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Abstract: Several studies have shown that the plasma RNA of SARS-CoV-2 seems to be associated
with a worse prognosis of COVID-19. In the present study, we investigated plasma RNA in COVID-19
patients treated with low-dose radiotherapy to determine its prognostic value. Data were collected
from the IPACOVID prospective clinical trial (NCT04380818). The study included 46 patients with
COVID-19 pneumonia treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as
laboratory variables, and SARS-CoV-2 serum viral load, were analyzed before LDRT, at 24 h, and
one week after treatment. The mean age of the patients was 85 years, and none received any of
the SARS-CoV-2 vaccine doses. The mortality ratio during the course of treatment was 33%. RT-
qPCR showed amplification in 23 patients. Higher mortality rate was associated with detectable
viremia. Additionally, C-reactive protein, lactate dehydrogenase, and aspartate aminotransferase
were significant risk factors associated with COVID-19 mortality. Our present findings show that
detectable SARS-CoV-2 plasma viremia 24 h before LDRT is significantly associated with increased
mortality rates post-treatment, thus downsizing the treatment success.
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1. Introduction

As of November 2022, Coronavirus disease 2019 (COVID-19), the highly transmissible
viral illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has affected more than 600 million people and caused over 6 million deaths worldwide
(https://COVID19.who.int/, accessed on 10 November 2022). Even though the efforts
of the entire scientific community have led to unquestionable progress in unraveling the
pathogenesis of SARS-CoV-2, and together with mass vaccination campaigns, the persisting
spread of the virus has been limited, the emergence of potential new variants able to
threaten the global public health again is an issue of concern.

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus from the Coro-
naviridae family [1,2]. Although the mortality rate of SARS-CoV-2 is around 2.3%, while
other members of the family, such as MERS-CoV, present an approximate mortality rate
of 35% [3], it spreads fasters than its viral antecessors. The SARS-CoV-2 genome presents
14 open reading frames (ORFs) encoding 31 proteins, of which 16 are non-structural, 4 are
structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N), and 11
are accessory proteins [4,5]. The clinical manifestation of COVID-19 is wide, ranging from
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mild illness to severe symptoms; however, the primary underlying cause of death of in-
fected patients is respiratory failure [6]. Viral pneumonia is the most common indication for
hospital admission and can lead to pulmonary dysfunction and acute respiratory distress
syndrome (ARDS) [7]. COVID-19 severity is mainly attributed to a hyper-inflammatory
response that leads to excessive secretion of pro-inflammatory cytokines [8,9].

Thus far, considerable progress in the therapeutic management of hospitalized patients
has been made; however, there is still a significant gap in our knowledge to treat those
patients that are not eligible for pharmacological intervention or mechanical ventilation, as
described in the official guidelines [10]. In this scenario, some authors highlight low-dose
radiotherapy (LDRT) as a novel therapeutic approach to treat COVID-19 pneumonia due
to its anti-inflammatory properties [11–14]. The aim of the present study is to analyze how
plasma viral load determination at the moment of irradiation, along with other clinical and
laboratory factors, could help to predict the effectiveness of LDRT treatment in terms of
survival in severe COVID-19 patients.

2. Materials and Methods
2.1. Participant Enrollment and Study Design

In this prospective and descriptive cohort study conducted at the Sant Joan University
Hospital, Reus, Spain, we enrolled 46 hospitalized patients who tested positive for SARS-
CoV-2 by RT-PCR from the IPACOVID clinical trial (NCT04380818) between June 2020 and
February 2021. Inclusion criteria included patients with a positive COVID-19 diagnosis
with moderate to severe pneumonia confirmed by chest X-ray requiring hospitalization
with supplemental O2, who, due to comorbidities or general status, were not eligible for
admission to the intensive care unit (ICU). Patients were treated with LDRT, specifically a
single dose of 0.5 Gy to the whole thorax, during the acute phase of COVID-19 infection.
The detailed protocol regarding the radiotherapy plan and sample collection has been
previously published [11]. The present study was approved by the Institutional Review
Board (IRB) of the Sant Joan University Hospital in Reus. Written informed consent was
obtained from each participant in accordance with the recommendations established in the
latest version of the Declaration of Helsinki, Fortaleza 2013.

The primary endpoint of the present study was to study baseline SARS-CoV-2 serum
viral load, whether as a continuous or a categorical variable, and its gene profiling among
patients in an LDRT-treated cohort. In this line, we wanted to analyze if pre-treatment
serum viral load could be used as a predictor of infection mortality, either on its own
or in combination with other relevant clinical and laboratory parameters that have been
previously related to worse outcomes. The secondary aim was to investigate the direct
association between SARS-CoV-2 serum viral load and the severity score CURB-65 (based
on age, urea level, vital signs, and presence of confusion) and of the latter with the in-
flammatory blood marker interleukin-6 (IL-6). The third objective was to study if serum
SARS-CoV-2 viremic individuals presented higher circulating total RNA serum concentra-
tion compared to aviremic patients. The fourth aim was to investigate whether differences
were found in the evolution of C-reactive protein (CRP), aspartate aminotransferase (AST),
and lactate dehydrogenase (LDH) concentrations throughout the 30-day follow-up of the
trial between the serum SARS-CoV-2 positive group and the serum SARS-CoV-2 negative
group. Finally, we wanted to examine the correlation between SARS-CoV-2 serum viral
load and other COVID-19 severity risk factors.

2.2. Blood Samples

Peripheral blood samples of 5 mL were obtained from each hospitalized patient at
four different time points: right before and 24 h, one week, and one month after LDRT.
After collection, blood was left undisturbed for 20–30 min at room temperature to allow
the clotting. Subsequently, tubes were centrifuged at 1000× g for 10 min to remove the
clot, whereas the serum was transferred into 0.5 mL cryovials and immediately stored at
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−80◦ until use. Blood samples were used to determine serum SARS-CoV-2 viral load and
biochemical markers.

2.3. RNA Serum Extraction

RNA was extracted from 500 µL of serum by using the High Pure Viral Nucleic Acid
Large Volume Kit (Roche, Basel, Switzerland), according to the manufacturer’s instruc-
tions. In summary, serum samples were mixed with a working solution of binding buffer
containing proteinase K and poly-A. Following 15 min of incubation at 70◦, samples were
transferred into a spin column inside a 50 mL tube and centrifuged for 5 min at 4000 rpm
discarding the filtered liquid. Afterward, the spin column was placed in an elution tube
and subjected to several washing steps. Finally, sample RNA was eluted in 50 mL of elution
buffer, of which 10 µL were added to real-time RT-PCR Master Mix for amplification.

2.4. RT-PCR and SARS-CoV-2 Viral Load Quantification

SARS-CoV-2 serum RNA was amplified by RT-PCR using the TaqPath 1-Step Multiplex
Master Mix commercial kit (Thermo Fisher Scientific, Waltham, MA, USA). This RT-PCR
assay for SARS-CoV-2 includes forward and reverse primers and probes specific to three
SARS-CoV2 genomic regions in the ORF1ab, Nucleocapside (N), and Spike (S) genes. MS2
phage ribonucleoprotein RNA was used as an internal process control for RNA extraction
and amplification. RNA was quantified using a NanoDrop spectrophotometer (Thermo
Fisher Scientific) by analyzing 2 µL of each sample. Samples were considered RT-qPCR
SARS-CoV-2 positive if two of the three genes were amplified together with a Ct < 37 or the
ORF or S genes were amplified alone with a Ct < 35. When the N gene was amplified alone,
samples were considered negative for SARS-CoV-2 following the Interpretive Software
determined by the manufacturer (Thermo Fisher Scientific).

SARS-CoV-2 RNAemia was quantified using a standard curve generated with known
concentrations of viral load standards. The standard was the TaqPathTM COVID-19 RNA
positive control provided by the TaqPath 1-Step Multiplex Master Mix commercial kit.
10-fold serial dilutions of the SARS-CoV-2 RNA positive control were used, setting the
detection limit to approximately 4 copies/mL. Viral load expressed as log10 copies/mL
was calculated by interpolating the Ct value of each sample into the ORF1ab gene standard
curve, given that it was consistently amplified in all positive samples and was less likely to
change among COVID-19 variants presenting spike protein mutations. Each RT-PCR assay
was run with its specific standard curve, and each sample was analyzed in duplicate.

2.5. Statistical Analyses

Wilcoxon rank-sum test was used to compare continuous clinical variables, and
Fisher’s exact test was used to assess differences between categorical variables. Actu-
arial survival analysis was calculated with Kaplan-Meier curves and a log-rank test. We
performed Cox proportional hazards regression for COVID-19 mortality to calculate hazard
ratios (HR) with 95% confidence intervals (CI) of different predictor variables. Significant
variables from the univariant analysis were then included in a multivariant analysis. In
order to do a broad screening of factors, the predictive efficacy for COVID-19 mortality in
LDRT-treated patients was measured with receiver operating characteristic (ROC) curves
and the area under the curve (AUC) for all the significant independent risk factors obtained
in the univariant model. In order to study the combination of these individual risk factors
with the aim of increasing the efficacy for predicting COVID-19 mortality, new variables
combining two predictors were presented in the form of predicted probabilities obtained
from a bivariant logistic regression model. These new combined predictors were analyzed
with ROC analysis. Spearman’s Rho test was employed to analyze the correlation between
two quantitative variables. Continuous variables are expressed as means and standard
deviation, and categorical variables are expressed as frequencies and percentages. Statis-
tical significance was set at p < 0.05. Statistical analyses, logistic regression, and graph
representations were performed on SPSS Statistics version 25 (IBM SPSS Statistics, Armonk,
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NY, USA), GraphPad Prism 8.01 (GraphPad Software, San Diego, CA, USA), and NCSS
Statistical Software 2022 version 12.0.10 (NCSS software, Kaysville, UT, USA).

3. Results
3.1. Clinical Findings

Between June 2020 and February 2021, 46 COVID-19-positive, 25 male and 21 female
patients with a median age of 85 years, and all received dexamethasone treatment. None of
the patients received any of the SARS-CoV-2 vaccine doses. Participants were treated with
LDRT, specifically a single dose of 0.5 Gy to the whole thorax, during the acute phase of viral
infection. The mortality ratio during the course of treatment was 33%. Table 1 summarizes
the main clinical characteristics and laboratory findings categorized by survival at baseline.

Table 1. Baseline demographic and clinical characteristics of COVID-19 patients.

Characteristic Entire Cohort
(N = 46)

Recovered
(N = 31)

Deceased
(N = 15)

Female 21 (45.65) b 15 (48.39) b 6 (40) b

Male 25 (54.35) b 16 (51.61) b 9 (60) b

Age 84.61 ± 6.611 a 84.97 ± 5.351 a 83.87 ± 8.847 a

Comorbidities

Neurological diseases 13 (28.26) b 7 (22.58) b 6 (40) b

Cardiovascular diseases 37 (80.43) 25 (80.65) 12 (80)

Respiratory diseases 17 (36.96) 12 (38.71) 5 (33.33)

Other comorbidities 40 (86.96) 26 (83.87) 14 (93.33)

Pharmacological treatment

Corticosteroids (dexamethasone) 46 (100) b 31 (100) 15 (100)

Functional Status (Barthel Index)

Independent 8 (17.39) b 7 (22.58) b 1 (6.67) b

Minimally dependent 19 (41.30) 14 (45.16) 5 (33.33)

Partially dependent 9 (19.57) 4 (12.90) 5 (33.33)

Very dependent 7 (15.22) 5 (16.13) 2 (13.33)

Total dependent 3 (6.52) 1 (3.23) 2 (13.33)

Geriatric Depression Scale (GDS)

No cognitive decline 23 (50) b 19 (61.29) b 4 (26.67)

Very mild cognitive decline 8 (17.39) 4 (12.90) 4 (26.67)

Mild cognitive decline 9 (19.57) 5 (16.13) 4 (26.67)

Moderate cognitive decline 1 (2.17) 1 (3.23) 0 (0)

Moderately severe cognitive decline 2 (4.35) 2 (6.45) 0 (0)

Severe cognitive decline 3 (6.52) 0 (0) 3 (20)

Very severe cognitive decline 0 (0) 0 (0) 0 (0)

Basal SpO2 93.43 ± 2.713 a 94.03 ± 2.627 a 92.20 ± 2.541 a

Basal SaFi 283 ± 94.720 a 305 ± 80.870 a 237.40 ± 107.400
a

Mild 37 (80.43) b 28 (90.32) b 9 (60) b

Moderate 4 (8.70) 2 (6.45) 2 (13.33)

Severe 5 (10.87) 1 (3.23) 4 (26.67)
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Table 1. Cont.

Characteristic Entire Cohort
(N = 46)

Recovered
(N = 31)

Deceased
(N = 15)

CURB-65 Score

Score 1 - - -

Score 2 12 (26.09) b 10 (32.26) b 2 (13.33)

Score 3 25 (54.35) 19 (61.29) 6 (40)

Score 4 9 (19.56) 2 (6.45) 7 (46.67)

Score 5 - - -

First radiological findings

CT lung involvement <5% - - -

CT lung involvement 5−25% 1 (2.17) b − 1 (6.67)

CT lung involvement 26−49% 7 (15.22) 6 (19.35) 1 (6.67)

CT lung involvement 50−75% 22 (47.83) 17 (54.84) 5 (33.33)

CT lung involvement >75% 16 (34.78) 8 (25.81) 8 (53.33)
SaFi: ratio of oxygen saturation (SpO2) to fractional inspired oxygen (FiO2); CURB-65: clinical criteria validated to
guide the treatment of community-acquired pneumonia based on confusion, BUN, respiratory rate, systolic blood
pressure, and age; CT: computed tomography. a Data shown as means ± standard deviations. b Data shown as
the number of patients and percentages in parenthesis.

3.2. RT-PCR and SARS-CoV-2 Viral Load Quantification Findings

Serum samples were collected at baseline and 1, 7, and 30 days after LDRT treatment
was performed. Regarding gene distribution at baseline, serum RT-qPCR showed amplifi-
cation for the ORF1ab, N, and/or S gene in 23 (50%) patients out of 46. 9 (39.13%) patients
presented ORF, N and S gene amplification. One gene amplification was observed in 1
(4.35%) patient for the ORF gene, in 7 (30.43%) patients for the N gene, and in 2 (8.70%)
patients for the S gene. ORF and S gene amplification was reported in 1 (4.35%) patient,
ORF and N amplification was found in 3 (13.04%) patients, and none of the participants
was positive for both N and S genes (Figure 1a). However, from these 23 samples that
showed general amplification and following the standards of our laboratory, samples with
the S and ORF1ab gene amplified alone with a Ct > 35 and the N gene amplified alone with
no consideration of the Ct value were considered negative. Consequently, only 14 out of
46 participants (30.43%) exhibited SARS-CoV-2 serum RNA above the quantification limit
(1 log10 copies/mL) at the time of basal blood collection and were considered viremic or
SARS-CoV-2 RNA detectable participants. Among those individuals, the median serum
viral load was 2.678 log10 RNA copies/mL (range 1.345–5.283 log10 RNA copies/mL;
Figure 2a). Serum SARS-CoV2 viral load was reported as a continuous and categorical
variable (detectable vs. undetectable), categorized as undetectable in all the samples below
the quantification range.

3.3. LDRT and SARS-CoV-2 Viral Load Quantification Findings

Of the 46 participants studied, 31 (67.39%) patients recovered during the LDRT treat-
ment, and 15 patients died (32.60%), of which 12 (26.09%) due to COVID-19 pneumonia and
3 (6.52%) due to other causes. When we considered the percentage of deaths, regardless of
the cause, a higher mortality rate was associated with detectable viral load, as 57% of those
patients with detectable serum viral load died compared to 22% in the undetectable viral
load group (Fisher’s exact p = 0.0377; Figure 1c). Regarding COVID-19 mortality, serum
viremia was also associated with increased mortality, as 57% of patients testing positive for
SARS-CoV-2 serum RNA died compared to only 14% of those with undetectable viral load
(Fisher’s exact p = 0.0085; Figure 1d). When analyzing viral load as a continuous variable,
higher serum viral loads were significantly associated with mortality (Wilcoxon rank sum
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test p = 0.0068; Figure 1e), with a median viral load of 1.345 log10 RNA copies/mL (range
0–3.866 log10 RNA copies/mL) in the deceased group compared to a median viral load
of 0 log10 RNA copies/mL (range 0–5.283 log10 RNA copies/mL) in the recovered group.
Furthermore, patients were classified according to their CURB-65 score. Eleven (23.91%)
patients presented a CURB-65 score of 2, 26 (56.52%) patients of 3, and 9 (19.56%) patients
with a score of 4. The proportion of deceased patients with a CURB-65 score of 4 (77.8%)
was significantly higher compared to patients with a score of 3 (26.9%) and a score of 2
(9.1%, Chi-square test p = 0.0032; Figure 1f). In this line, greater CURB-65 scores were
correlated with SARS-CoV-2 plasma RNAemia (Figure 1g; Kruskal-Wallis p = 0.0006) and
with higher levels of the inflammatory marker IL-6 (Figure 1h; Kruskal-Wallis p = 0.041).
While the proportion of patients with SARS-CoV-2 plasma RNAemia was significantly
associated with mortality and illness severity, no significant association was found between
the length of hospitalization and the presence of SARS-CoV-2 plasma RNAemia among
participants (Figure 1i). Moreover, in the recovered group, there is no significant association
between the length of medical discharge and the presence of SARS-CoV-2 plasma RNAemia
(Figure 1j). Considering circulating viral RNA detected in the 46 serum samples from the
participants, no significant differences were found between serum SARS-CoV-2 positive
(378.7 ± 33.21 ng/mL) and negative patients (385.9 ± 51.32 ng/mL) (Figure 1).

In this line, Kaplan-Meier survival analysis was used to estimate the survival time of
patients in both the viremic and the aviremic groups, considering exclusively COVID-19
pneumonia as the cause of death. Kaplan-Meier analysis reported that those patients
presenting SARS-CoV-2 serum positivity at admission survived less than negative SARS-
CoV-2 serum patients. With a median follow-up of 15 days after hospital admission
(range 0–57 days), the 30-day overall survival (OS) estimation was 54.4% for the entire
studied cohort (Figure 2a). According to SARS-CoV-2 RNA serum presence, 30-day OS was
72.6% for negative serum SARS-CoV-2 patients and 30.5% for positive serum SARS-CoV-2
individuals (log-rank test p = 0.043; Figure 2b). Thus, it is confirmed that there is a significant
association between COVID-19 serum RNA positivity and higher mortality rates.

In order to validate the usefulness of COVID-19 serum positivity one day before
LDRT as a predictor of mortality, we wanted to analyze whether an association exists with
some of the most relevant clinical and laboratory parameters that have been previously
related to worse outcomes and disease severity. The univariate Cox proportional hazards
regression analysis showed that viral load, C-reactive protein (CRP), lactate dehydrogenase
(LDH), and aspartate aminotransferase (AST) were significant risk factors associated with
COVID-19 mortality. Moreover, we set a p-value cut-off point of 0.1 in the Wald Test for
identifying more potential candidates for further analysis, resulting in the addition of
the age factor to the multivariant model as well. Subsequently, these parameters were
incorporated into the multivariate Cox proportional-hazard model, which revealed that
age (aHR = 1.463 [95% CI: 1.062–2.014]; Cox regression analysis p = 0.020) and viral load
(aHR = 1.738 [95% CI: 1.009–2.992]; Cox regression analysis p = 0.046) were independent
significant predictors of survival (Table 2).

Afterward, we performed a receiver operating characteristics (ROC) curve analysis
with the significant variables from the univariate Cox analysis in order to perform a
more extensive screening of factors in addition to viral load and age. When considering
individual single parameters, AST showed the best results as per area under the curve
(AUC: 0.755, p = 0.003), followed by LDH (AUC: 0.7467, p = 0.0018) and viral load (AUC:
0.746, p = 0.0015) (Figure 3a). Then, we combined all the parameters with viral load and
also the combination of AST and LDH since they gave the best AUC values (Figure 3b).
New variables were generated in the form of predicted probability from a binary logistic
regression model.
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Figure 1. Gene profiling and SARS-CoV-2 RNA detection in serum at baseline before LDRT is ad-
ministered. (a) Distribution of N, S, and ORF1ab gene amplification by qRT-PCR was detected in 23 
patients, from which 14 were subsequently considered positive for SARS-CoV-2 following the 
guidelines of our laboratory. (b) SARS-CoV-2 viral load (VL) distribution; 4 patients presented viral 
loads below the range of detection and were considered undetectable throughout the trial. p values 
are from a two-tailed Wilcoxon rank sum test. (c,d) Percent of participants with detectable and 

Figure 1. Gene profiling and SARS-CoV-2 RNA detection in serum at baseline before LDRT is
administered. (a) Distribution of N, S, and ORF1ab gene amplification by qRT-PCR was detected
in 23 patients, from which 14 were subsequently considered positive for SARS-CoV-2 following the
guidelines of our laboratory. (b) SARS-CoV-2 viral load (VL) distribution; 4 patients presented viral
loads below the range of detection and were considered undetectable throughout the trial. p values



J. Clin. Med. 2023, 12, 798 8 of 15

are from a two-tailed Wilcoxon rank sum test. (c,d) Percent of participants with detectable and unde-
tectable serum SARS-CoV-2 viral load by mortality outcome, with (d) or without (c) consideration of
COVID-19 pneumonia as the cause of death. p values are from a Fisher’s exact test. (e) Quantification
of SARS-CoV-2 serum viral load at baseline in recovered and dead patients. (f) Distribution of
patients’ mortality according to their CURB-65 scores. (g) Distribution of SARS-CoV-2 plasma viral
load of patients according to their CURB-65 scores. (h) Interleukin-6 concentration corresponding
to different CURB-65 scores. (i,j) Length of hospitalization (f) and medical discharge in detectable
and undetectable SARS-CoV-2 serum patients. (k) Serum viral RNA concentration of participants.
p values obtained from a two-tailed Wilcoxon rank sum test. ns stands for non-significant.
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serum RNA (N = 29). p value obtained from a log-rank test.
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Figure 3. Receiver operating characteristics (ROC) curve analysis of different parameters in COVID-19
patients treated with LDRT to predict COVID-19 mortality. (a) ROC plot of single parameters (CRP,
LDH, AST, Viral Load, CURB-65, Age). (b) ROC plot using a combination of parameters (Viral Load
and C-reactive protein, Viral Load and LDH, Viral Load and AST, Viral Load and Age, Viral Load
and CURB-65, AST and LDH).

Combined parameters were considered in order to improve the diagnostic efficacy of
our predictors in the differentiation between the survivors and the deceased group during
the first 30 days after LDRT administration. When combining AST and LDH with the other
factors, AUC values were not as optimal as when these factors were combined with viral
load. The viral load and AST combination showed the best diagnostic efficiency (AUC:
0.8589, p = 0), followed by viral load and LDH (AUC: 0.8468, p = 0; Table 3) in predicting
COVID-19 mortality during a period of 30 days after LDRT treatment. Thus, a personalized
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analysis of viral load and AST parameters for each patient could help to predict the survival
probability after LDRT treatment and be useful to distinguish which patients can benefit
more from this treatment.

Table 2. Bivariate and multivariate Cox proportional hazards regression model for COVID-19 mortality.

Risk Factors
Univariate Cox Regression Analysis Multivariate Cox Regression Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age 1.125 (0.990–1.279) 0.071 1.463 (1.062–2.014) 0.020
Sex (Female) 0.897 (0.325–2.481) 0.835 - -
Viral Load 1.596 (1.166–2.184) 0.004 1.738 (1.009–2.992) 0.046

RNA serum
concentration 1.005 (0.991–1.019) 0.466 - -

Neurological disease 1.542 (0.525–4.525) 0.431 - -
Cardiovascular disease 1.355 (0.378–4.865) 0.641 - -

Respiratory disease 1.111 (0.394–3.130) 0.843 - -
Other comorbidities 2.578 (0.338–19.648) 0.361 - -

Days with symptoms 1.075 (0.782–1.476) 0.657 - -
IL-6 1.000 (0.995–1.005) 0.927 - -

Ferritin 1.000 (1.000–1.000) 0.143 - -
C-reactive protein 1.075 (1.017–1.138) 0.011 0.979 (0.841–1.141) 0.789

LDH 1.004 (1.001–1.007) 0.005 1.007 (1.000–1.014) 0.064
Hemoglobin 1.244 (0.953–1.625) 0.108 - -

CD4 cells 0.998 (0.994–1.003) 0.486 - -
CD8 cells 0.999 (0.994–1.004) 0.708 - -

CD4/CD8 ratio 0.961 (0.774–1.192) 0.715 - -
D-dimer 1.000 (1.000–1.000) 0.278 - -
CURB-65 3.153 (1.348–7.373) 0.008 1.795 (0.398–8.081) 0.446
Glucose 1.002 (0.996–1.008) 0.485 - -

Respiratory Frequency 1.000 (0.981–1.019) 0.986 - -
AST 1.019 (1.005–1.034) 0.009 0.996 (0.974–1.018) 0.706
ALT 1.010 (0.992–1.029) 0.255 - -

Leukocytes 1.000 (1.000–1.000) 0.951 - -
Lymphocytes 0.999 (0.998–1.001) 0.348 - -

Platelets 1.000 (1.000–1.000) 0.165 - -

IL-6: interleukin-6; LDH: lactate dehydrogenase; CURB-65: clinical criteria validated to guide the treatment of
community-acquired pneumonia based on confusion, BUN, respiratory rate, systolic blood pressure, and age;
AST: aspartate aminotransferase; ALT: alanine aminotransferase.

Table 3. Area under the curve for various factors in COVID-19 patients.

Variable AUC p Value
95% Confidence Interval

Lower Bound Upper Bound

Viral Load 0.7460 0.0015 0.5352 0.8693
CURB-65 0.7377 0.0019 0.5309 0.8616

LDH 0.7467 0.0018 0.5293 0.8720
AST 0.7552 0.0003 0.5670 0.8685
CRP 0.7313 0.0032 0.5184 0.8588
Age 0.6698 0.0201 0.4747 0.8022

Viral Load + CRP 0.7957 0.0001 0.5774 0.9078
Viral Load + LDH 0.8468 0.0000 0.6313 0.9409
Viral Load + AST 0.8589 0.0000 0.6894 0.9392
Viral Load + Age 0.8320 0.0000 0.6590 0.9214

Viral Load + CURB-65 0.8196 0.0001 0.5790 0.9297
AST + LDH 0.7768 0.0001 0.5846 0.8864

CURB-65: clinical criteria validated to guide the treatment of community-acquired pneumonia based on confusion;
LDH: lactate dehydrogenase; AST: aspartate aminotransferase; CRP: C-reactive protein. New variables were
generated by combining two factors in form of predicted probability from a binary logistic regression model.

Then, we analyzed longitudinal measurements of CRP, LDH, and AST concentra-
tions in both groups, the viremic and the aviremic participants. Although statistical
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significance was not found, we observed that after LDRT administration and during the
following 30 days, there is a trend toward homogenization of CRP, LDH, and AST con-
centration values between patients with SARS-CoV-2 detectable serum viremia and those
without (Figure 4).
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Figure 4. Longitudinal measurements of selected factors. Analysis of CRP (a), LDH (b), and AST (c)
levels from baseline at day 0 to 30 days after LDRT. Treatment with LDRT was performed on day 1,
indicated with a red arrow. Two-tailed Wilcoxon signed rank test did not show significant p values.
SEM values are plotted.

Finally, we studied the correlation between the significant factors from the univariant
Cox regression analysis and viral load (Figure 5). There was a significant moderate correla-
tion between CURB-65 and viral load (r: 0.511, p < 0.001) (Figure 5d) and a low significant
correlation between LDH and viral load (r: 0.317, p = 0.032) (Figure 5a). In the case of
CRP/AST/Age and VL (Figure 5b,c,e), no statistical significance was achieved.
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4. Discussion

The present study appears to be the first to analyze baseline SARS-CoV-2 plasma viral
load in 46 LDRT-treated patients before irradiation and to investigate the usefulness of this
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parameter as a predictor of COVID-19 mortality during a 30-day follow-up period after the
LDRT treatment. Our present findings show that detectable SARS-CoV-2 plasma viremia
24 h before LDRT is significantly associated with increased mortality rates post-treatment,
thus downsizing the treatment success. Furthermore, we demonstrate that the patients
with the larger scores in CURB-65 are the ones with the highest SARS-CoV-2 plasma viral
load and that this pneumonia severity scale is significantly associated with inflammation,
specifically with the cytokine IL-6. Furthermore, we report a significant positive correlation
between SARS-CoV-2 viral load and LDH. Lastly, we suggest a potential novel mortality
factor combining viral load and AST values that should be further investigated.

On March 11th of the year 2020, the WHO declared COVID-19 as a pandemic charac-
terized by a broad clinical spectrum, being severe pneumonia and respiratory failure the
main cause of death [7]. In this scenario, with the absence of specific antiviral drugs and
sanitary systems collapsing over the globe, LDRT was resurrected as a potential treatment
against COVID-19. The beneficial effects of LDRT treatment, based on its anti-inflammatory
properties, date back to the last century. LDRT showed real curative benefits in the man-
agement of a variety of clinical conditions in which inflammation plays an important role,
such as epicondylitis [15], osteoarthritis [16], necrotizing abscesses [17], and pneumonia.
Several studies show that LDRT improves respiratory parameters and lung involvement
and reduces serum inflammation markers [13,18–20]. A comparative cohort study reported
a reduction in mortality among moderate COVID-19 patients treated with LDRT compared
to the control group [21]. Furthermore, a systematic review, including nine clinical trials,
supports that LDRT improves clinical parameters, radiological findings, and mortality rates,
while at the same time, no side effects of radiation, such as acute toxicity, are found [22].
Regarding the biochemical mechanisms underlying LDRT, a recent study has broadened
our knowledge, reporting an increase in serum PON1 activity while reducing inflammatory
markers [12]. Although LDRT has shown promising results, considering the small sample
and the lack of a randomized design in the majority of these studies, together with the
knowledge gap in the understanding of the mechanistic behind LDRT, further research
must be done.

In light of the results achieved thus far, LDRT could be an effective therapeutic strategy
in cases of moderate and severe COVID-19, although there are some aspects regarding
safety and dose that should be further investigated. For this reason, in our study, we
propose a predictive method to maximize treatment success in terms of survivability based
on the detection of SARS-CoV-2 viremia at baseline and thus be able to determine the most
suitable patients for LDRT treatment. Several studies reported that SARS-CoV-2 serum
viral load is associated with a higher risk of death, systemic inflammation, and disease
progression [6,23,24]. The results of the present study confirm that the detection of serum
viremia is related to higher mortality rates, and when quantified, there is a significant
relationship between an increase in SARS-CoV-2 serum viral load and higher scores in the
CURB-65 scale. Since the benefits of LDRT have not yet been demonstrated conclusively,
together with the fact that not all hospitals have a radiotherapy department able to carry out
LDRT in controlled safety conditions, we suggest this method to target LDRT treatment to
the groups that can benefit most from its results. Furthermore, we found that patients with
higher CURB-65 scores before treatment had larger baseline concentrations of IL-6, which
has been highlighted to play a key role in the cytokine storm characterizing COVID-19
patients [25]. Both CURB-65 [26] and IL-6 [27] have been pointed out as reliable prognosis
markers of COVID-19 patient outcomes, suggesting that SARS-CoV-2 baseline viral load
could also be an effective severity predictor because of the relationship, either direct or
indirect, we have demonstrated with both CURB-65 and IL-6.

We also analyzed other potential risk factors associated with COVID-19 mortality in
LDRT-treated patients. In the present study, the univariate Cox regression model revealed
other risk factors, apart from baseline serum viral load, including age, higher serum
concentrations of CRP, LDH, and AST, and higher CURB-65 scores at baseline, which
was consistent with findings of recent studies [28–31]. However, when multivariate Cox
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regression was performed, only viral load and age remained significant risk factors. In
spite of this, we wanted to explore broadly possible prognosis predictive factors, and
therefore we chose the ones from the univariate analysis. When we explored the predictive
capacity of COVID-19 mortality of these individual parameters, AST, LDH, and viral
load at baseline showed the best AUC values. Furthermore, we investigated whether
the combination of different factors would give better AUC values in discriminating
between patients who died after LDRT treatment over the 30-day follow-up of the study
and those who did not, and indeed when combining viral load and AST factors, we
maximized AUC values (AUC = 0.847). Liver damage causes elevated levels of both
aspartate aminotransferase (AST) and alanine aminotransferase (ALT), which have been
reported in COVID-19 patients [32]. Lei et al. reported that of these two enzymes, AST, in
particular, is the one most closely associated with mortality [33]. Finally, CRP, LDH, and
AST serum concentrations were monitored during the 30-day follow-up of the trial, and
although no statistical differences were found, there is a tendency towards homogenization
after LDRT is performed between SARS-CoV-2 serum detectable and the SARS-CoV-2
non-detectable group, we hypothesize it could be due to LDRT effect however, further
research should be done.

Different studies have shown the presence of proinflammatory Th1 and Th2 cytokines
in the serum of SARS patients compared to healthy controls, with significantly higher
concentrations of TNF-ß, IL-6, IL-8, IL-10 and IL-12 in the stage early stage of SARS-CoV
infection [34,35]. In the present study, we confirmed the role of the T cell response through
the cytokine IL-6. Decreased serum cytokine levels have been reported to correlate with
recovery from SARS-induced pneumonia. On the contrary, elevated levels of IL-4, IL-5,
and IL-10 have been associated with fatal cases of SARS [36]. This cytokine response has
been demonstrated with other viruses. Thus, in MERS-CoV, the increased secretion of
IL-1, IL-6, IL-8, IL-12, and IFN, has been documented as a consequence of an antiviral
and inflammatory response [36]. In addition, it has been shown that in, MERS-CoV the
cytokines IL-8 and IL-12 are produced in greater amounts compared to the response to
SARS-CoV [37]. It is interesting to highlight that increased plasma IL-6 concentration in
SARS patients has been documented to be significantly increased in severe cases but not in
convalescent or control subjects, suggesting a positive correlation between serum IL-6 level
and disease severity [37]. Our findings confirm that plasma IL-6 levels are associated with
severe COVID-19 disease and that IL-6 levels decrease in the convalescent period.

Our study has some limitations. First and most important, a control group could
not be assembled. This control cohort would have consisted of patients receiving the
standard of care (SoC) treatment without LDRT, enabling a comparative analysis of plasma
COVID-19 viral load evolution, mortality ratio, length of hospitalization, viral RNA, and
IL-6 concentration with the experimental cohort treated with SoC plus LDRT. Moreover, a
longitudinal analysis of plasma SARS-CoV-2 viral load dynamics after LDRT could have
provided more value to the results reported; however, our study was limited due to early
discharges or COVID-19 negativization that did not facilitate further blood draws. In
future studies, we would like to determine a cut-off point for the potential novel prognostic
factor combining baseline AST concentration and plasma viral load that we have already
pointed out. Furthermore, sample size was limited owing to difficulties encountered when
matching different patient characteristics to form a homogenous group. Moreover, the
limited number of patients in the hospital fitting in our inclusion criteria, along with the
obstacles for every single one to be included in the trial, made it challenging to increase
our sample size. On the other hand, the main strength of the present study lies in the fact
that it is the first one to analyze baseline SARS-CoV-2 plasma viral load and to propose
this parameter to be a good predictor for COVID-19 mortality in a LDRT-treated cohort.
This would allow us to specifically treat patients that can benefit the most. In addition, we
have demonstrated the association between plasma SARS-CoV-2 viral load and CURB-65
and LDH and, at the same time, the correlation between CURB-65 higher scores and larger
IL-6 concentrations. Finally, in the present study, we highlight a novel COVID-19 mortality
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predictor combining viral load and AST concentrations that should be further investigated.
Currently, it might appear that focusing efforts to further understand LDRT treatment
is not required since COVID-19 progress is being restrained. However, we consider it
important to broaden our knowledge on LDRT effects and underlying mechanisms due
to new variables may emerge in world areas where massive vaccine campaigns are not
being implemented, and also because we consider that LDRT treatment could open a new
therapeutic window not only for COVID-19 treatment but also in several diseases where
inflammatory response plays a role.
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