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We introduce a framework to intertwine dynamical processes of different nature, each with its
own distinct network topology, using a multilayer network approach. As an example of collective
phenomena emerging from the interactions of multiple dynamical processes, we study a model where
neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation
of the transport process at one layer depends on the degree of synchronization at the other layer, and
vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a
spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not
present in the two systems considered separately. Our framework can find application to other cases
where two or more dynamical processes such as synchronization, opinion formation, information
diffusion, or disease spreading, are interacting with each other.
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Networks are a powerful way to model and study a
wide variety of complex phenomena [1, 2]. In the re-
cent years, the study of collective dynamical processes
on complex networks has improved our understanding of
many complex systems and shed light on a wide range
of physical, biological and social phenomena including
synchronization [3], disease spreading [4], transport [5]
and cascades [6]. Of particular interest in these works is
the interplay between the structure of the network and
its dynamics [7, 8]. In fact, the topology of a network
has an effect on the dynamical processes that take place
over the network [9], while some properties of the dynam-
ics can reveal important information on the interaction
network [10–12]. Understanding the relations between
structure and dynamics can provide a solid foundation
for modeling, predicting, and controlling dynamical pro-
cesses in the real world. However, save for a few notable
exceptions [13–16], the majority of the studies so far have
considered a single process on a single network, ignoring
a very important ingredient: often the components of a
complex system interact through two or more dynamics
at the same time, and these dynamics usually depend on
each other in highly non-trivial ways.

In this Letter we propose a general framework for mod-
elling, through a multiplex network, the coupling of dy-

namical processes of the same type (e.g. the spreading
of two coupled diseases) or of different types (for in-
stance a synchronization dynamics and a diffusion pro-
cess). Moreover, we demonstrate with a specific example
that this coupling mechanism can give rise to the emer-
gence of complex phenomena generated by the interac-
tions between the different dynamical processes.

The natural way to consider M interacting dynami-
cal processes taking place over a complex system is to

use a multiplex network with M layers [17–20]. Each
layer contains the same number of nodes, N , and there
exists a one-to-one correspondence between nodes in dif-
ferent layers, but the topology and the very same nature
of the connections at each layer may be different. We
then assign a different dynamical process to each layer.
Considering for simplicity the case M = 2, we assume
that the dynamics of the entire system is governed by
the following equations:

{

ẋi = Fωi
(x, A[1])

ẏi = Gχi
(y, A[2])

i = 1, 2, . . .N (1)

where x = {x1, x2, . . . , xN} ∈ R
N and y =

{y1, y2, . . . , yN} ∈ R
N denote the states of the two dy-

namical processes, while the topologies of the two layers

are encoded in the adjacency matrices A[1] = {a
[1]
ij } and

A[2] = {a
[2]
ij } respectively, such that a

[1]
ij = 1 (a

[2]
ij = 1) if

a link exists between nodes i and j in the first (second)

layer, and a
[1]
ij = 0 (a

[2]
ij = 0) otherwise. The dynamical

evolution of the two network processes is ruled respec-
tively by the functions Fω and Gχ, which depend on the
sets of parameters ω and χ, so that the state xi (yi) of
node i at the first (second) layer is a function of the state
x (y) and of the topology A[1] (A[2]) of the first (sec-
ond) layer. The key ingredient that connects the two
dynamical processes is provided by the nature of the cor-
respondence between layers. In fact, the parameter ωi in
function Fωi

at layer 1 is itself a function of time which
depends on the dynamical state yi of node i at layer 2,
while the parameter χi at layer 2 depends on the state
xi of node i at layer 1. Namely, we have:

{

ω̇i = f(ωi, yi)
χ̇i = g(χi, xi)

i = 1, 2, . . .N (2)
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FIG. 1. Intertwined dynamical processes. (a) An ex-
ample of a two-layer multiplex of N = 5 nodes with neural
synchronization dynamics at layer 1 (top), and transport dy-
namics at layer 2 (bottom). (b) The neural activity is de-
scribed by the Kuramoto model in Eq. (3), and the degree
of synchronization is measured by the order parameter r. (c)
The transport dynamics is modelled by biased random walk-
ers moving according to Eq. (4). The two dynamical processes
are bidirectionally coupled, as the natural frequencies of the
oscillators at layer 1 depend on the distribution of random
walkers at layer 2 and, at the same time, the random walkers
are biased on the degree of synchronization of the nodes at
layer 1, as described in Eqs. (5)–(6).

where f and g are two assigned functions.
As a specific example of this type of coupling, and

of the phenomena that can emerge out of it, we study
a toy model of the human brain. Neural systems de-
pend on the combination of several dynamics, including
blood flow, oxygen exchange, chemical and electrical in-
teractions among neurons, and remote synchronization
of distant regions [21–24]. Our multiplex network ap-
proach here wants to mimic the interplay between neural
activity and energy transport across brain regions as il-
lustrated in Figure 1(a). Neural activity at the level of
brain regions is modelled by the Kuramoto model [25],
such that the state xi(t) ∈ [0, 2π) of node i at layer 1
corresponds to the phase of oscillator i at time t, and the
first of Eqs. (1) reads:

ẋi = ωi + λ

N
∑

j=1

a
[1]
ij sin(xj − xi), (3)

where ωi corresponds to the natural frequency of the
oscillator i and λ is the coupling strength. The degree
of global synchronization in the neural activity is mea-
sured by the Kuramoto order parameter 0 ≤ r ≤ 1 de-
fined by the complex number reiψ = 1

N

∑N

j=1 e
ixj which

represents the centroid of all the oscillators on the com-
plex plane. The second dynamical process, namely en-
ergy transport at the second layer, is modelled by a
continuous-time random walk [26]. Specifically, the state
yi(t) ∈ [0, 1] at time t of node i at the transport layer is
equal to the fraction of random walkers at node i at time
t, and the second of Eqs. (1) reads:

ẏi =
1

τy

N
∑

j=1

(πij − δij) yj =
1

τy

N
∑

j=1

(

a
[2]
ji χ

α
i

∑

l a
[2]
jl χ

α
l

− δij

)

yj

(4)

where πij is the transition probability from node j to
node i, τy is the time scale of the random walker dy-
namics, and we have assumed that the random walk is
biased on a node property χi, with a tuneable bias ex-

ponent α [27–30]. Notice that for α > 0 (resp., α < 0)
the walkers will preferentially move towards nodes char-
acterised by high (resp., low) values of χ, while for α = 0
we recover the standard unbiased random walk.
To define completely the model, we have to specify

how the neural dynamics and the diffusion of nutrients
are coupled, i.e. we need to assign the functions f and
g in Eqs. (2) respectively relating the frequency ωi of
the oscillator i at layer 1 to the available resource yi at
layer 2, and the bias property χi of the random walkers
at layer 2 to the oscillator phase xi at layer 1. First, we
assume that the natural frequencies ωi, i = 1, 2, . . . , N ,
evolve dynamically relaxing to values proportional to the
fraction of random walkers at node i in the transport
layer:

ω̇i =
1

τω
(Nyi(t)− ωi) , (5)

where τω gives the timescale for the relaxation. This
choice is motivated by the fact that firing at a higher fre-
quency usually requires a correspondingly higher amount
of energy, in the form of oxygen and nutrients carried by
blood [31]. Next, we assume that the quantities χi evolve
according to:

χ̇i =
1

τχ

(

s
dyn
i − χi

)

. (6)

where sdyni is the dynamic strength of node i, which mea-
sures the local degree of synchronization of oscillator i
(degree to which i is synchronized with its neighbors)

and is defined as sdyni = ri cos(ψi−xi) in terms of the lo-

cal synchronization order parameter rie
iψi =

∑

j a
[1]
ij e

ixj .
In this way χi relaxes to the dynamic strength of oscilla-
tor i with a timescale τχ, and therefore the random walk
described by the transition probabilities in Eq. (4) is bi-
ased towards (away from) strongly-synchronized nodes
for positive (negative) values of α. This choice is sup-
ported by empirical studies confirming the existence of
correlations between the electrical activity of a brain area
and the hematic inflow in the same area, which is re-
sponsible for the transport of energy to the neurons in
the form of oxygen molecules. In particular, it has been
suggested that the high electrical activity of a brain area
is normally followed by an increase in the blood inflow in
the same area [32–34].
Summing up, in the model in Eqs. (3-6) the firing rate

of a given node i depends on the availability of energy
at i at the transportation layer, and vice versa the abun-
dance of nutrients at node i depends on the local sy-
chronization of oscillator i at the neural dynamics layer.
Our model has two control parameters, λ and α, that
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FIG. 2. Spontaneous explosive synchronization induced by the multiplex coupling of the two processes. (a) Level
of synchronization r vs λ at layer 1 for bias exponents α = 0.4, 1.0, and 1.6 (blue, red, and green, respectively). (b) Distribution
P (yi) of steady-state random walker fractions yi at layer 2 for α = 1.0, when the oscillators at layer 1 are incoherent (λ = 0.1,
top, blue) and synchronized (λ = 0.4 bottom, red). (c) Synchronization phase diagram showing r as a function of coupling λ

and bias exponent α. The bistable region is colored in white. Networks are of size N = 1000 with γ = 3 and 〈k[1]〉 = 〈k[2]〉 = 10.

we can change to tune respectively the coupling between
oscillators at layer 1 and the strength of the bias in the
random walk at layer 2. To illustrate the effects of in-
tertwining the two dynamical processes, we consider a
multiplex network with N = 1000 nodes whose synchro-
nization layer is a scale-free (SF) graph [35] with degree

distribution P
(

k[1]
)

∝
(

k[1]
)−γ

with γ = 3 above a min-

imum degree k
[1]
0 , and whose transport layer is a Erdős-

Rényi (ER) random graph [36] with link probability p.
The average degrees of the two layers are thus given by

〈k[1]〉 = γ−1
γ−2k

[1]
0 and 〈k[2]〉 = p(N − 1). We choose a SF

graph for the synchronization layer given the prevalence
of such topologies in real neural systems [37], and we
have considered the limits τy , τω, τχ → 0+ correspond-
ing to instantaneous relaxation, meaning the relaxation
dynamics of Eqs. (4), (5) and (6) is faster compared to
the dynamics of the oscillators. These fast relaxation
timescales have been chosen for simplicity, and we note
that the phenomena we present here persists for finite
values of τy , τω, and τχ, as we show in the Supplemen-
tary Information.

We simulated the model on networks with 〈k[1]〉 =
〈k[2]〉 = 10, by adiabatically increasing and then de-
creasing the coupling strength λ at fixed values of the
bias parameter α. In Figure 2(a) we report the synchro-
nization profiles r vs λ for α = 0.4, 1.0, and 1.6 (blue
circles, red triangles, and green squares respectively) at
layer 1. Notice that for α = 0.4 we have the typical con-
tinuous phase transition of the Kuramoto model. Con-
versely, for α = 1.0 and 1.6 we observe the emergence of
a switch-like explosive synchronization [38] and a bista-
bility in the form of a hysteresis loop (in the forward and
backward branches of the profiles). In Figure 2(b) we
focus on layer 2, and we plot the distribution P (yi) of
the steady-state random walker occupation probabilities
yi for α = 1, corresponding respectively to λ = 0.1 when

the system at layer 1 is in an incoherent state (top, blue),
and to λ = 0.4 when the system at layer 2 is synchro-
nized (bottom, red). While the values of yi are relatively
homogeneous in the incoherent state and span less than
a decade, in the synchronized state the distribution is
heterogeneous and spanning several decades. Finally, in
Figure 2(c) we explore the (α, λ) parameter space in more
detail, plotting the value of r at layer 1 as a function of
the two control parameters of the model. The bistable re-
gion which emerges at α ≈ 0.7 and widens by increasing α
is reported in white. We note that this behavior persists
under a wide range of network topologies, provided that
the synchronization layer is sufficiently heterogeneous, as
shown in the Supplementary Information.

Our results indicate that the intertwined nature of dif-
fusion process and synchronization dynamics gives rise to
the emergence of phenomena not present if the two dy-
namics were not coupled. Namely, in the transport layer,
we observe a transition from a homogeneous to a het-
erogeneous distribution of the random walkers through-
out the network, according to whether the oscillators at
the other layer are incoherent or synchronized. Concur-
rently, when the random walkers are biased sufficiently
strongly towards regions that are more synchronized, the
heterogenous distribution of random walkers fosters the
emergence of switch-like explosive synchronization [38] in
the neural dynamics layer. The resulting phase diagram
exhibits three phases (incoherent, bistable, and synchro-
nised) and a tricritical point. It is noticeable that explo-
sive synchronization appears naturally in our model due
to the intertwined dynamics of the two processes, and it
does not require ad hoc externally imposed correlations
between the oscillator frequencies and the topology of
the interaction network, as those necessary instead in a
single layer network with a single dynamics [38, 39].

We now demonstrate that, despite the inherent intri-
cacy of the model, its dynamical behaviour can be under-
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FIG. 3. Analytical approach to explain the observed collective phenomena. Fraction yi of random walkers at node i

vs k
[2]
i

for an incoherent state (a), and vs. (k
[1]
i
)αk

[2]
i
〈(k[1])α〉 for a synchronized state. (c) Analytically obtained synchronization

phase diagram showing r as a function of λ and α. Networks are of size N = 1000 with γ = 3 and 〈k[1]〉 = 〈k[2]〉 = 10 as in the
numerical simulations shown in Figure 2.

stood analytically. In particular, we search for conditions
such that random walker probabilities and local order pa-
rameters are in a stationary state, yi = y∗i and ri = r∗i .
A steady-state analysis can then be carried out for both
the transport and synchronization dynamics, which we
detail in the Supplementary Information. In particular,
we find that the fraction of random walkers y∗i depends
on whether the synchronization dynamics is incoherent
or synchronized, namely:

y∗i ∝

{

k
[2]
i if r ≈ 0

(

k
[1]
i

)α

k
[2]
i 〈
(

k[1]
)α

〉 if r ≈ 1.
(7)

Also, the global order parameter r can be written implic-
itly in terms of the collective frequency Ω = 〈ω〉 and the
joint degree-frequency distribution P (k, ω):

r =
1

〈k[1]〉

∫∫

|ω−Ω|≤λrk[1]

P (k[1], ω)k[1]

√

1−

(

ω − Ω

λrk[1]

)2

dωdk[1],

(8)

which depends on the topologies of both layers since
ωi = Nyi in the steady-state. Figure 3 shows that our
analytical results are in good agreement with the nu-
merical simulations. In Figures 3(a) and 3(b) we plot
the observed fraction yi of random walkers at the steady
state vs the predictions of Eq. (7), respectively for the
incoherent and synchronized state. Dashed black lines
are plotted to guide the eye. In Figure 3(c) we report
the synchronization phase digram obtained from Eq. (8).
A comparison with the phase diagram in Figure 2c in-
dicates that our theory is able to accurately reproduce
the collective phenomena emerging from the interactions
of the two dynamical processes that we have observed in
our numerical simulations.
The specific example of intertwined synchronization

and transport dynamics studied here shows that inter-
esting collecting behaviors can appear when we couple

two dynamical processes taking place on the same set of
nodes. Namely, we have found that the distribution of
random walkers in the transport network changes from
homogeneous to heterogeneous according to whether the
synchronization dynamics is incoherent or synchronized,
and this result is unexpected since for the topology of
the transport network we have on purpose chosen a ho-
mogenous graph. At the same time, the heterogeneous
distribution of walkers is responsible for the emergence
of explosive synchronization, and the appearance of a
bistable phase and of a tricritical point in the neural net-
work layer. Importantly, here, explosive synchronization
spontaneously emerges from the interactions of the two
dynamical processes, without any externally imposed as-
sumptions, necessary instead in networks where the Ku-
ramoto model is not coupled to other dynamical sys-
tems [38, 39].

The switch-like transition we have found in our model
closely mirrors that displayed by the human brain [23],
which has the ability to very quickly switch between rest-
ing state activity (i.e., the background activity of a brain
when no particular conscious task is performed) and com-
plex intellectual/motor tasks [40], and thus requires a
fast and flexible mechanism to induce a sudden and mas-
sive synchronization. The choice of this specific model
was motivated by the important role that synchroniza-
tion and transport play in a wide range of natural and
man-made systems [41–44] and by the various bistabili-
ties empirically observed in physics, biology and neuro-
science [23, 45, 46]. To date, several studies have investi-
gated how a single type of dynamics evolves on a multi-
layer network [47–50]. However, the framework we have
proposed here, based on the use of multiplex networks
to mutually couple dynamics of different nature, is very
general and versatile. We believe that further studies of
other intertwined dynamical processes will uncover other
novel phenomena induced by multiplex coupling, and will
eventually result in a more thorough understanding of
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the relation between the structure and the dynamics of
multidimensional complex systems.

A.A. and S.S. acknowledge support from MULTI-
PLEX, grant number 317532 of the European Com-
mission. V.L. and V.N. acknowledge support from
LASAGNE, grant number 318132 funded by the Eu-
ropean Commission. V.L. acknowledge support from
the EPSRC projects GALE, EP/K020633/1, and
EP/N013492/1. A.A. acknowledges Spanish Ministerio
de Economiia y Competitividad, grant number FIS2015-
71582-C2-1, ICREA Academia and the James S. McDon-
nell Foundation.

[1] S. H. Strogatz, Exploring complex networks. Nature 410,
268–276 (2001).

[2] M. E. J. Newman, The structure and function of complex
networks. SIAM Rev. 45, 167–256 (2003).

[3] F. Dörfler, M. Chertkov, F. Bullo, Synchronization in
complex oscillator networks and smart grids. Proc. Natl.

Acad. Sci. U.S.A. 110, 2005–2010 (2013).
[4] R. Pastor-Satorras, A. Vespignani, Epidemic spreading

in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001).
[5] J. D. Noh, H. Rieger, Random walks on complex net-

works. Phys. Rev. Lett. 92, 118701 (2004).
[6] D. B. Larremore, W. L. Shew, J. R. Restrepo, Predict-

ing criticality and dynamic range in complex networks:
effects of topology. Phys. Rev. Lett. 106, 058101 (2011).

[7] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.
U. Hwang, Complex networks: structure and dynamics.
Phys. Rep. 424, 175–308 (2006).

[8] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, C.
Zhou, Synchronization in complex networks. Phys. Rep.
469, 93–153 (2008).

[9] T. Nishikawa, A. E. Motter, Y.-C Lai, F. C. Hoppen-
steadt, Heterogeneity in oscillator networks: are smaller
worlds easier to synchronize? Phys. Rev. Lett. 91, 014101
(2003).

[10] A. Arenas, A. Dı́az-Guilera, C. J. Pérez-Vicente, Syn-
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