Tolai 54:49
Zalavar (medieval) 45:49
Zulu 46:50

Test

University of Tennessee
Database for Forensic
Anthropology in the
United States

Ancestry unknown 303:303

2.3. The Classification Algorithm

The Machine Learning application presented here is a classification task, with the
ultimate target of finding a model capable of attributing sex based on a limited number
of metric cranial features. The steps followed in the procedure described below are sum-
marised in Figure 2. The implementation of the classification task was performed using the
open-source Machine Learning platform “H2O” through the R interface package “h2o” [49].

The sex-classification model was implemented using a feedforward neural network [50],
consisting of an input layer (that introduces the features into the network), one or more
hidden layers (that transform the input features), and an output layer (the last layer that
receives the data processed within the network and produces a result). Each layer is made
of nodes (also called neurons or perceptrons), which are the network’s computational units.
Every time an input travels to a node of the hidden layers, it is multiplied by some weight,
which modifies the influence of that input on the output. At each node of the hidden layers,
multiple weighted input features arrive and are combined by an activation function, whose
output is a new input to another hidden layer or to the output layer. In this work, we use a
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non-linear activation function (see Table 3) to allow the output model to identify non-linear
patterns in the differences between females and males.
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Figure 2. Schematic representation of the machine learning workflow adopted. The data for the
parameter tuning were divided into 10 sets of training and validation datasets, allowing cross-
validation of the models evaluated and then fed to the neural network algorithm. The algorithm
returns the performance of the models on the validation sets, which is the basis for selecting the
tuned parameters that allowed best performance for the model. The model is trained on a joint
dataset (train + validation) to obtain the best performing model. The performance of the best model
is assessed using a test dataset, unseen during the previous phases of the workflow.

Table 3. Crucial parameters of the neural network algorithm, definitions, and values adopted.

Parameter Value *

Epochs 1000
Stopping metric Log loss
Loss function Cross entropy
Distribution Bernoulli
Learning rate 5 × 10−4

Momentum start 0.5
Momentum ramp 1 × 10−6

Momentum stable 0.99
Stopping rounds 20
Stopping tolerance 1 × 10−4

Input dropout ratio 0
Number of folds 10
Fold assignment Stratified
Activation function Rectifier with dropout
L1 regularisation 0
L2 regularisation 0, 1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2, and 5 × 10−2

Hidden layers 1 and 2
Nodes per layer 3, 7, 11, 15, 19, 23, and 27

* The values used for the parameters refer to the options set in the h2o.deeplearning function in the “h2o” R
package [51]. Parameters not shown are left as default as per version 3.36.0.3 of the “h2o” package. When multiple
values are shown, the parameter underwent tuning via the brute force approach.
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2.4. Parameter Tuning

Machine Learning algorithms operate depending on certain fundamental hyperparam-
eters (henceforth just parameters), whose values govern the way the algorithm performs.
To find a suitable model, the initial step is to find the combination of parameter values
that provide the best performance for the generated model—an operation referred to as
“parameter tuning” [39,51]. Here, parameter tuning was performed using a “brute force”
approach (also known as “grid search”) by training the algorithm multiple times, each
with different combinations of the parameters, and then validating the performance of the
models thus generated.

The neural network algorithm depends on several parameters, and the most important
ones account for the network’s architecture and are the number of hidden layers and the
number of nodes per layer; the larger these values, the more complex the output model
can be, and this can allow more subtle differences to be identified. Nevertheless, model
complexity can lead to overfitting when the model learns to classify the data in the training
set but has poor predictive abilities on new data [39]. Overfitting is particularly common
in applications using limited amounts of observations, such as this work and several
applications in the archaeological and anthropological fields, where data are often scarce.
A limited number of features (a characteristic of our dataset) can help lower the chance of
overfitting by reducing redundant information [52]—this is the case when using cranial
measurements because they are correlated with each other. To further reduce the chance of
overfitting, regularisation parameters can be tuned. Regularisation is a set of techniques
used to avoid overfitting by reducing complexity through the penalisation of the features’
influence [39]. In the case of a Neural Network, regularisation can assign zero to part of the
weights (L1-regularisation), or it can make those weights smaller (L2-regularisation).

The training was tuned over two values for the number of hidden layers (1 and 2) and
over seven values for the number of nodes (3, 7, 11, 15, 19, 23, and 27—the same number
of nodes was used in all hidden layers). Additionally, a sequence of seven values for the
L2-regularisation parameter (0, 1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2 and
5 × 10−2) was used in the tuning. The overall number of different models trained during
the tuning phase was 98 (2 × 7 × 7). The values of other parameters (see Table 3) were
estimated using a trial-and-error manual tuning, thus reducing the computational time
needed for the “brute force” approach.

2.5. Training and Validation

Training and validation were performed for each model for a set number of epochs.
Each epoch can be seen as a learning cycle: at each epoch, the training data are fed to the
input layer, they get weighed along the path to the hidden layers, and a predictive model is
returned through the output layer. A prediction is then performed on the validation data
and compared to the observed output (in our case, the observed sex of the individuals in
the validation set) to evaluate the performance of the current model. In the next epoch,
the weights are modified to improve the model performance according to the result in the
previous epoch. The performance can be evaluated based on different metrics [53].

In this work, the training and validation data were obtained from Howell’s dataset
using 10-fold cross-validation; therefore, each of the 98 models was trained 10 times,
with approximately 90% of the data used for training and 10% for validating the model
performance. The data were assigned to each fold using a stratified approach [54] to ensure
balanced sex classes within the folds.

The model performance is here evaluated on the validation set using the log loss
metric (or cross-entropy). Since the model assigns a probability of being female or male
to any new observation, we want to obtain a model whose prediction yields the highest
possible probability of belonging to a given class. The log loss metric measures how close
the predicted probability is to certainty (probability of 1); the smaller the divergence, the
lower the log loss [55]. Ideally, we want log loss to approach zero, but for a balanced binary
classification task, a realistic and useful upper-threshold value is set at 0.693—this is the
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non-informative log loss, or the value of log loss when both classes are predicted with
probability equal to 0.5 (same probability of assigning an observation to the female or male
class). The training is therefore performed by reducing log loss along the epochs.

Here, training and validation are performed for a maximum of 1000 epochs. To reduce
the computational time, we used an early-stopping technique, which stops the training
process when the performance does not change over a specified tolerance for a specified
number of cycles [56]. In the present case, training is set to stop when log loss stays within
a tolerance of 1 × 10−4 for 20 consecutive cycles. Therefore, training does not usually run
for the maximum number of epochs allowed. Values of log loss below 0.693 indicate that
the fitted model performs better than a random prediction.

2.6. Best Model, Variable Importance, and Testing

All the models generated during tuning (trained and validated) are scouted for the
model with the best performance, which is evaluated based on the prediction of each model
on the validation set. After the best-performing model is detected, the final model is built,
which is the ultimate output of the training procedure. The final training is carried out on a
compound dataset including both training and validation data (joined into a single training
set), and the parameters are assigned the values that those same parameters have in the
best-performing model of the tuning phase. When the final model is obtained, its ability to
generalise its predictive power is evaluated on the test set.

Here, the best-performing among the 98 models of the tuning phase was chosen based
on multiple factors. First, the best model is the one whose prediction on the validation
set returned the lowest log loss; this ensures that the final model is capable of attributing
sex with the highest per-class probability. Second, we wanted to maximise the area under
the receiver operating characteristic (ROC) curve, a quantity also known as area under
curve (AUC). The ROC is a probability curve comparing the false positive rate (FPR or
1-specificity) and true positive rate (TPR or sensitivity) of a binary outcome when the cut-
off probability for deciding whether to assign an observation to a certain class is lowered
sequentially from one to zero. Therefore, AUC measures how well the model distinguishes
both classes of a binary outcome in a way that is independent of the cut-off chosen for the
class attribution [53]. Finally, when different models have similar log loss and AUC, the
models with lower complexity are chosen; in our case, we gave preference to models with
only one layer and a low number of nodes to reduce the chances of overfitting.

When the best-performing model was chosen, the final model was trained on the
whole Howell’s dataset using the values of the parameters shown in Table 3, as we did
during the tuning phase, with the exception of the tuned parameters, whose values were
those found via parameter tuning. The relative importance of each feature in the model
was computed in the “h2o” R package following the method of Gedeon [57]. The final
model was then used to predict the known sex of the observations in the test set, to
assess its performance on data not included in the training phase and, therefore, unseen
by the model. The model and code to use it are made publicly available on GitHub
(github.com/AlessioVeneziano/Papers/tree/main/DelBove_%26_Veneziano_2022, accessed
on 9 September 2022).

3. Results
3.1. Best Model Selection

The results of parameter tuning for the 98 models evaluated showed an improvement
in performance with an increasing number of nodes and decreasing L2 regularisation
(Figure 3). log loss was consistently lower than the non-informative threshold (0.693 for
a binary classification), reaching the lowest value of 0.339 at 27 nodes and L2 parameter
equal to 5 × 10−3, when one hidden layer was used, and of 0.346 with 19 nodes, L2 equal
to zero and two hidden layers. Log loss was consistently lower for models using one
hidden layer rather than two, although the differences were small for models with more
than 11 nodes and low L2 parameter. AUC was always higher in models with one hidden
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layer and less variable among models (Figure 3), suggesting that two hidden layers may
introduce a degree of overfitting in the conditions analysed here. The highest AUC of 0.929
was obtained with one hidden layer, 11 nodes, and L2 equal to 1 × 10−4.
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Figure 3. Performance of the sex classification on the validation dataset during parameter tuning. The
top graphs show the performance as log loss, while the bottom ones use the area under the receiver
operating characteristic (ROC) curve (area under curve or AUC). The performance is compared across
different values of the tuned parameters: L2 regularisation, number of nodes per layer, and number
of hidden layers (the results for models trained with one hidden layer are shown on the left, with two
hidden layers on the right). The performance improves from yellow to blue, specifically with log
loss decreasing and AUC increasing. The blue sphere indicates the best performing model: it shows
the maximum performance obtained and the relative values of the tuned parameters that produce
that performance.

To choose the best model, we accounted for both log loss and AUC, also prioritising
the least complex model to avoid overfitting. We picked the best performing model
among those trained with one hidden layer because they consistently outperformed models
with two hidden layers. Among those models, the lowest log loss and highest AUC
were obtained with different parameter values, as reported above: 27 nodes and L2 of
5 × 10−3, and 11 nodes and L2 of 1 × 10−4, respectively. The performance of those two
models differed negligibly: the difference in AUC and log loss was 5 × 10−4 and 2 × 10−3,
respectively. Based on these results, we can confidently prioritise the least complex model
among the ones performing best for AUC and log loss. The selected model had one hidden
layer, 11 nodes, and L2 equal to 1 × 10−4.

The model chosen as the best performing (based on the criteria stated above) was
among the models with the lowest log loss and highest AUC among those validated in
the present study (Figure 4). The performance on cross-validation returned an accuracy of
0.867 ± 0.022, AUC of 0.929 ± 0.017, and log loss of 0.341 ± 0.033. Furthermore, when
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we look at the learning curves for the best model (Figure 5), we can appreciate how the
performance (log loss and AUC) of the training and validation sets had a comparable
pattern and small difference, reaching a point of stability along the epochs. The pattern
shown in Figure 5 suggests that the model selected had not undergone overfitting.
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Figure 5. Learning curves showing performance of classification during the epochs. Performance is
shown as log loss and area under curve (AUC), measured on the training and validation datasets (in
darker and lighter colours, respectively). The similar pattern measured for the two datasets suggests
that the performance learned through the training set was generalised to the validation set, thus
indicating no overfitting occurred.

3.2. Variable Importance and Model Performance

The estimation of the relative feature importance (Figure 6) shows that the model’s
prediction was highly influenced by the geometric mean computed on the other measure-
ments (GM: 19.7%), which includes size, followed by the bizygomatic breadth (ZYB: 14.4%)
and mastoid height (MDH: 10.2%). The remaining features had smaller contributions (each
less than 10%), with the lowest scores shown by basion-bregma height and nasal height
(BBH and NLH: 4.7%).
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Figure 6. Relative importance of each feature in the best model selected. The importance is
shown as a percentage. (GM: geometric mean; ZYB: bizygomatic breadth; MDH: mastoid height;
AUB: biauricular breadth; OBH: orbit height; GOL: glabella-occipital length; NLB: nasal breadth;
OCC: lambda-opisthion chord; OBB: orbit breadth; BBH: basion-bregma height; NLH: nasal height).

When the performance was assessed on the 606 individuals (303 females, 303 males) of
the test dataset, 266 out of 303 females were correctly sexed by the model, and 245 out of 303
for the male group. The model estimated sex with an accuracy of 0.843, and the intra-group
accuracy was 0.809 for females and 0.878 for males, thus indicating a better performance
for the male group. The log loss estimated on the test set performance was 0.348, much
lower than the uninformative threshold of 0.693, suggesting that the observations are
estimated with probabilities generally higher than 0.5. Figure 7 shows the histogram of the
estimated probabilities of being female/male for the observations whose sex was correctly
identified by the model. Ideally, we want the distribution to be negatively skewed (larger
frequency of high probabilities); such a pattern was observed for our test sample, with 90%
of the correctly sexed observations being estimated with a probability equal or higher than
0.66 (female) and 0.70 (male). The distribution of estimated probabilities for males was
particularly skewed, with more than 40% of correctly sexed observations estimated with a
probability equal or higher than 0.98.
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The AUC of an ROC curve is a better estimator of performance than accuracy when
we deal with binary classification. In fact, AUC provides an indication of the performance
of both classes through a single metric. The ROC curve of the model prediction is shown in
Figure 8. The AUC measured on the test set was 0.923.
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4. Discussion

The literature regarding sex estimation from the human cranium is abundant and
has flourished through the use of algorithm-based approaches. Nevertheless, generalising
previous findings is tricky because of the focus limited to single populations, but also
because the results from such approaches can be misleading if testing is not performed
accurately (e.g., using statistically-relevant sample sizes, checking model overfitting, adopt-
ing representative performance metrics). Here, we addressed some of those issues by
training a neural network on a limited set of cranial measurements from a broad human
variability and generating a model independent of ancestry and robust to overfitting. The
model was tested on unseen data of known sex, and its performance was evaluated using a
probability-based metric (log loss).

4.1. The Model Performance

Our model uses only 10 linear measurements (Table 1) to describe cranial shape,
with the addition of the geometric mean computed from those measurements. The best
performing model (established based on parameter tuning on cross-validated data) was able
to estimate sex with 84% accuracy. This result is virtually free of overfitting (see methods for
information about how it was avoided), and the log loss performance shows that 90% of the
individuals attributed to the correct sex were estimated with a probability higher than 0.65
(Figure 7). Our findings suggest that the model generated is capable of working efficiently
with only a limited number of measurements (a positive characteristic for applications
on fragmentary crania). Although this result appears underwhelming if compared to
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the higher accuracies reached by other studies [28,58], it must be highlighted that those
studies have tested data on only small datasets, which cannot guarantee protection from
random sampling effects. In this study, the model was tested on more than 600 individuals,
suggesting that the result observed here is more reliable. Furthermore, here we base the
evaluation of model performance on log loss, which accounts for the probability of the
estimation—this is not common practice in the literature regarding sex estimation from
skeletal material, and the absence of such information makes it difficult to assess the
performance of previous models.

The model generated here was built on a broad cranial variability of modern H. sapiens,
which suggests an easier generalisability to applications beyond single populations, al-
though this was not explicitly tested. In addition, the accuracy demonstrated is remarkable
if we consider that the training dataset consists of crania whose sex was estimated using
a visual approach [41–43]. This finding is relevant because large datasets of known sex
are very rare and often difficult to access, and sex estimation through visual inspection
approaches can introduce biases, especially with regard to size [14,58]. By monitoring the
model performance through metrics such as AUC, it is possible to check for the prevalence
of correct estimations for both sexes. In fact, AUC can account simultaneously for the classi-
fication of both classes in a binary application [59] (Figure 8). In this study, AUC was taken
into account when tuning the parameters to choose the best-performing model among
those generated. Thanks to the protocol used and based on the performance observed
during testing, we can confidently assume that the model is unbiased toward one or the
other sex.

4.2. The Variable Importance

The measurements used to build the neural network model were purposely chosen
to represent as much cranial variability as possible by keeping only the essential amount
of morphological information. Those choices aim to increase the chances of application
(e.g., when crania are only fragmentary) but also to reduce the chances of overfitting. In
choosing the measurements to include in the dataset, we also made sure to include traits
that were previously recognised as sexually dimorphic in modern humans. How the
variables are allowed to interact in the model is hard to pinpoint; in fact, neural networks
and other algorithms are referred to as “black boxes” [60]. This means that the way in
which the model is classifying the crania (e.g., the nature and degree of interaction across
the metric traits used) is not straightforward (especially because we used a non-linear
activation function). Nevertheless, we can make assumptions regarding the model based
on the measured variable importance, which represents an approximation of the influence
of each trait on the estimation.

The variable deemed to be the most relevant in the estimation was the geometric mean
(Figure 6). This variable was computed from the 10 metric traits to represent the size of the
cranium. Size was virtually erased from the other measurements thanks to the Mosimann
transformation [48]; thus, we can expect that the sexual differences in overall dimensions
were gathered in this single feature. The observed importance of geometric mean suggests
that size is an important aspect of human cranial dimorphism, although it must be high-
lighted that, in the model, size may have been interacting with other features; thus, it could
be important only in association with other sources of morphological variability.

Following size, the second most important feature was the bizygomatic breadth,
followed by mastoid height and biauricular height (Figure 6). Bizygomatic breadth was
analysed in several studies [17,22,61–64], and in each, bizygomatic breadth measurement
positively discriminated sex. Moreover, in other studies using different approaches than
the one adopted here, the shape of zygomatic arches resulted in a diagnosis of sex [14,65].

Mastoid height was formerly known to vary between sexes [42,65]. Mastoid bones are
more developed in males than in females, and thus, the mastoid influence on our model is
not a surprise (see Figure 6). Third in importance in our model was the biauricular breadth,
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lesser known than the bizygomatic breadth for its sex-related differences, but previously
reported in the literature [17,61,64].

All measurements selected for our model are noted in the literature [17,22,61–64,66],
except for the orbital height. This measurement is not considered sexually dimorphic by
various authors [17,61,64]; however, it presented a non-negligible influence on our model.
This result is in agreement with the use of orbital shapes for sexing individuals through
visual inspection [41,59]. Finally, the nasal region seems to contribute to a minor degree
to the sexual dimorphism of the human cranium, which could support the idea that the
morphology of the nasal area is functionally determined [60].

5. Conclusions

In this work, we attempted to overcome some of the common methodological obsta-
cles encountered when estimating sex from cranial measurements using an algorithm-
based approach. Some limitations are still present, such as the model training with
crania, whose sex was estimated, a necessary decision (see Section 2.2). Nevertheless,
the model generated is a step forward in the establishment of standardised procedures
for the semi-automated estimation of individual attributes from skeletal material. The
trained neural network model is made publicly available on GitHub with no restric-
tions (github.com/AlessioVeneziano/Papers/tree/main/DelBove_%26_Veneziano_2022,
accessed on 9 September 2022). We also describe the protocol of model training, validating,
and testing in detail to allow reproducibility and correct usage of machine learning applica-
tions in the field of physical anthropology. The findings presented here provide evidence
regarding the extent to which cranial metric traits can be used for attributing sex to skeletal
material and highlight the potential that machine learning methods have to automate sex
estimation from the crania.
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