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Classification of essential oil composition in Rosa damascena Mill. Genotypes using an 

Electronic Nose 

 

Abstract 

One of the major problems in the industry of medicinal and aromatic plants (MAPs) is the 

absence of a quick, easy and inexpensive method for controlling the quality of these plants. Rosa 

damascena Mill., is an aromatic plant which is cultivated for its high-value essential oil in Iran, 

Bulgaria and Turkey. In this study, essential oils were extracted from nine genotypes of Rosa, 

and their components were identified by gas chromatography and mass spectrometry analysis 

(GC-MS). Then, the samples from different genotypes were grouped in three classes (C1, C2, 

C3) based on their total percentage of the six most important constituents, which have a major 

role in the quality of essential oil (i.e., phenyl ethyl alcohol, trans rose oxide, citronellol, nerol, 

geraniol, geranial). An electronic nose (EN) system was designed based on metal oxide 

semiconductor (MOS) sensors, and trained to identify the categories to which samples of 

essential oils could be classified. The response patterns of the sensors were recorded and further 

analyzed by chemometrics methods. Based on the results, principal components analysis (PCA) 

and linear discrimination analysis (LDA) showed that 85% and 99% of sample variance could be 

explained by the first two principal components (PC1, PC2) and two linear discrimination axis 

(LD1, LD2), respectively. LDA was performed on sensor response variables by cross- validated 

dataset (5- fold) and the classification accuracy was 95%. Finally, an error-correcting output 

codes (ECOC) classifier as a multiclass model for support vector machines (SVM) was 

considered and the classification accuracy was increased to 99%. These results reveal that an EN 

can be used as a quick, easy, accurate and inexpensive system for the classification of essential 

oil composition in Rosa damascena Mill. 
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1. Introduction 

In the last decades, the use of the medicinal and aromatic plants (MAPs) in food, cosmetic 

and medicine industrials has been increased considerably (Baby et al., 2005). The world market 

of MAPs has systematically increased its value from 355 million dollars in 1976 to 5.51 billion 

dollars in 2002. Predictions state that this market can reach a value of 5000 billion dollars in 

2050 (Mohammadi, 2015). Essential oils are highly concentrated, volatile, hydrophobic mixtures 

of chemicals extracted from MAPs. About 90% of global essential oil production is consumed by 

the flavor and fragrance industries (Lubbe and Verpoorte, 2011). As a rational consequence, the 

recognition of genotypes and the classification of essential oils according to their quality can be 

highly crucial for the processing and production of products with higher quality.  

The most aromatic species of rose, scientifically named as Rosa damascena Mill., known as 

“Gol-e-Mohammadi” in Persian (Naquvi et al., 2014). It is a furry shrub (deciduous) and one of 

the most important fragrant types of Rosaceae family, which is cultivated extensively in Iran, 

Turkey and Bulgaria (Kaul et al., 2009). Rose products consist of rose oil, rose water, rose 

concrete, rose absolute, petal and dry bud that rose oil is the most important product (Baydar and 

Baydar, 2005; Tabaei-Aghdaei et al., 2007; Kumar et al., 2013). The essential oil of Rosa 

damascena is the most valuable essential oil in the world market, and this is why it is nicknamed 

‘liquid gold’ (Pal et al., 2014). This essential oil is vastly employed in perfumery, hygienic and 

cosmetic industries to produce creams, shampoos, soaps and lotions; in foodstuffs as food 

additive, pudding and jelly and in the pharmaceutical industry for its anti-HIV, anti-bacterial, 

anti-oxidation and sedation properties (Naquvi et al., 2014; Shohayeb et al., 2014; Ozkan, 2004). 

According to the literature, the maximum value of qualification and quantitation of essential oil 

having a minimum value of wax compounds (which reduce quality) is obtained from rose petals 



3 

 

(Ahmadi et al., 2007). Currently, there are some methods for the classification of aromatic 

materials such as sensory analysis performed by test panels formed by several experts that are 

provided with a list of features and a few samples to score. For example, the evaluated features 

are aroma, weight, size, color and veins in the case of ginseng (Cui et al., 2015) and aroma, color 

and flavor are the main features evaluated for tea (Bhattacharyya et al., 2008). This method may 

turn out to be fast in the first vision but it is limited in stability, measurement standardization, 

reproducibility, sample throughput and, furthermore, it is rather expensive (Guohua et al., 2015). 

An alternative is the use of instrumental methods such as gas chromatography (GC), GC coupled 

with mass spectrometry (GC/MS), high performance liquid chromatography (HPLC) and thin 

layer chromatography (TLC), which are objective and precise but are expensive, destructive, 

time-consuming and need to be performed by well-trained operators (Baby et al., 2005; Xiao et 

al., 2014). These methods are only suitable for quality examination in laboratory condition 

(Guohua et al., 2015). Therefore, the development of easy, low cost, accurate and high 

throughput methods for the quality assessment and classification of essential oils is highly 

demanded and the electronic nose technique could be a good approach.  

The electronic nose is an instrument that comprises an array of electronic gas sensors with partial 

specificity and an appropriate pattern recognition system, capable of recognizing simple or 

complex odors (El Barbri et al., 2008; Ghasemi-Varnamkhasti et al., 2011). In the electronic 

noses, the fingerprints or patterns resulting from the volatile compounds present in the headspace 

of the samples under analysis are recognized and classified (Ghasemi-Varnamkhasti and 

Aghbashlo, 2014). Electronic noses are relatively fast, inexpensive, easy to use, reliable and non-

destructive instruments (Loutfi et al., 2015). ENs have found many applications in the food 

industry such as product classification (Bhattacharyya et al., 2008; Qiu et al., 2015; 
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Trirongjitmoah et al., 2015), quality and shelf life recognition (Ghasemi-Varnamkhasti et al., 

2011; Gomez et al., 2007) (Benedetti et al., 2008), fruits ripeness recognition (Asikin et al., 

2015; Brezmes et al., 2005; Zakaria et al., 2012) and assessment of adulterated products (Subari 

et al., 2012; Yu et al., 2007; Mildner-Szkudlarz and Jeleń, 2008; Marina et al., 2010). Also more 

recently, the electronic nose has been used in medical applications for diagnosing some diseases 

such as cancer via breath analysis (Westenbrink et al., 2014; Adiguzel and Kulah, 2015; Alfatni 

et al., 2013). 

Some reports can be found in the literature about the use of electronic noses for the quality 

evaluation of medicinal plants include the quality control of valerians by electronic nose and 

HPLC (Baby et al., 2005), the discrimination and characterization of three cultivars of perilla 

frutescens by means of sensory descriptors, electronic nose and tongue analysis (Laureati et al., 

2010), a quality control method for musk by electronic nose coupled with chemometrics (Ye et 

al., 2011). This approach has also been envisaged for other plants such as eurycoma longifolia 

(Shafiqul Islam et al., 2006), cymbidium ensifolium (Huang et al., 2011; Zhang et al., 2014), 

ginseng (Lee et al., 2005; Li et al., 2012; Cui et al., 2015), asari radix (Li et al., 2013), apiaceae 

(Lin et al., 2013), lonicera japonica (Xiong et al., 2014), glycyrrhiza glabra L. (Russo et al., 

2014) and zizyphus jujube Mill. (Guohua et al., 2015). 

To date, no study has been reported on the application of electronic nose for the classification of 

essential oil of Rosa damascena and this is the main novelty of this research. Considering the 

importance of classification and related issues in the industry of MAPs, the adoption of 

electronic nose technology seems to be helpful. Therefore the major aim of this paper is to 

evaluate an electronic nose based on metal oxide semiconductor (MOS) gas sensors and suitable 

chemometrics techniques for the classification of essential oil of Rosa damascena. Gas 
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chromatography–mass spectrometry (GC-MS) has been employed as an objective method to 

establish quality categories among the samples available, based on the identification of the 

volatile compounds present in their headspace. 

2. Material and Methods 

2.1. Samples preparation  

As a first phase of the experiment, the petals of nine different genotypes of Rosa 

damascena were collected from farm (51o longitude and 35o latitude at 1320 m above sea level) 

located in Research Institute of Forests and Rangelands (RIFR) during the blooming season 

(early May to late June, 2014). The petals were separated early morning and immediately 

transferred to laboratory for extraction. 

2.2. Essential oil extraction 

In the next step, 400 g of petals of each genotype were weighed and then their essential oil 

was extracted by hydrodistillation using Clevenger apparatus for 2 hours. The extracted oil 

samples were dehydrated by anhydrous sodium sulfate and stored in dark glass bottles at 4oC 

until analyzed by GC and GC-MS.  

2.3. Gas chromatography (GC) 

Essential oils were analyzed by GC, using a Thermo-UFM ultra-fast gas chromatograph 

equipped with a Ph-5 fused silica column (10 m length × 0.1 mm i.d., film thickness 0.4 μm). 

Oven temperature was held at 60 oC for 5 min and then programmed to 285 oC at a rate of 5 

oCmin-1 ;flame ionization detector (FID) and injector temperatures both were 280 oC; Helium 

(99.999% purity) was used as a carrier gas with flow rate of 1.1 mLmin−1.  
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2.4. Gas Chromatography–Mass Spectrometry (GC-MS) 

GC–MS analysis was carried out by Varian 3400 GC–MS system equipped with AOC-

5000 Auto injector and DB-5 fused silica capillary column (30 m length × 0.25 mm i.d., film 

thicknesses 0.25 μm). Temperature was programmed to 60 oC for 4 min and then increased at the 

rate of 5 oCmin−1 to 285 oC and held for 5 min; injector and interface temperatures were 240 oC 

and 250 oC, respectively; ionization voltage was 70 eV; sample injection volume 2 μL (dilution: 

1 μL oil in 2 mL dichloromethane); Helium (99.999% purity) was used as a carrier gas with flow 

rate of 1.1 mLmin−1.  

2.5. Identification of components 

The percentages of compounds were calculated by area normalization method, regardless 

of response factors. The retention indices were calculated for all volatile constituents, using a 

homologous series of n-alkanes (C8-C24). The essential oil components were then identified by 

comparison of their mass spectra with those of a computer library or with authentic compounds 

and confirmed by comparison of their retention indices, either with those of authentic 

compounds or with data published in the literature ( Adams, 2007; Davies, 1990). 

2.6. Electronic nose  

To analyze odor patterns, an electronic nose system was designed based on metal oxide 

semiconductor (MOS) sensors. A schematic representation of the electronic nose and the 

measurement system components is shown in Fig. 1. Seven tin oxide-based gas sensors 

purchased from Figaro Engineering (Osaka, Japan) and MQ (Henan, China) were used in the 

sensor array. The numbers, names and related specifications of the sensors are given in Table. A 

12 V power supply was used for micropumps (P1 and P2) and solenoid valves (V1 and V2). A 5 V 

heating voltage was used to supply the operating temperature according to the Figaro 
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Engineering and MQ data sheets.  

 

 

Fig. 1. Schematic representation of the electronic nose system 

 

Table 1  

Sensor array used in the electronic nose system. 

Target Gas Sensor Name Sensor Number 

NH3, NOx, Alcohol, Benzene, Smoke,CO2 MQ-135 S1 

LPG, Natural gas , Town gas MQ-5 S2 

S2H MQ-136 S3 

n-Hexane, Benzene, NH3, Alcohol, ,Smoke, CO MQ-138 S4 

Alcohol MQ-3 S5 

Chlorofluorocarbons TGS-832 S6 

Organic Solvent Vapors TGS-822 S7 

 

2.7. Electronic nose measurements 

The processing was divided in three time phases including baseline, injection and purging 
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and sensors response was recorded as a voltage change versus time graph (Fig. 2). A description 

of the phases is follows: 

1-  Baseline: to obtain a stable sensor response dry air enters to the sensor chamber by 

passing through P2 and V2 at a 0.8 mL/min flow rate. This step takes 60 s.  

2- Injection: the headspace of the sample chamber is injected into the sensor chamber 

during 200 s by passing through P1 and V1 at a 0.8 mL/min flow rate. This step lasts 

until the response of sensors reach a stable voltage.  

3- Purging: P2 and V2 path are opened again and dry air is injected again into the sensor 

chamber for 500 s so sensors regain their baseline values.  

The measurements were carried out in 21 replicates for every genotype while data were 

recorded and transferred to computer by data acquisition during measurements.  

 

Fig. 2. One of the sensors response recorded using seven sensors of the e-nose. 

 

2.8. Statistical processing and data analysis 

After data collection, the features related to individual sensors were extracted by data 
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preprocessing. The goal of signal preprocessing is to extract relevant information from the 

sensors response and prepare the data for multivariate pattern analysis. The preprocessing is 

described in three stages: baseline manipulation, compression, and normalization (Pearce et al., 

2006). In the first stage the sensor responses were manipulated with respect to their baseline for 

the purposes of drift compensation, contrast enhancement and scaling by fractional method. In 

this method, the baseline is subtracted and then divided from the sensor response according to 

Eq. (1).  

 

(1) 

 

 

where  is the resulting response,  is the sensor response and  is the baseline. 

The second stage was performed by feature extraction of sensors response in the injection phase 

(Pearce et al., 2006). The compression of sensor response results in improved selectivity, 

reduced acquisition time and increased sensor lifetime (Gutierrez-Osuna, 2002). The 

normalization is generally used to remove the scaling effect caused by concentration changes on 

the patterns of the sensors (Scott et al., 2006). Auto scaling is the most frequently used scaling 

technique and is often used when responses are on different magnitude scales (Ghasemi-

Varnamkhasti et al., 2015). This method standardizes a variable according to Eq. (2): 

(2) 

 

 

where  is the value of  after auto scaling,  is the value for the variable before scaling,  is 

defined as the variable mean and  as the standard deviation of the variable. As a consequence, 

the mean and standard deviation of sensor responses are set at zero and one, respectively. 

Finally, a data matrix was created in which rows stood for samples or individuals and columns 

consisted variables or predictors (sensors). For data analyzing, several chemometrics tools 
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including principal component analysis (PCA), linear discriminant analysis (LDA) and support 

vector machines (SVM) were considered as multivariate statistics methods. PCA is a linear, 

unsupervised and pattern recognition technique used for analyzing, classifying, and reducing the 

dimensionality of numerical datasets in a multivariate problem (Costache et al., 2009). This 

technique has been widely used by researchers to display the response of an electronic nose to 

simple and complex odors and it provides qualitative information for electronic nose pattern 

recognition (Ye et al., 2011; Ghasemi-Varnamkhasti et al., 2015). LDA is a linear and supervised 

learning classifier that maximizes the variance among categories and minimizes the variance 

within categories by discriminant functions (Lin et al., 2013). SVM is a classification (and 

regression) technique which has been proposed on the basis of statistical learning theory (SLT) 

by (Cortes and Vapnik, 1995). The main idea of SVM is to separate the classes with the 

particular hyperplane, which maximizes a quantity called margin. The margin is the distance 

from a hyperplane separating the classes to the nearest point in the dataset (Pardo and 

Sberveglieri, 2005). The SVM classifier originally is a binary classifier but an error-correcting 

output codes (ECOC) model transform multi class problems (more than two class) to binary by 

output coding methods such as one- versus- one (OVO) and one- versus- all (OVA). Therefore, 

SVM classifier can be used by Classification Partitioned ECOC that is a set of error-correcting 

output codes (ECOC) models trained on cross-validated folds (k- fold) for SVMs or other 

classifiers. In k-fold cross-validation, the original sample is randomly partitioned into k equal 

sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for 

testing the model, and the remaining k – 1 subsamples are used as training data. The cross-

validation process is then repeated k times (the folds), with each of the k subsamples used 

exactly once as the validation data. The k results from the folds can then be averaged (or 

otherwise combined) to produce a single estimation. The advantage of this method over repeated 

random sub-sampling is that all observations are used for both training and validation, and each 

observation is used for validation exactly once. There exists an extensive research on pattern 

recognition and classification of electronic nose data by this methods (Acevedo et al., 2007; 

Brerton, 2007; Li et al., 2009;  Papadopoulou et al., 2013).   

In this paper, data dimensional reduction (number of variables) and variables selection with an 

optimized classification was done by PCA technique. The classification accuracy was then 

calculated by use of the classification techniques of LDA, and SVM on cross- validated data. 
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The optional parameters including radial basis function (RBF) as a kernel function, OVO method 

for output coding and 5-fold cross validation were implemented in analyses. Matlab v8.5 (The 

Mathworks, Natick, MA, USA) and R v3.2.1 were used for data analysis. 

3. Results and discussion      

3.1. Rosa damascena compounds  

Rose compounds were identified by the results of chemical analysis (Fig. 3). According to the 

literature, six original constituents are determinant factors for quality and value of essential oil 

(Rusanov et al., 2011; Naquvi et al., 2014). The specification of these compounds and their 

percentage for each genotype are detailed in Table 2. According to the results, the genotypes 

were classified in three classes (C1, C2 and C3) of increasing quality, based on the total percent 

of these compounds in their essential oil. As a consequence, genotypes belonged to class C1 if 

their total percentage of the constituents was below 5%. Therefore, genotypes g1, g2 and g3 

belong to class C1. Genotypes for which the total percentage of the compounds laid in the 10% 

to 40% range, were in class C2 (g4, g5 and g6). Finally, when this percentage exceeded 50%, the 

genotypes were assigned to class C3 (g7, g8 and g9). As shown in Table 2, some genotypes did 

not include all the compounds. As an instance, phenyl ethyl alcohol and nerol were not detected 

in the first three genotypes (g1- g3). Given the increasing presence of the six constituents that are 

determinant for its quality, it can be inferred that the quality and economic value of essential oil 

increases from genotypes g1 to g9. 



12 

 

 

Fig. 3. Instance graph from GC-MS results for class C1. 
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Table 2 

Specification of six original constituents and their percentage for each genotype. 

Volatile oil components in Genotypes (%)   Formula Comp.Name Comp.No 

g9 g8 g7 g6 g5 g4 g3 g2 g1 

0.74 0.16 0.62 0.47 0.2 ND ND ND ND* C8H10O Phenyl ethyl alcohol 1 

1.05 0.51 0.51 0.83 0.4 0.23 0.32 0.12 0.2 C10H18O Trans rose oxide 2 

23.38 54.1 35.7 9.0 2.35 6.28 0.54 0.4 0.14 C10H20O Citronellol 3 

18.2 2.61 7.26 ND ND 0.6 ND ND ND C10H18O Nerol 4 

34.02 11.16 24.25 28.1 8.05 3.5 2.66 2.12 0.8 C10H18O Geraniol 5 

0.38 0.28 0.28 ND 0.21 ND 0.14 ND ND C10H16O Geranial 6 

77.77 68.82 68.62 38.4 11.21 10.61 3.66 2.64 1.14 Total Percent  

*: ND= Not Detected  

 

3.2. Classification by chemometrics tools 

A PCA was performed. The variance from the database that is explained by each principal 

component is shown in Fig. 4. The first two components (PC1, PC2) explain nearly 85% of total 

variance, so it seems accurate enough to analyze the dataset by using these two components only. 

The loadings plot shown in Fig. 5 shows that sensors S2, S4, S5 and S7 are better than sensors 

S6, S3 and S1 for classification. According to the loadings plot, the importance of a variable (i.e., 

a sensor) on the PCA classification model, increases with the distance between this variables and 

the origin. In other words, the closer to the unit circle drawn in the loadings plot that a variable is 

located, the more important is this variable for the model (e.g. sensor S1 has minimum effect on 

classification). Therefore, the information from the loadings plot can be used to remove sensors 

(variables), which do not contribute significantly to the PCA model, which helps to reduce the 

fabrication costs of the sensor array of the electronic nose system (Ghasemi-Varnamkhasti et al., 

2012). Score plots for the first two principal components (PC1 and PC2) and linear discriminant 
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axis (LD1, LD2) are shown in Fig. 6. These results show that LDA can explain 99% of the 

between groups variance (Fig. 6b) and PCA explains 85% of the total data variance (Fig. 6a). 

Classification results by using LDA (employing a 5-Fold cross-validation strategy) reached a 

classification accuracy of 95%. The confusion matrix is shown in Table 3. Since LDA is a linear 

classifier, it did not perform an appropriate separation between the classes C1- C2 and C2- C3, 

especially for data overlapping at the classes’ borders. Subsequently, classification was 

attempted with a SVM classifier employing a Classification Partitioned ECOC model. The 

classification accuracy increased to 99% according to the confusion matrix shown in Table 3. 

Once more, a 5-Fold cross-validation strategy was implemented. Classification results based on 

maximum posterior probabilities for S5 (MQ-3) and S7 (TGS-822) variables are illustrated in 

Fig. 7. These sensors were selected since they showed better responses (higher intensity and, 

therefore, less affected by noise) based on results shown in Fig. 2 and Fig. 5. The results show 

that samples with higher posterior probabilities have been attributed to their class correctly. 

There is some overlapping between C2 and C3, which may attributed to the existence of some 

response drift, caused by small changes in the environmental conditions such as temperature and 

humidity, during the time lapse needed for collecting the large number of replicate measurements 

(Pearce et al., 2006). 

According to these results, the electronic nose system can be employed as a useful tool for 

classification of rose essential oils. Although some authors have shown results on the use of 

electronic nose systems in the field of medicinal plants (Guohua et al., 2015; Cui et al., 2015; 

Russo et al., 2014), as far as we know this is the first time that an e-nose is applied for screening 

the quality of rose essential oils, showing its usefulness for further developing the rose 

processing industry. 
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Fig. 4. Explained variance by principal components.  

 

Fig. 5. Loading plot of PC1 and PC2. 
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Fig. 6. Score plots on PC1& PC2 (a) and LD1 & LD2 (b). 

 

Table 0 

Confusion Matrix for LDA and ECOC model 

Success rate C3 C2 C1 Real/Predicted Analysis 

 0 1 62 C1  

0.95 0 57 6 C2 LDA 

 62 1 0 C3  

 0 0 63 C1  

0.99 0 63 0 C2 ECOC 

 62 1 0 C3  
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Fig. 7. Classification based on maximum posterior probabilities on S5- S7 variables. 

 

4. Conclusions 

Considering the increasing application of medicinal and aromatic plants in the world and 

their considerable economic value, there is a growing concern about tracing their quality. Being 

accurate, easy-to-use, rapid, inexpensive and adaptable to real-time, laboratory or in the field 

operation, the electronic nose shows the potential to become a powerful tool in the industry. In 

this research the rose genotypes were classified in three classes by using GC-MS analysis and 

then, an electronic nose based on MOS sensors was designed and trained employing 

chemometrics tools to sort samples according to the GC-MS-identified classes. A principal 

component analysis was used to identify which sensors among the array could give important 

information. Linear discriminant analysis and support vector machines were explored to build 

classification models, which reached a success rate of 95% and 99%, respectively in the 

classification of essential oil samples. A fold validation approach was implemented to estimate 

these success rates. Finally, the results show that the electronic nose can be a useful tool for 

quality authentication of Rosa damascena essential oil. 
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