
Privacy-aware Loyalty Programs

Alberto Blanco-Justicia and Josep Domingo-Ferrer

Universitat Rovira i Virgili, UNESCO Chair in Data Privacy, Department of
Computer Engineering and Mathematics, Av. Päısos Catalans 26, E-43007

Tarragona, Catalonia
E-mail {alberto.blanco,josep.domingo}@urv.cat

Abstract

Vendors use loyalty programs as a mechanism to incentivize returning customers,
whose repeated transactions provide sustained profit and information on the cus-
tomers’ preferences. Such programs have become widespread, but they are facing
criticism by business experts and consumer associations: since they facilitate pro-
filing, a loss of consumer privacy ensues. We propose a protocol for privacy-aware
loyalty programs that allows vendors and consumers to enjoy the benefits of loyalty
(returning customers for the vendor and rewards for the consumers, respectively),
while allowing consumers to stay anonymous and empowering them to decide how
much of their profile they reveal to the vendor. The vendor must offer additional
reward if he wants to learn more details on the consumer’s profile. Our protocol is
based on partially blind signatures and generalization of product receipts, and pro-
vides anonymity to consumers and their purchases, while still allowing negotiated
consumer profiling. We provide empirical results that confirm the viability of our
approach.

Key words: Loyalty programs, customer privacy, anonymization, blind signatures,
smartphones.

1 Introduction

Any vendor is extremely interested in establishing lasting relationships with
consumers. For some companies (like public utilities or banks) long relation-
ships are the rule rather than the exception, whereas for other companies
(like retailers) consumer loyalty is much harder to obtain without specific in-
centives. Loyalty programs are instruments whereby vendors try to provide
such incentives. In a loyalty program, the vendor pursues two main goals: i)
to encourage the consumer to make more purchases in the future (returning

Preprint submitted to Elsevier Preprint November 27, 2015

customer); ii) to allow the vendor to profile the consumer in view of conduct-
ing market research and segmentation (profiled customer). In order to lure
consumers into a loyalty program, the vendor offers them rewards, typically
loyalty points that consumers can later exchange for discounts, gifts or other
benefits offered by the vendor. Normally, enrollment to loyalty programs in-
volves some kind of registration procedure, in which customers fill out a form
with their personal information and are granted a loyalty card, be it a physical
card (magnetic stripe or smartcard) or a smartphone application.

Market analysis and customer segmentation are carried out by building profiles
of individual customers based on their personal information, which customers
supply to the vendor during enrollment to the loyalty program, and their
purchase records, collected every time customers present their loyalty cards.
The profiles thus assembled are used in marketing actions, such as market
studies and targeted advertising.

Although loyalty programs have become widespread, they are experiencing a
loss of active participants and they have been criticized by business experts
and consumer associations. Criticism is mainly due to privacy issues, because it
is not always clear whether the benefits vendors offer in their loyalty programs
are worth the loss of consumer privacy caused by profiling [27,34,1,17].

Loyalty programs can offer clear advantages to both vendors and consumers,
like returning customers and special discounts, respectively. However, privacy
concerns regarding buyer profiling affect more and more the acceptance of
such programs, as the public awareness on the dangers of personal information
disclosure is increasing.

In this work we propose a protocol for privacy-aware loyalty programs that
allows vendors and consumers to enjoy the benefits of loyalty, while preserving
the anonymity of consumers and empowering them to decide how accurately
they reveal their profile to the vendor. In order to encourage customers not
just to return but also to disclose more of their profile, the vendor must offer
additional rewards to consumers. Thus, vendors pay consumers for their private
information. On the other hand, consumers become aware of how much their
personal data are worth to vendors, and they can decide to what extent they
are ready to reveal such data in exchange for what benefits.

To empower consumers as described above, we provide them with a mechanism
that allows them to profile themselves, generalize their profiles and submit
these generalized profiles to the vendor in an anonymous way. There are some
technical challenges to be overcome:

• The proposed mechanism should prevent vendors from linking the gen-
eralized profiles to the identity of buyers, to particular transactions or to
particular loyalty points submitted for redemption.

2

• To prevent straightforward profiling by the vendor, payment should be
anonymous. In online stores, to completely achieve anonymity, the buyers
should use some kind of anonymous payment system, such as Bitcoin [25],
Zerocoin [24], some other form of electronic cash [14], or simply scratch
cards with prepaid credit anonymously bought, say, at a newsstand. In
physical stores, it would be enough to pay with cash.
• Consumers should not be able to leverage their anonymity to reveal forged

profiles to the vendor, which would earn them rewards without actually
revealing anything on their real purchase pattern.

Our proposed mechanism, thus, needs to take care of the two main aspects of
loyalty programs. First, it has to provide a way to obtain and submit loyalty
points in an anonymous and unlinkable way; that is, a customer should be
able to submit a particular loyalty point to a vendor, but the vendor should
not be able to link that particular loyalty point to the transaction in which
it was issued. Second, our mechanism must allow customers to build their
own generalized profiles from their respective purchase histories, but it must
prevent customers from forging false profiles and vendors from linking the
generalized profiles to particular customers. We will show later that these two
aspects can be tackled in a similar way.

The paper is organized as follows. Section 2 starts recalling the functionalities
of a conventional loyalty program; then it formalizes the notion of privacy-
aware loyalty program; after that, it goes on to present the security and
functionality requirements that our new privacy-aware protocol suite should
satisfy. Section 3 reviews related work. Section 4 describes the cryptographic
background used in our proposed construction, including bilinear maps, par-
tially blind signatures, and zero-knowledge proofs. In Section 5, we explain
how we use generalization of purchase receipts while preventing the existence
of several generalizations of each purchase receipt from being abused to sub-
mit the receipt more than once to get loyalty points. In Section 6 we introduce
anonymous tokens with controlled linkability based on partially blind signa-
tures. In Section 7 we present our privacy-aware loyalty program protocol
suite, that builds on the tools described in Sections 4, 5 and 6. In Section 8
we analyze the computational complexity and the security of the suite. In
Section 9 we present experimental results, including an implementation on
smartphones and an analysis of deployability in physical and online stores.
Section 10 presents an extension of our construction that guarantees untrans-
ferability of purchase receipts and/or loyalty points. Finally, Section 11 sum-
marizes conclusions.

A previous and partial version of this paper was presented in the conference
paper [7]. Sections 3, 9 and Section 10 are entirely new to this journal version;
also, substantial additions have been made to Section 2 (to which formalization
and the untransferability requirement have been added), Section 4.2, Section 8

3

and Section 11. Furthermore, whereas [7] relied on symmetric pairings as the
underlying cryptographic building block, we use here asymmetric pairings for
increased security [15].

2 Loyalty programs

Our method aims to offer all the functionalities of loyalty programs; that is, to
allow vendors to reward returning customers with loyalty points and to profile
returning customers based on their purchase histories. The novelty is that our
scheme empowers customers with the ability to decide how accurately they
disclose their purchase histories to vendors.

A simple and perhaps the most widespread approach to implement a loyalty
program is to have a centralized server, owned and operated by some vendor
V , that stores the information on the program participants. This information
includes all the personal data the participants gave to the vendor when they
enrolled to the program, their balance of loyalty points, and their history of
purchases. Each customer is given a loyalty card which contains the identifier
of her record in the server’s database. Each time a customer buys at a store
and presents her loyalty card, her record in the server is updated, by adding to
it the items she bought and modifying her balance of loyalty points if needed.
In this way, all transactions by each customer can be linked to each other
using the customer’s identifier. Even if the customer provided false information
when she enrolled to the loyalty program, all of her transactions would be
linked anyway. Hence, discovering the customer’s identity in one individual
transaction (e.g. through the credit or debit card used for payment) would
allow linking her entire profile to her real identity.

If control over profiling and purchase histories is to be left to customers, a
centralized approach does not seem a good solution. Moreover, we should
also ensure that individual transactions cannot be linked to each other unless
desired by the customer. To do so, we will let each customer manage locally
and anonymously her own balance of loyalty points and history of purchases.

2.1 A privacy-aware alternative

Our proposed mechanism follows the decentralized approach. To allow local
management of loyalty points and purchase receipts by the customer, we treat
points and receipts as anonymous electronic cash, in the sense that: i) they
are one-time certified tokens of information; ii) they are issued by vendors
and they can only be redeemed at the same vendor who issued them, but

4

issued tokens and redeemed tokens should remain unlinkable. However, un-
like in anonymous electronic cash schemes, in our scheme the entity issuing
certified tokens of information is not a trusted third party: indeed, the issuer
in our scheme is the vendor, and placing complete trust in the vendor would
allow him to profile the users. Moreover, the concrete implementation of the
loyalty program should discourage customers from transferring loyalty points
and purchase receipts among them. Purchase histories will be built by the ven-
dor from the individual purchase receipts of all products purchased by each
customer that the customer allows the vendor to link together; furthermore,
the customer can decide how generalized/coarsened are the product descrip-
tions in the purchase receipts she allows the vendor to link to one another.

Definition 1. (Privacy-aware Loyalty Program) A Privacy-aware Loyalty
Program scheme has three participants: a key dealer or certification authority
CA, a vendor V, and a customer C. V keeps a set DB of submitted tokens that
is initially empty. The scheme consists of seven protocols (Setup, VendorSetup,
Enroll, Buy, Submit, Issue, Redeem):

• Setup is a probabilistic polynomial-time algorithm run by CA in which,
on input a security parameter γ, outputs (and publishes) the system pa-
rameters params.
• VendorSetup is a probabilistic polynomial-time key generation algorithm.
V is certified as a legitimate vendor and obtains params and a key pair
(pkV , skV) from CA.
• Enroll is a protocol run by C whereby C obtains access to the loyalty pro-

gram, typically by registering and obtaining params and pkV .
• Buy is a probabilistic polynomial-time interactive protocol run between V

and C. The public inputs of both C and V contain a product name p.
The private input of C contains a message y, and that of V contains
the private key skV . When the protocol finishes, the private output of C
contains either fail or a list of receipt tokens (Ri)i=1,...,n.
• Submit is a polynomial-time algorithm that takes pkV , a receipt token R

and DB as inputs. Submit outputs either accept if the signature on the
token R is valid and R 6∈ DB or reject otherwise. An accepted submitted
token is thereafter invalidated by adding it to DB.
• Issue is a probabilistic polynomial-time interactive protocol run between
V and C. The public inputs of both C and V contain a value c of loyalty
points. The private input of C contains a message y, and that of V con-
tains a private key skV . When the protocol finishes, the private output of
C contains either fail or a loyalty points token P .
• Redeem is a polynomial-time algorithm that takes pkV and loyalty points

token P and DB as inputs. Redeem outputs either accept if the signature
on the token P is valid and P 6∈ DB or reject otherwise. A redeemed
token is then invalidated by adding it to DB.

5

2.2 Requirements

Definition 2. (Correctness and security of a Privacy-aware Loyalty Program)
A Privacy-aware Loyalty Program is considered correct and secure if, given
params← Setup(γ), (pkV , skV)← VendorSetup(params), it fulfills the following
properties:

• (Correctness) For any product name p, any private input y of C, a private
key skV , and a receipt token R ← Buy(p, y, skV) such that R 6∈ DB, the
execution of Submit(pkV , R,DB) must return accept with overwhelming
probability. Likewise, for any value c, any private input y of C, a pri-
vate key skV , and a loyalty points token P ← Issue(c, y, skV) such that
P 6∈ DB, the execution of Redeem(pkV , P,DB) must return accept with
overwhelming probabiliy.
• (Unforgeability) Receipt tokens R and loyalty points tokens P should be

unforgeable against one-more forgery under chosen-message attacks; that
is, for any integer `, no polynomial adversary A should be able to suc-
cessfully submit ` + 1 receipt tokens after only ` executions of the Buy
protocol, nor redeem `+ 1 loyalty points tokens after only ` executions of
the Issue protocol.
• (Anonymity) A vendor V should not be able to link a submitted receipt

token R to the particular execution of the Buy protocol in which the token
was produced. Likewise, V should not be able to link a submitted loyalty
points token P to the particular execution of the Issue protocol in which
the token was produced.

Beyond the above generic security properties, the proposed scheme should
provide the following two security properties related to token management:

• Controlled linkability. A customer C should be able to decide whether
a submitted receipt token R can be linked to other receipt tokens sub-
mitted by the same C to the same vendor V .
• Untransferability. A customer C should not be able to obtain loy-

alty points from V by submitting a purchase receipt issued to another
customer C ′; transfer of purchase receipts among customers blurs their
profiles and hence is against the vendor’s interests. Note that transfer
of purchase receipts among customers implies that the transferring cus-
tomer loses the loyalty points she could get in exchange for that receipt,
as submitted receipt tokens are invalidated. On top of that, the customer
who transfers her receipt tokens loses some privacy w.r.t the customer
to whom she transfers them. If losing loyalty points and partially losing
one’s privacy can be assumed sufficient to discourage the transfer of re-
ceipts, no specific countermeasures are needed to ensure untransferability.
For the case where the above assumption does not hold, in Section 10 we

6

provide an extension of our protocol suite to enforce untransferability of
both receipt and loyalty points tokens.

3 Related work

Certified tokens whose issuance and redemption are unlinkable, as we propose
for receipt and loyalty points tokens, were first proposed in the anonymous
electronic cash literature [13,14]. Anonymous e-cash typically relies on blind
signatures [13], a type of signatures in which the signer does not learn the
message she is signing. We provide a more detailed description of blind sig-
natures (and also partially blind signatures, [4,5]) in Section 4. More recent
works regarding anonymous electronic cash have used cryptographic accumu-
lators [6] to easily trace malicious behaviors. Although we use techniques from
anonymous electronic cash to build our scheme, we avoid using a trusted third
party (a bank in the e-cash setting), because this could allow this third party
to profile the customers.

More generally, secure multiparty computation (MPC), introduced in [36], al-
lows a set of parties to engage in joint computation while keeping their inputs
private. In this respect, blind signatures or partially blind signatures can be
viewed as a special case of MPC. However, in most other applications of MPC,
like privacy-preserving data mining [21] or electronic voting [29], participants
giving their input are usually symmetric (they are peers with no hierarchy
among them) and semi-honest (the inputs provided by participants are as-
sumed to be valid ones). In the case of blind signatures and partially blind
signatures, the above does not hold: i) there is asymmetry, because the party
issuing blind signatures (bank issuing e-cash or vendor issuing receipts and
loyalty points) has more power than the rest (the customers); ii) the parties
seeking to obtain blind signatures may be malicious, in that they cannot be
trusted to provide valid information (customers might submit banknotes with
higher denomination than declared, or receipts of items that were not actually
purchased).

In the previous two paragraphs, we have discussed work related to the privacy-
preserving token issuance aspect of our contribution. If we now focus on its
other main aspect, namely privacy-preserving customer profiling, there are
certainly other works in which a service provider collects information on her
user base in a privacy-preserving way. For example, the authors from [28]
propose a scheme to collect location-based aggregate statistics. In that con-
tribution, drivers provide location-based information (e.g. their speed), to a
centralized server that can aggregate this information. The information they
provide is always encrypted, using some homomorphic encryption scheme. The
data they deal with is only numeric, and the computations that can be done

7

are defined beforehand (they depend on the homomorphic encryption scheme
in use). In our contribution, however, data do not need to be numeric, and
we protect them by generalization rather than encryption; note that, unlike
homomorphic encryption, generalization does not restrict computations that
can be carried out on the protected data.

4 Cryptographic background

In this section we summarize the cryptographic background we use in our pro-
posed mechanism. Specifically, we recall asymmetric bilinear maps, partially
blind signatures and zero-knowledge proofs. The latter are relevant to the un-
trasferability property in Section 10. We recall formal security properties when
relevant and we set the notation for the rest of the paper.

4.1 Bilinear maps

Given cyclic groups G1, G2, GT of prime order p, generators g1 ∈ G1 and
g2 ∈ G2, an asymmetric bilinear map is a function e : G1×G2 → GT with the
following properties:

• Bilinearity: For all x ∈ G1, y ∈ G2, a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
• Non-degeneracy: The value e(g1, g2) generates GT .
• Efficient computability: The function e is efficiently computable.

We use multiplicative notation for all groups Zp, G1, G2, and GT .

4.2 Partially blind signatures

Blind signature protocols are interactive protocols between a user, a signer
and a verifier, in which the signer produces a digital signature of a message
submitted by the user, but does not learn anything about the contents of
the message. This primitive was introduced by Chaum in [13] and has since
been used in a vast array of privacy-related protocols, such as e-cash, elec-
tronic voting and anonymous credential systems. An inherent drawback of
blind signature protocols is that the signer cannot enforce a certain format on
the message. Traditionally, this problem has been solved using cut-and-choose
techniques, in which the requester of a signature generates and blinds a num-
ber n of messages, the signer asks the requester to unblind all messages but a
randomly chosen one, checks whether all unblinded messages conform to the

8

required format and, if yes, signs the only message that remains blinded. Us-
ing cut-and-choose techniques solves the problem (the probability that the re-
quester succeeds in getting a non-conforming message signed is upper-bounded
by 1/n), but it does so at the cost of high computation and communication
overheads.

Partially blind signatures were introduced by Abe in [4,5] as an alternative to
cut-and-choose protocols. In a partially blind signature protocol, the user and
the signer agree on a public information that is to be included in the signed
message. Both the user and the signer can be sure that such information is
really included in the signature, and the secret message of the user remains
blinded to the signer.
Definition 3. (Partially Blind Signature scheme [38]) A partially blind sig-
nature consists of three participants: signer, user and verifier. There are three
algorithms: Key Generation, Partially Blind Signature Issuance, and Verifica-
tion.

• Key Generation is a probabilistic polynomial-time algorithm that takes
security parameter γ and outputs a key pair (pk, sk).
• Partially Blind Signature Issuance is an interactive protocol between the

signer and the user. The public inputs of both the user and signer contain
the previously agreed upon public information info. The private input of
the signer is sk, and the private input of the user is the message m to be
signed. Upon protocol completion, the private output of the user contains
either fail or (info,m, σ), where σ is the signer’s signature on info and
m.
• Verification is a polynomial-time algorithm that takes (pk, info,m, σ) as

input and outputs either accept or reject.

Note that, in our loyalty program setting, the signer and the verifier will
typically be the same entity (the vendor). However, the user can also verify
the validity of the signature at any moment.
Definition 4. (Correctness and security of a partially blind signature scheme)
A partially blind signature scheme is considered correct and secure if it satisfies
the following properties:

• (Correctness) For honestly generated parameters, and for honest execu-
tion of Partial Blind Signature Issuance, the resulting partial blind signa-
ture passes verification with overwhelming probability.
• (Partial blindness) The following must hold: 1) the signer must be assured

that the embedded public information is included in the signature, and
that no one can modify this information; and 2) based on the embedded
information, a signer cannot link the signature with the concrete issuing
instance that produced it.
• (Unforgeability) A partially blind signature scheme is called unforgeable

9

against one-more forgery under chosen-message attack if, for some in-
teger `, and a given public information info, there is no probabilistic
polynomial-time adversary A that can compute, after ` interactions with
the signer, {(info,mj, σj)}j=1,...,`+1 valid signatures with non-negligible
probability.

Boldyreva proposed in [8] a blind version of the BLS signature scheme from [10].
The security of Boldyreva’s scheme rests on the chosen-target version of the
Computational Diffie-Hellman problem in Gap Diffie-Hellman groups. In [37],
Zhang et al. proposed a signature scheme based on the k+ 1 Exponent Prob-
lem. Later, the same authors published in [38] a blind version of the previous
scheme, following the same approach of Boldyreva.

We use a partially blind signature scheme from bilinear pairings presented
in [38]. This scheme satisfies the requirements of correctness, partial blindness
and unforgeability against one-more forgery under chosen-message attacks in
the random oracle model under the inverse CDH assumption in bilinear groups,
and thus it is considered secure. Security proofs can be found in [38]. Addi-
tionally, this scheme produces short signatures, it is computationally efficient
and allows aggregate verification of signed messages bearing the same agreed
public information. Note that we use this partially blind signature scheme as
a black box, and any other secure scheme would fit in our proposed protocol.
For completeness, we describe this scheme in the following sections.

4.3 Zero-knowledge proofs

A zero-knowledge proof (ZKP), as introduced by Goldwasser et al. in [19], is a
method whereby a party (the prover) can prove to another party (the verifier)
that a given statement is true, without leaking any information beyond the
fact that the statement is true.

In [23], the author introduces a general framework based on one-way homo-
morphisms to prove in zero-knowledge the knowledge of the preimage of a
group homomorphism. He shows that the Schnorr protocol [30] is an instance
of this general framework, using the exponentiation in groups in which the
discrete logarithm problem is hard. Our construction uses a variation of this
protocol, based on the exponentiation in bilinear groups in which the discrete
logarithm problem is assumed hard.

10

5 Generalization of purchase histories

In our protocol, we allow the buyer to choose the level of generalization when
disclosing her purchase history to claim loyalty points; in this way, the buyer
is put in control of her privacy. To that end, the vendor provides the buyer
with receipts for all possible generalizations of each product purchased by the
buyer. However, the protocol must be designed in such a way that the buyer
cannot cheat by using different generalized receipts corresponding to the same
purchased product as if they were receipts of different purchased products, in
order to obtain more loyalty points.

To generalize receipts, a vendor must use a publicly available taxonomy for
the products she offers. This taxonomy T is modeled as a tree, being its root
node a generic identifier such as Product, and each leaf a specific product in
the set of products P = {p1, . . . , pn} on sale. The inner nodes of the tree are
the subsequent categories to which the products belong: the closer to the leaf
nodes, the more specific categories are.

A generalization function g : T → T returns the parent of a node. Apply-
ing the generalization function m times will be denoted as gm. As an exam-
ple, for the product pi = ”Inception”, its generalizations might be g(pi) =
ActionMovie, g2(pi) = Movie, g3(pi) = DigitalMedia and g4(pi) = Product.
For simplicity and ease of implementation, it is desirable that all leaves be at
the same depth, that is, that the path from the root to any leaf be of the same
length.

Customers in our loyalty program protocol will receive a list of purchase re-
ceipts (R1, . . . , Rn) for every product they purchase. This list contains a receipt
for the specific product and receipts for all of its generalizations in the path
up to the root of the taxonomy (generalization path).

Now, when a customer decides to submit her purchase history, she chooses
how much she want to generalize each purchase in her history, from no gen-
eralization (the actual name of the product) to maximum generalization (just
the top category Product). Then the customer is required to send for each
purchase all the tokens in the purchase generalization path from the chosen
generalization level up to the root of the taxonomy. Following the movie ex-
ample above, a customer who wants to submit her purchase generalized to
level 2 will submit the tokens Movie, DigitalMedia and Product.

Forcing customers to send all tokens from the selected generalization level
to the root prevents them from using tokens in the generalization path of a
purchase to falsely claim additional purchases.

11

6 Anonymous tokens with controlled linkability

As stated in Section 2, loyalty points and purchase receipts have requirements
in line with those of anonymous electronic cash and anonymous electronic cre-
dentials. These well-known primitives commonly use blind signatures and/or
zero-knowledge proofs of knowledge [11,12,14,26]. We will treat loyalty points
and purchase receipts using a construction that we call anonymous tokens with
controlled linkability. These tokens will be realized by using a partially blind
signature construction, namely the one described in [38], with slight changes
introduced in the messages to be signed.

6.1 Controlled linkability of tokens

The use of partially blind signatures will ensure that a submitted token can-
not be linked to an issued token, nor to the customer to whom it was issued.
However, if vendors are to be allowed to build customer profiles from anony-
mous purchase receipts, there must be a mechanism whereby, if allowed by
the customer, the vendor can verify that several submitted purchase receipt
tokens really correspond to the same (anonymous) customer, even if receipts
have been generalized by the customer prior to submission. Note that if all
(ungeneralized) purchase receipts from the same customer could be linked,
customer anonymity would be problematic in spite of partially blind signa-
tures: a very long and detailed profile is likely to be unique and goes a long
way towards leaking the customer’s identity.

Thus, we propose a mechanism that allows customers to decide which purchase
receipt tokens can be linked together, by employing an additional identifier as
part of the secret message in the partially blind signature. This identifier is
chosen by the customer for each receipt token at the moment of token issuance.
If a customer picks a fresh random number for each issued purchase receipt,
then none of this customer’s receipts will be linkable to each other; however, if
the customer uses the same identifier for a group of purchase receipt tokens at
the time of token issuance, then all of the tokens in this group can be verifiably
linked together by the vendor after they are submitted.

6.2 Description

Anonymous tokens with controlled linkability are operated in four phases:

• In the setup phase, a certification agency generates the public parameters
of the partially blind signature scheme.

12

• In the key generation phase, users (i.e. vendors and customers) get their
key pairs from the certification agency.
• In the issuance phase, a token corresponding to some loyalty points or to

a purchase receipt is generated by a customer, it is signed in a partially
blind way by a vendor and it is returned to the customer.
• Finally, in the verification phase, a customer submits previously gener-

ated tokens to a vendor, who in turn verifies that each token was correctly
signed. If tokens correspond to purchase receipts, the vendor may verify
whether the submitted tokens are linked with each other and/or with
previously submitted tokens.

6.2.1 Setup

This algorithm is executed once by a certification authority to set up the
system parameters. It takes as input a security parameter γ. The algorithm
chooses bilinear groups (G1,G2,GT) of order q > 2γ, an efficiently computable
bilinear map e : G1×G2 → GT , a generator g ∈ G1 and collision-resistant hash
functions H : {0, 1}∗ → Z∗q and H0 : {0, 1}∗ → G2. The public parameters are
params = {q,G1,G2,GT , e, g,H,H0}.

6.2.2 Key generation

A vendor gets a secret key skV = x ∈R Z∗q and a public key pkV = gx, and
publishes his public key.

6.2.3 Token issuance

A customer wants to obtain from a vendor a token with an agreed public
information c (this information may specify a number of loyalty points or a
purchase receipt for a certain product). This is an interactive protocol which
produces a partially blind signature on public information c, and a secret
message containing a unique identifier α of the token and a (possibly) unique
identifier y. The protocol is depicted in Figure 1 and described next:

(1) The customer chooses a value for y, either from a list of previously used
values or by generating a new one uniformly at random from Z∗q.

(2) The customer and the vendor agree on a public string c ∈ {0, 1}∗.
(3) The customer chooses random α, r ∈R Z∗q and builds the message m =

(α, y). Then, the customer blinds the message by computing u = H0(c||m)r

and sends u to the vendor.
(4) The vendor signs the blinded message by computing v = u(H(c)+skV)

−1

and sends it back to the customer.

13

(5) The customer unblinds the signature by computing σ = vr
−1

. The result-
ing tuple T = 〈c,m, σ〉 is the token.

An execution of this protocol, between a vendor V and a customer C, is denoted
by T = 〈c,m, σ〉 = Issuance(V , C, c, y).

Customer Vendor

y ∈ Z∗q skV
c∈{0,1}∗←−−−−−−−→

α, r ∈R Z∗q
m = (α, y)

u = H0(c||m)r
u−−−−−−−−→
v←−−−−−−−− v = u(H(c)+skV)

−1

σ = vr
−1

T = 〈c,m, σ〉

Figure 1. Issuance protocol

6.2.4 Token verification

The submission and verification of a token is an interactive protocol between a
customer and a vendor. The customer submits the token T = 〈c,m, σ〉 and the
vendor returns accept or reject as a result of the verification. Informally, the
vendor checks that the signature on the token is valid and has been produced
by himself; then, if the value y contained in the message matches the one of a
previously submitted token, the tokens are grouped. The protocol is outlined
in Figure 2 and described next:

(1) The customer sends T = 〈c,m, σ〉 to the vendor.
(2) The vendor parses the message m as (α, y).
(3) The vendor verifies the signature by checking the equality

e(gH(c) · pkV , σ)
?
= e(g,H0(c||m)).

If the above equality holds, he checks whether the token has already been
spent (he verifies whether a token with the same α has previously been
submitted). If the verification was successful and the token has not been
spent yet, he marks it as spent and sends an accept message to the
customer. Otherwise, he sends a reject message to the customer.

14

(4) Finally, the vendor checks whether the identifier value y is the same as
the one in a previously spent token. If yes, he links the new token with
that previous one.

An execution of this protocol involving a customer C, a vendor V and a token
T is denoted as accept/reject = Verification(V , C, T).

Customer Vendor

T pkV
T=〈c,m,σ〉−−−−−−−−→

Parse m as (α, y)

e(gH(c)pkV , σ)
?
= e(g,H0(c||m))

accept/reject←−−−−−−−− and token not spent yet.

Link token to previous ones with same y

Figure 2. Verification protocol

6.2.5 Aggregate verification

This protocol allows the customer to aggregate signatures of messages bearing
the same public information by just multiplying the resulting signatures. If
there is a list of tokens {T1, . . . , Tn}, where Ti = 〈ci,mi, σi〉, and ci = c for 1 ≤
i ≤ n, a customer can aggregate the partially blind signatures by computing
σagg =

∏n
i=1 σi and submitting Tagg = 〈c, {m1, · · · ,mn}, σagg〉. The vendor can

then verify the validity of the aggregated token by checking the equality

e(gH(c) · pk, σagg) ?
= e(g,

∏
H0(c||mi)).

7 Privacy-aware loyalty program construction

Our proposed solution for privacy-aware loyalty programs builds on the anony-
mous tokens with controlled linkability we described in Section 6 and the
generalization of purchase histories described in Section 5. As introduced in
Section 2, our construction consists of the following protocols: Setup, Ven-
dorSetup, Enroll, Buy, Submit, Issue and Redeem.

15

7.1 Setup

The setup phase is run by a certification authority to generate the public
parameters params of the anonymous token with controlled linkability con-
struction described in Section 6. These parameters are made public to every
V offering loyalty programs and to every C intending to participate in them.

7.2 VendorSetup

Each vendor V publishes a product taxonomy TV as described in Section 5.
Then, V obtains a key pair built as described in the key generation procedure
in Section 6. Finally, V publishes his public key.

7.3 Enroll

Customers obtain the public parameters params and some means to commu-
nicate with the system, namely a smartcard or a smartphone application.
Furthermore, customers enrolling to a loyalty program from a particular ven-
dor obtain the vendor’s public key and his taxonomy of products. This step is
not mandatory, but it allows customers to check that tokens issued by vendors
are valid and purchase receipt generalizations are correct.

7.4 Buy

A customer C in a loyalty program offered by a vendor V purchases a product,
either at a physical or online store of V . Note that, in the case of an online
store, C should use additional anonymization measures, such as anonymous
Internet surfing, offered for example by Tor networks [32], anonymous shipping
methods [20], and anonymous payment methods (e.g. [25,14,24] or simply
prepaid scratch cards). The protocol is as follows:

(1) C sends to V the name pi of the product C wants to buy.
(2) C chooses a value y to be used in the token issuance protocol, depend-

ing on her privacy preferences: if she wants the new purchase receipt
to be linkable to previously obtained purchase receipts (linkability is in-
centivized as described in Section 7.8 below), she will reuse the same y
that was used in those previous receipts; if she does not want this new
purchase receipts to be linkable to previous receipts, she will pick a new
random y ∈ Z∗q.

16

(3) In order to produce purchase receipt tokens for product pi and all its
generalizations, V and C run the interactive protocol Issuance(V ,P , pi, y),
Issuance(V ,P , g(pi), y), Issuance(V ,P , g2(pi), y), etc. up to the root of the
taxonomy. In this way, C obtains as many purchase receipt tokens as the
depth of pi in V ’s taxonomy.

7.5 Submit

At any moment, a customer can submit a list of purchase receipts (or a gen-
eralized version of them) to the vendor and obtain loyalty points. To this
end, for each purchased product in her claimed purchase history, the customer
sends the receipt token corresponding to the level of generalization she wishes.
In particular, the customer could use maximum generalization (a receipt just
specifying that she has purchased a “product”) if she does not wish to disclose
anything about what she has bought. In principle, the more generalization is
used by the customer, the less loyalty points she can expect to be given by the
vendor, although the correspondence between token detail and loyalty points
depends on the vendor’s reward policy.

Additionally, as said in Section 5, for each product she also submits all tokens
from the selected generalization level up to the root of the taxonomy (to
ensure tokens in the generalization path cannot later be used as independent
purchase receipts). Submission of each token Ti is performed according to the
Verification(V ,P , Ri) protocol described in Section 6.2.

7.6 Issue

To issue loyalty points, the vendor builds a message info that encodes an
identifier of the vendor, the number of points this token is worth and an
expiration date. Unlike for purchase receipts, the vendor has no legitimate
interest in linking several tokens containing loyalty points and thus does not
incentivize linkability. Hence, the customer picks a fresh random y for each
new loyalty points token she claims. Then the vendor and the customer run
the interactive protocol Issuance(V ,P , info, y). The generated token contains
the loyalty points issued to the customer.

To ensure that a loyalty points token submitted for redemption cannot be
linked with an issued loyalty points token, the number of loyalty points as-
sociated to a single token should be limited to a small set of possible values,
similar to the limited denominations of bank notes. There is an efficiency toll
to be paid for this caution, as issuing a certain amount of loyalty points can

17

require running the Issuance protocol several times (several tokens may be
needed to reach the required amount).

7.7 Redeem

A participant C who wants to redeem a loyalty points token T previously
earned at a vendor V ’s in exchange for some benefits runs the interactive
protocol Verification(V ,P , P).

It is possible to simultaneously redeem several loyalty points tokens by using
the aggregation of signatures described in Section 6.2.

7.8 Incentives related to purchase receipts submission

Vendors can establish strategies to incentivize or discourage certain customer
behaviors:

• To encourage customers to use little or no purchase receipt generalization
(and hence to renounce some of their privacy), the amount of loyalty
points awarded per receipt token should depend on the chosen level of
generalization: more loyalty points awarded to less generalized purchase
receipts.
• If the customer submits unlinkable receipts, she should just get enough

loyalty points to reward her as a returning customer. To encourage cus-
tomers to allow linkage of purchase receipt tokens by the vendor (and
hence customer profiling), a customer should get more loyalty points if
she submits n1 + n2 tokens with the same y value than if she submits n1

tokens with one y value and then n2 tokens with a different y value (super-
linear reward). Furthermore, the vendor may require that the list of link-
able receipt tokens for which reward is claimed correspond to purchases
made within a certain time window (if linking purchases very distant in
time is uninteresting for profiling).
• Two or more customers might be tempted to share their y values in

order to submit a longer list of linkable receipts and thereafter share
the superlinear number of loyalty points they would earn. As long the
reward is only slightly superlinear, customer collusion is discouraged if
the customer C who submits the list of linkable tokens is required by V
to actually show all the actual linkable tokens (and not just a reference
to them): colluders different from C may not like to pay the privacy toll
of disclosing their purchase receipts to C.

18

8 Complexity and security analysis

We count here the number of operations required by the Issuance and Verification
protocols described in Section 6. These are the two performance-critical pro-
tocols, because they are the ones that need to be run every time a token
(carrying a purchase receipt or loyalty points) is to be generated or verified.

The Issuance protocol requires computation by the vendor of 1 exponentiation
in G2; also, 1 hash, 1 addition and 1 inversion in Z∗q. The customer computes 2
exponentiations in G2 and 1 inversion in Z∗q. The Verification protocol requires
computation by the vendor of 1 exponentiation, 1 multiplication in G1 and 1
hash to G2; also, 1 hash in Z∗q and 2 pairings.

As shown by the computing times given in Section 9 below, the above com-
putations can be done in a very reasonable time, even though the customer’s
computation must be carried out by her smartphone.

Regarding security, we justify here that, except for the property of untrans-
ferability, which will be dealt with in Section 10, the remaining security re-
quirements identified in Section 2.2 are satisfied by the above protocol suite.

• Correctness. If the partially blind signature is correctly computed dur-
ing token issuance, the token verification equation will pass, because

e(gH(c) · pk, σ) = e(gH(c)+x, σ)

= e(gH(c)+x, vr
−1

)

= e(gH(c)+x, u(H(c)+x)−1·r−1

)

= e(gH(c)+x, H0(c||m)r·r
−1·(H(c)+x)−1

)

= e(g,H0(c||m)r·r
−1·(H(c)+x)·(H(c)+x)−1

)

= e(g,H0(c||m)).

• Unforgeability. Unforgeability against one-time forgery under chosen
message attack of receipt and loyalty points tokens is provided by the
partially blind signature scheme. Note that we use the partially blind
signature recalled in Section 4.2 as a black box: the Issuance and Verifica-
tion protocols in Section 6.2.3 and 6.2.4, respectively, use partially blind
signatures exactly as described in [38]; hence, the security proof of [38]
guarantees the security of such protocols.
• Anonymity. No information on the user is obtained by a server during

the protocol. Submitted tokens cannot be linked to issued tokens or to the
identity of a requester or prover because of the partial blindness property
of the signature scheme [38]. The justification of partial blindness given
in [38] is briefly recalled in the Appendix.
• Controlled linkability. When a token is issued, the identifying value y

19

is only known to the customer who generated the token, due to the par-
tial blindness of the signature. Hence, if two verified tokens contain the
same identifying value y, there are two possibilities: i) both tokens were
generated by the same customer, who reused y to allow the vendor to link
them; ii) the customer who generated one token leaked y to the customer
who generated the other token. If the latter leakage is prevented by tech-
nical means or discouraged with appropriate incentives (see discussion in
Section 7.8), then two tokens containing the same y can be linked by the
vendor as corresponding to the same customer.

9 Experimental results

We first report execution times of the various protocols from a prototype
implementation. We then analyze the deployability of our protocol in stores,
by means of two case studies: a physical store and an online store.

9.1 Execution times from a prototype

We created a testbed to test the performance of the new protocol in a real
environment. Specifically, we wrote a prototype Android customer’s applica-
tion that requests and submits tokens and a vendor application running on a
laptop that issues and verifies tokens. To conform to current loyalty program
implementations, the communication between customer and vendor is done via
NFC using Android’s host-card emulation (HCE). Generalization of purchase
receipts is done using the Walmart Open API [35] which, on input a product
name, returns a list of categories to which the product belongs. The cryp-
tographic protocol was implemented using the jPBC library version 2.0 [16],
which runs both in standard and Android Java without further dependencies.

The testbed configuration and parameters are the following. The laptop run-
ning the vendor application is an Asus S56C with Intel core i7 3517U, 8GB
RAM DDR3 1600Mhz and Ubuntu 15.04. The customer’s application is writ-
ten in Java7 (opendjk-1.7). The NFC reader is an ACS ACR122. The smart-
phone running the client application is an LG-D821 “Nexus 5” with Android
version 5.1, using the ART virtual machine. We generated an asymmetric pair-
ing of Type III, elements in G1 are 160 bits long, elements in G2 are 512 bits
long.

The first step in a purchase receipt issuance is to obtain the generalization
path of the product, from the product name up to the root of the product
taxonomy. Using Walmart Open API requests, the mean response time was

20

1,534 ms. This step does not affect the issuance of loyalty points, and can be
drastically reduced if caching mechanisms are used or if the product taxonomy
is stored locally. To test the impact of caching, we implemented a naive caching
mechanism, by which responses from the Walmart Open API are stored in a
hash table together with the corresponding query. When the vendor makes a
query, we check if it was made previously; if yes, we obtain the response from
the hash table instead of sending the query to the online service. The tests
have shown that the time to obtain the generalization path of a previously
queried product name when using caching is reduced to 229 nanoseconds for
a universe of 6,167 different products. Clearly, that is a more than affordable
time.

Figure 3 shows the execution time for the Issuance protocol, broken down by
the different stages. The measured total time is 659.1 ms, divided in three
stages: blinding, executed by the client application on the customer’s smart-
phone; signing, executed by the vendor on the laptop; and unblinding, again
executed by the application on the smartphone. The three stages take, re-
spectively, 356.4 ms, 19.5 ms and 141.7 ms. The difference between the total
measured time and the sum of the three stages is 141.5 ms, which corresponds
to communication overheads.

Figure 3. Execution times for the Issuance protocol

Figure 4 shows the execution time for the Verification protocol. The measured
execution time to verify the validity of a token by the vendor is 275.7 ms, while
the remaining 401.7 ms is the communication overhead due to the transmission
of the whole token (which does not fit in a single APDU).

9.2 Deployability analysis in stores

We evaluate the applicability of the proposed scheme by means of two case
studies: the first one is a physical store and the second is an online store.

21

Figure 4. Execution times for the Verification protocol

9.2.1 Physical store

We model the impact of the application of our solution in physical stores by
using queueing theory [18]. By comparing the typical perfomance of the queues
at a store with the performance when our solution is applied, we can estimate
the additional resources (number of queues) that the store would need to cope
with the additional workload incurred by our solution.

Let us set the scenario: each cashier at the physical store is equipped with an
NFC reader within whose range the client puts her smartphone as the cashier
checks every product. Thus, checking each product and issuing receipt tokens
are performed in parallel.

To evaluate the scenario, we need to parameterize it in a realistic way. On
the one side, we need to assume a value for the rate λ of customer arrivals
per second at the store. To choose a realistic λ, we use Tesco’s UK figures,
as reported in [2]. In 2014 Tesco lost in the UK 1 million customer visits a
week, which decreased their sales by £25m a week; this amounts to £1,300
a year, and this is said to represent 3.1% decrease. Hence, we can deduce
Tesco UK receives 32.24 million customers a week, which means 4.6 million
customers a day. Now, according to their web, Tesco UK have around 2,500
stores, which results in an average 1,840 customers per store per day; since
their opening hours are from 6:00 to 23:00, they receive λ = 0.03006 customers
per store per second. Hence, for any store, the expected inter-arrival time (time
between the arrivals of two successive customers) can be estimated as 1/λ =
33.7 seconds. The actual inter-arrival time can be modeled as an exponential
random variable with parameter λ.

The next parameter is the service time, that is, how long it takes the cashier
to serve a customer on average. Like the inter-arrival time, the service time
can also be viewed as following an exponential distribution, in this case with
parameter µ, where 1/µ is the expected service time. We set this time as the
number n of products in the customer’s basket times the time to check each
product (which we estimate at 2 seconds), plus a constant time c = 30 s,
which is the time devoted to payment. When our protocol is applied, we have
to take into account the depth of the generalization tree d and the time to
issue a token, which is 0.65 seconds (according to our prototype described in

22

Section 9.1). Since token issuance takes place in parallel to product checking,
the expected service time is 1/µ = max(2, 0.65d)n + 30. Finally, we assume
the number of cashiers in a shop is q = 4 (which is a rather modest estimate
for large stores such as Tesco’s).

Figure 5. Mean waiting time and utilization of cashiers, depending on the number
of products per customer and the generalization depth d

In Figure 5, we show the mean waiting time at each of the queues/cashiers and
the utilization of each of the cashiers as a function of the average number of
items in the customers’ baskets and the depth of the generalization tree. The
blue curve corresponds to three situations: not using the protocol (just bare
product checking without token issuance) and also using the protocol with
d = 2, 3. We label it ‘No Protocol’ because, even if the protocol is used with
depths 2 or 3, the 2 seconds needed to check each product dominate the time
to issue d tokens. We see that the utilization reaches 70% with 20 products
and d = 5. Although this is acceptable, adding one more queue/cashier might
be advisable for those parameter values.

Analytically, assuming an M/M/q model [18], for token issuance time τ , av-
erage number n of products per customer, depth d of the generalization tree,
expected inter-arrival time 1/λ and number of cashiers q, the utilization of
each cashier is

ρ =
λ

µq
=
λ(τnd+ c)

q
, (1)

and the mean waiting time is

Tw =
C(q, λ/µ)

µq − λ
=

(
τnd+ c

q

)(
C(q, λ(τnd+ c))

1− ρ

)
, (2)

where C(q, λ/µ) is Erlang’s C formula.

Results in [31] show that the mean waiting times in a scenario with parallel

23

queues and jockeying (switching queues), which is the typical scenario at a
store, are similar (but not equal) to an M/M/q scenario. Formula (2), then,
gives no more than an approximation to the actual mean waiting time.

Expressions (1) and (2) are helpful to design a store. For example, given values
of τ , n, c and λ for a certain store, and given maximum acceptable values of ρ
and Tw (imagine the maximum for ρ is specified by unions and the maximum
for Tw by a consumer survey), the store designer can determine the necessary
number of cashiers q if using a generalization hierarchy with depth d is desired.

9.2.2 Online store scenario

In an online store transaction, there are typically two main phases: add-to-
cart, in which the desired products are added to a list, and checkout, in which
the products in the list are actually paid for and purchased.

Our implementation proposal is as follows. Customers adding products to the
cart immediately compute the blinding phase of the receipt token issuance for
the selected product and all its generalizations. For tree depth d, this step
takes 356.4d ms of computation by the customer (time according to our pro-
totype described in Section 9.1). The online store adds the product to the
cart database, as well as the cryptographic material sent by the user. Option-
ally, the store could execute the signing phase of the token issuing protocol at
this moment, which takes 19.5d ms (again according to our prototype). While
signing tokens in parallel to product checking has the advantage of making
checkout lighter, it might be a waste of resources to sign a receipt token of a
product the customer has not yet paid for (because the customer might decide
to withdraw one or several products from her basket before checkout). When
the customer finally checks out, the store computes (if it has not done so pre-
viously) the signature on all receipt tokens and sends them to the customer.
At this point, the transaction is already over. The customer can then unblind
the signatures on her tokens offline. The additional storage capacity needed
by the store is d times the storage required by a token signature per product
entry in the cart database (512d bits in our prototype).

In this scenario, we can use metrics for server utilization and average waiting
time analogous to the ones we used for physical stores. The main difference is
that the number of queues (or servers) q is much more flexible in the online
scenario than in the physical scenario (in which each queue required a physical
cashier).

Both in a physical and in an online store, the issuance of loyalty points tokens
can be analyzed in a way similar to the issuance of receipt tokens, except
that loyalty points do not depend on the d factor (whereas d receipt tokens
are always issued per product, loyalty points tokens can be issued one at a

24

time). Otherwise, the computation and the storage required to issue one loyalty
points token are the same as for one receipt token. Spending loyalty points
would be done in the checkout phase, and this would increase the computation
time by 275.7 ms per token (the verification time by the store, according to
our prototype described in Section 9.1).

10 Untransferability of tokens

As mentioned in Sections 2.2 and 7.8 above, losing loyalty points and purchase
privacy is often enough to deter a customer from giving her receipts to another
customer. However, in some cases additional deterrence by V may be needed
to prevent purchase receipt transfer and even loyalty points transfer among
customers. In this section we propose an extension of our token issuance and
verification protocols to enforce untransferability of tokens.

Note that the vendor may be interested in preventing transfer only for one
type of tokens. Untransferability is more critical for purchase receipts (be-
cause their transfer prevents customer profiling), whereas transferring loyalty
points among customers may be tolerable in many situations. If only one type
of tokens needs to be made untransferable, then the extended issuance and
verification protocols described in this section should only be applied to that
type of tokens.

The intuition is to require the customer to commit to a certain value (e.g.
the value y) during the token issuance protocol and to require the customer to
prove possession of the commitment key during the token verification protocol.

The commitment keys should be securely stored in the device to prevent users
from transferring them. If this is achieved, then the tokens are also untransfer-
able. To do so, one might use a trusted platform module installed in the device.
For example, Google’s Nexus series (up to Nexus 4) carry a TPM integrated
in the NFC chip. A more practical solution, and one which is currently gain-
ing popularity among banking applications (and credit card emulation apps)
is to use privileged instructions of the device’s main processor, a standard
ARM extension called TrustZone [33]. Making use of this feature, Android
provides a hardware-backed secure keystore API which allows applications to
store certificates and keys in a secure way. A key stored by some application
can only be retrieved by the same application, even if the device has been
compromised. This approach has been used for secure applications such as
secure PIN entry, digital rights management, e-ticketing, etc. KNOX [3] is a
technology from Samsung, which also uses the TrustZone extension to provide
a secure execution environment in mobile devices.

25

We next specify the changes to the original construction that are needed to
guarantee token untransferability:

• Both the setup and the key generation phases remain mostly as described
in Sections 6.2.1 and 6.2.2 above, respectively. However, during key gen-
eration an additional commitment key skC ∈R Z∗q is generated and given
to the customer C in a secure device (e.g. a smart card) such that the key
cannot be modified or extracted from the device.
• More changes are needed in the Issuance and Verification protocols with

respect to Sections 6.2.3 and 6.2.4, respectively. We describe these changes
in the following subsections.

10.1 Extended Issuance protocol

During this phase, the customer C commits to the public and the secret infor-
mation contained in the token with her commitment key, as in Schnorr’s ZKP
protocol [30]. Namely, Step (3) in Section 6.2.3 is replaced by the following
one:

(3*) The customer chooses random α, r ∈R Z∗q and builds the message m =
(α, y, hskC), being h = H0(c||α||y). Thus, hskC is a secret commitment on
the token information (as the vendor does not know the value α). Then,
the customer blinds the message by computing u = H0(c||m)r and sends
u to the vendor.

The rest of the protocol of Section 6.2.3 remains unaltered. The resulting
extended protocol including this modification is shown in Figure 6.

10.2 Extended Verification protocol

During this phase, the vendor checks whether the signature on token T was
correctly computed (normally by the vendor himself at a previous time) and
whether the token has not yet been spent. Additionally, this version of the
protocol includes Schnorr’s 3-step interactive ZKP [30] to prove knowledge of
the commitment key skC.

First, and to account for the changes in the contents of the token, replace Step
2 of the Protocol in Section 6.2.4 by the following step:

(2*) The vendor parses the message m as (α, y, hsku) and computes h′ =
H0(c||α||y).

26

Customer Vendor

skC, y ∈ Z∗q skV
c∈{0,1}∗←−−−−−−−→

α, r ∈R Z∗q
h = H0(c||α||y)

m = (α, y, hskC)

u = H0(c||m)r
u−−−−−−−−→
v←−−−−−−−− v = u(H(c)+skV)

−1

σ = vr
−1

T = 〈c,m, σ〉

Figure 6. Issuance protocol with untransferability

Then, if the signature verification at Step 3 is correct and the token has not
yet been spent, notify the customer to start the interactive ZKP to prove
knowledge of the commitment key. This implies adding the following steps
between Steps 3 and 4 of the original protocol

(3a) The customer chooses k ∈R Z∗q and sends t = hk to the vendor.
(3b) The vendor answers with a challenge sc ∈R Z∗q.
(3c) The customer computes a response r = k + skC · sc and sends r to the

vendor.
(3d) If h′r

?
= t · hskC ·sc holds, the vendor sends an accept message to the

customer. Otherwise, the vendor sends a reject message.

If the customer can prove knowledge of the commitment key, the vendor is
convinced that she participated in the issuance of the token. Hence, the to-
ken has not been transferred to a different customer since it was issued. The
resulting extended protocol is shown in Figure 7.

10.3 Complexity and security analysis of the extension

Regarding complexity, we evaluate the new computations added by the ex-
tension. In the new Step (3*) of the Issuance protocol a commitment is now
computed. This requires the customer to compute one additional hash and
one additional exponentiation in Z∗q.

27

Customer Vendor

h, skC, T pkV
T=〈c,m,σ〉−−−−−−−−→

parse m as (α, y, hskC)

h′ = H0(c||α||y)

e(gH(c)pkV , σ)
?
= e(g,H0(c||m))

ok/stop←−−−−−−−− and token not spent yet

k ∈R Z∗q
t = hk

t−−−−−−−−→
sc←−−−−−−−− sc ∈R Z∗q

r = k + skC · sc
r−−−−−−−−→

accept/reject←−−−−−−−− h′r
?
= t · hskC ·sc

Link token to previous ones with same y

Figure 7. Verification protocol with untransferability

In the new steps added to the Verification protocol, the following additional
computations are needed:

• The customer computes a hash in Step (2*), a random number and an
exponentiation in Z∗q in Step (3a) and a multiplication in Step (3c).
• The vendor computes a random challenge in Step (3b) and two exponen-

tiations and a multiplication in Z∗q in Step (3d).

If one compares these new computations with the computations in the original
protocols before the extension, it can be inferred that the computing time does
not even double as a result of the extension, neither for the customer nor the
vendor. Hence, it remains affordable.

The security of the extension is based on:

• The security of Schnorr’s ZKP, proven in [30,23]. Hence, a customer not
holding the commitment key cannot convince a vendor that she holds
the key. Also, neither the vendor nor any observer learn any bit of the
commitment key.
• The tamper-resistance of the secure device. This device performs all cus-

tomer computations involving the commitment key, in such a way that

28

the customer cannot learn the value of her own key. This ensures that no
customer can transfer her commitment key to another customer. Hence,
when a customer proves during token verification that she holds the same
commitment key used for token issuance, the vendor is convinced that
the token has not been transferred.

11 Conclusions

In our privacy-aware alternative to traditional loyalty programs, the customers
are granted the power to decide what private information they want to disclose,
and how accurate that information is. We have described a privacy-aware
protocol suite that still offers the two main features of loyalty programs: to
reward returning customers and to make customer profiling possible. We have
presented experimental results that show that our suite is usable in practice.
Finally, we have proposed an extension of our protocol suite which prevents
purchase receipts and loyalty points from being transferred among customers;
if only transfer of one type of tokens is to be prevented, then our extension
need only be used to issue and verify that type of tokens.

Acknowledgments

We thank Dr Qiang Tang for useful discussions on an earlier version of this pa-
per. We also appreciate the insightful comments by the reviewers. The follow-
ing funding sources are acknowledged: Google (Faculty Research Award to the
second author), Government of Catalonia (ICREA Acadèmia Prize to the sec-
ond author and grant 2014 SGR 537), Spanish Government (projects TIN2011-
27076-C03-01 “CO-PRIVACY” and TIN2014-57364-C2-1-R “SmartGlacis”),
European Commission (project H2020-644024 “CLARUS”) and Templeton
World Charity Foundation (grant TWCF0095/AB60 “Co-Utility”). The au-
thors are with the UNESCO Chair in Data Privacy. The views in this paper are
the authors’ own and do not necessarily reflect the views of Google, UNESCO
or the Templeton World Charity Foundation.

References

[1] “Consumers reveal privacy concerns with loyalty programs” Convenience Store
Decisions, 2014. http://www.cstoredecisions.com/2013/10/28/

consumers-reveal-privacy-concerns-loyalty-programs/

29

[2] “One million fewer customer visits a week at Tesco”,
The Guardian, June 3, 2014. http://www.theguardian.com/business/2014/
jun/03/tesco-morrisons-sales-fall-further-aldi-lidl

[3] “White Paper: An Overview of the Samsung KNOX Platform,” accessed
November 27, 2015.
http://www.samsung.com/uk/business-images/insights/2015/An_

Overview_of_the_Samsung_KNOX_Platform_V1.11-0.pdf

[4] M. Abe, E. Fujisaki, “How to date blind signatures,” in Advances in Cryptology–
ASIACRYPT 1996, LNCS 1163, pp. 244–251, Springer, 2002.

[5] M. Abe, T. Okamoto, “Provably secure partially blind signatures,” in Advances
in Cryptology–CRYPTO 2000, LNCS 1880, pp. 271–286, Springer, 2000.

[6] M.H. Au, Q. Wu, W. Susilo, Y. Mu, “Compact e-cash from bounded
accumulator,” in Topics in Cryptology–CT-RSA 2007, LNCS 4377, pp. 178–
195, Springer, 2006.

[7] A. Blanco, J. Domingo-Ferrer, “Privacy-preserving loyalty programs,” in 9th
Intl. Workshop on Data Privacy Management–DPM 2014, LNCS 8872, pp. 133-
146, Springer, 2015.

[8] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme,” in Public Key
Cryptography–PKC 2003, LNCS 2567, pp. 31–46, Springer, 2003.

[9] D. Boneh, M. Franklin, “Identity-based encryption from the Weil pairing,” in
Advances in Cryptology–CRYPTO 2001, LNCS 2139, pp. 213–229, Springer,
2001.

[10] D. Boneh, B. Lynn, H. Shacham, “Short signatures from the Weil pairing,” in
Advances in Cryptology–ASIACRYPT 2001, LNCS 2248, pp. 514–532, Springer,
2001.

[11] J. Camenisch, A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in Advances in
Cryptology–EUROCRYPT 2001, LNCS 2045, pp. 93–118, Springer, 2001.

[12] J. Camenisch, A. Lysyanskaya, “Signature schemes and anonymous credentials
from bilinear maps,” in Advances in Cryptology–CRYPTO 2004, LNCS 3152,
pp. 56–72, Springer, 2004.

[13] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
Cryptology–CRYPTO 82, pp. 199–203, Springer, 1983.

[14] D. Chaum, A. Fiat, M. Naor, “Untraceable electronic cash,” in Advances in
Cryptology–CRYPTO 88, LNCS 403, pp. 319–327, Springer, 1990.

[15] L. Chen, P. Morrissey, N. P. Smart, “Pairings in trusted computing,” in Pairing
2008, LNCS 5209, pp. 1–17, Springer, 2008.

30

[16] A. De Caro, V. Iovino, “jPBC: Java pairing based cryptography,” in Proceedings
of the 16th IEEE Symposium on Computers and Communications, pp. 850–855,
IEEE, 2011.

[17] C. Dunn, “Loyalty programs and privacy issues: do you need to worry about
providing personal information?” Disney Family, accessed November 27, 2015.
family.go.com

[18] N. Gautam, Analysis of Queues: Methods and Application, CRC Press, 2012.

[19] S. Goldwasser, S. Micali, C. Rackoff, “The knowledge complexity of interactive
proof systems,” SIAM Journal on computing, 18:186–208, 1989.

[20] R.C. Johnson, “eDropship: methods and systems for anonymous eCommerce
shipment,” US Patent 7,853,481, 2010.

[21] Y. Lindell and B. Pinkas, “Privacy-preserving data mining,” in Advances in
Cryptology–CRYPTO 2000, LNCS 1880, pp. 36–54, Springer, 2000.

[22] B. Lynn, On the Implementation of Pairing-based Cryptosystems, Doctoral
dissertation, Stanford University, 2007.

[23] U. Maurer, “Unifying zero-knowledge proofs of knowledge,” in Progress in
Cryptology–AFRICACRYPT 2009, LNCS 5580, pp. 272–286, Springer, 2009.

[24] I. Miers, C. Garman, M. Green, A. D. Rubin, “Zerocoin: anonymous distributed
e-cash from Bitcoin,” in 2013 IEEE Symposium on Security and Privacy, pp.
397–411, IEEE, 2013.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, vol.
1, 2008. Available in www.bitcoin.org/bitcoin.pdf.

[26] C.A. Neff, (2001, November). “A verifiable secret shuffle and its application
to e-voting,” in Proceedings of the 8th ACM conference on Computer and
Communications Security, pp. 116–125, ACM, 2001.

[27] A. Pratt, “Loyalty cards vs. privacy concerns,” in Infosec ISLAND, 2011.
http://www.infosecisland.com/blogview/

13729-Loyalty-Cards-vs-Privacy-Concerns.html

[28] R.A. Popa, A.J. Blumberg, H. Balakrishnan, F.H. Li, “Privacy and
accountability for location-based aggregate statistics,” in Proceedings of the
18th ACM conference on Computer and Communications Security, pp. 653–
666, ACM, 2011.

[29] A. Riera, Design of Implementable Solutions for Large Scale Electronic Voting
Schemes, PhD Thesis, Autonomous University of Barcelona, 1999.

[30] C.P. Schnorr, “Efficient identification and signatures for smart cards,” in
Advances in Cryptology–CRYPTO 89, LNCS 435, pp. 239–252, Springer, 1990.

[31] A.M.K. Tarabia, “Analysis of two queues in parallel with jockeying and
restricted capacities,” Applied Mathematical Modelling, 32(5):802–810, 2008.

31

[32] “Tor Project: Anonymity Online,” accessed November 27, 2015. www.

torproject.org

[33] “TrustZone - ARM,” accessed November 27, 2015. www.arm.com/products/

processors/technologies/trustzone/

[34] B. Tuttle, “A disloyalty movement? Supermarkets and customers drop loyalty
card programs,” TIME, 2013. http://business.time.com/2013/07/11/

a-disloyalty-movement-supermarkets-and-customers-drop-loyalty-card-programs/

[35] Walmart Open API. https://developer.walmartlabs.com/

[36] A. C. Yao, “Protocols for secure computations (extended abstract),” in
Foundations of Computer Security–FOCS, pp. 160–164, IEEE Computer
Society, 1982.

[37] F. Zhang, R. Safavi-Naini, W. Susilo, “An efficient signature scheme from
bilinear pairings and its applications,” in Public Key Cryptography–PKC 2004,
LNCS 2947, pp. 277–290, Springer, 2004.

[38] F. Zhang, R. Safavi-Naini, W. Susilo, “Efficient verifiably encrypted signature
and partially blind signature from bilinear pairings,” in Progress in Cryptology–
INDOCRYPT 2003, LNCS 2904, pp. 191–204, Springer, 2003.

A Partial blindness

In the blinding phase of the so-called partially blind signature of [38], r is
randomly chosen from Z∗q, and thus u = H0(c||m)r is a random element of
the group G2. The signer receives this random information and the public
information which he already knows. Therefore, no information about the
message is leaked.

The signer is assured that a signature issued by him contains the public in-
formation he has agreed on and this information cannot be removed from the
signature. This is true because if a malicious user could generate c′ and replace
c in the signer’s signature (c,m, σ) to produce a signature containing c′, then
the verification equation would be

e(gH(c′) · pk, σ)
?
= e(g,H0(m||c′)),

or equivalently

e(g(H(c′)+x)(H(c)+x)−1

, H0(c||m))
?
= e(g,H0(c

′||m)). (A.1)

Verification (A.1) would only pass for c′ 6= c if H(c′) = H(c) and H0(c
′||m) =

H0(c||m). This is unlikely, because H, H0 are cryptographic hash functions.

32

Finally, due to the randomness introduced during the blinding phase and the
fact that the public information is independent of the message, even if the
same embedded information is used for two messages, the signer cannot link
a signature to the corresponding instance of the signature issuing protocol.

Hence the so-called partially blind signature scheme of [38] really satisfies
partial blindness.

33

