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Administration time effect of dietary
proanthocyanidins on the metabolome of Fischer
344 rats is sex- and diet-dependent†
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Cristina Torres-Fuentes, a Miguel A. Rodríguez,b Xavier Remesar, c

José-Antonio Fernández-López c,d and Anna Arola-Arnal *a,c

Proanthocyanidins (PAs) are one of the most commonly ingested polyphenols in the human diet, with a

wide range of beneficial health effects. Remarkably, PAs have been reported to influence core and peri-

pheral clock genes expression, and their effects may change in a time-of-day dependent manner.

Therefore, the aim of this study was to investigate whether the capacity of PAs to modulate the metabo-

lome is conditioned by the time-of-day in which these compounds are consumed in a diet- and sex-

dependent manner. To do this, a grape seed proanthocyanidin extract (GSPE) was administered to female

and male Fischer 344 rats at ZT0 (in the morning) and ZT12 (at night) and the GSPE administration time

effect was evaluated on clock genes expression, melatonin hormone and serum metabolite levels in a

healthy and obesogenic context. The results showed an administration time effect of GSPE on the meta-

bolome in a sex and diet-dependent manner. Specifically, there was an effect on amino acid, lipid and

cholate metabolite levels that correlated with the central clock genes expression. Therefore, this study

shows a strong influence of sex and diet on the PAs effects on the metabolome, modulated in turn by the

time-of-day.

Introduction

Biological rhythms of organisms allow the adjustment of phys-
iological and metabolic processes to daily environmental
changes in order to maintain a proper energy homeostasis and
a good health state.1 Among the types of biological rhythms,
circadian rhythms play an important role in the regulation of
several biological functions, including metabolism, endocrine
system, blood pressure, gastrointestinal tract or sleep–wake
cycles, in 24-hour periods.2,3

Circadian rhythms are driven by central clock genes, found
in the hypothalamic suprachiasmatic nucleus (SCN), and by

peripheral clock tissues.4 These molecular clocks follow
24-hour cycles and consist of an autoregulatory negative tran-
scription-translation feedback loop formed by the brain and
muscle aryl hydrocarbon receptor nuclear translocator-like 1
(BMAL1) and the circadian locomotor output cycles kaput
(CLOCK), which after heterodimerization activate period (Per)
and cryptochrome (Cry) gene transcription. The protein pro-
ducts PER and CRY repress the activity of BMAL1/CLOCK
dimer.5 Bmal1 gene is also regulated by the inhibitor nuclear
receptors REV-ERB α and β and the activator RAR-orphan
receptor α and γ (RORα and -γ).6 Moreover, BMAL1/CLOCK
controls the transcription of additional clock-controlled genes
(CCGs) involved in numerous cellular processes.7 The central
clocks synchronize the peripheral clocks by neuronal mecha-
nisms and hormonal signals, including melatonin that indi-
cates the time of environmental darkness,8,9 although peri-
pheral clocks in turn are also capable of local and autonomous
regulation.8 In this context, light is the main external synchro-
nizer or zeitgeber of diurnal rhythmicity in the organism,10 but
others such as diet or feeding pattern also can modulate and
reprogram the diurnal oscillation of the body.11–13

Nevertheless, misaligning cues like obesogenic diets can
disrupt the clock gene expressions, triggering the development
of metabolic disorders.14 It is important to point out that circa-
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dian rhythms influence metabolic processes according to
sex,15 and in turn their misalignment affect differently to men
and women. Like this, the alteration of diurnal oscillations by
shift works, promoted a higher disturbance in the energy
homeostasis processes in women compared to men.16,17

Another similar study in shift workers showed increased proin-
flammatory gut bacteria in women in comparison with men,
may leading to higher rates of obesity.16,17 Furthermore, in a
mice study, Pérez-Mendoza et al.18 reported that hepatic
BMAL1 expression was more altered in high fat diet-fed (HFD)
female mice than in male mice, impacting differently on lipid
metabolism.

Therefore, circadian rhythms are key factors in the regu-
lation of a great number of metabolic pathways. For instance,
diurnal oscillations of insulin and glucagon levels regulate
glucose homeostasis.19,20 Triglycerides follow a circadian regu-
lation achieved through the rhythmic gene expression pattern
of enzymes involved in fatty acid elongation and synthesis.21,22

Similarly, cholesterol synthesis in the liver exhibits diurnal
rhythmicity trough the rhythmic expression of β-hydroxy-3-
methylglutaryl-CoA reductase (HMG-CoA).23 Additionally, bile
acids synthesis shows a well-known rhythmicity, both in
rodents and humans, by modulation of the expression of the
enzyme cholesterol 7α-hydroxylase (CYP7A1).24,25 Finally,
although the relationship between amino acid metabolism
and circadian rhythms is less understood, it appears that cir-
culating amino acid levels vary according to the time of the
day. Thus, branched-chain amino acids (BCAAs), which are
important modulators of metabolism and metabolic health,
undergo diurnal oscillations via Krüppel-like factor 15 (KLF15)
in muscle.26

The rhythmicity of these metabolic pathways can therefore
be reflected in the concentration of metabolites in serum and
investigated by metabolomics approaches. In fact, most serum
metabolites show diurnal rhythmicity under normal physio-
logical conditions.27 However, nutritional challenges like the
consumption of hypercaloric diets induce a loss of serum
metabolite rhythmicity, leading to the development of obesity
and metabolic-related disorders.28

Proanthocyanidins (PAs) are the most abundant flavonoids
in the human diet with numerous beneficial health
effects,29–31 as epidemiological studies have reported.32,33 In
particular, our group has extensively studied, in animal
models, the effects of a grape seed proanthocyanidin-rich
extract (GSPE), establishing that GSPE can effectively prevent
obesity by improving lipid metabolism,34 insulin resistance,35

and decreasing oxidative stress pathways.36 Moreover, in a
human clinical trial in hypercholesterolemic subjects, GSPE
supplementation significantly reduced oxidized LDL, a bio-
marker of cardiovascular diseases, and significantly inhibited
CD36 expression, a novel cardioregulatory gene, demonstrating
that GSPE is a potential therapeutic tool.37 These effects are
carried out through different mechanism of action: GSPE acti-
vates antioxidant enzymes such as catalase or superoxide dis-
mutase, decreasing reactive oxygen species (ROS); efficiently
regulates the activity of nuclear factor-κB (NF-κB), modulating

pro-inflammatory processes; induces epigenetic changes such
as DNA methylation, histone modification or regulates
miRNAs; and can modulate the gut microbiota composition.29

Regarding to this last point, it is worth mentioning that the
relationship between GSPE and gut microbiota is bidirectional,
and that the gut microbiota undergo extensive transformation
of the phenolic compounds, driving the metabolized forms
most of effects of PAs.38,39 Remarkably, GSPE has also been
reported as a key modulator of clock genes, being this another
possible mechanism of action.40–42 Accordingly, GSPE has
been found to modulate the expression of central and peri-
pheral clock genes in healthy and obese rats,40,42 as well as to
exert an effect on plasma melatonin levels in healthy rats.41

Moreover, it has been recently showed that GSPE effects in
liver and adipose tissue depend on the time of
administration,43,44 and that the bioavailability of GSPE in
plasma is also significantly impacted by the time of its admin-
istration.45 Hence, the relationship between GSPE and circa-
dian rhythms seems to be bidirectional since GSPE influence
clock genes, but circadian rhythms also can affect its function-
ality. In this context, GSPE could be a potential nutraceutical
that would prevent metabolic disorders depending on the time
of day it is ingested, by adjusting the biological oscillation of
clock genes and modulating melatonin levels, promoting good
synchronization with light/dark cycles, and these changes are
measurable by metabolic approaches. It is important to note
that the beneficial effects of GSPE on metabolic disorders
could also vary according to sex, since the circadian misalign-
ment observed in metabolic-related diseases, influences men
and women differently, as discussed above.

Therefore, the aim of this study was to investigate whether
the capacity of PAs to modulate metabolism is conditioned by
the time-of-day in which this compound is consumed. To this
goal, the effect of GSPE administration time on central clock
gene expression and serum metabolite levels was evaluated in
a healthy and an obesogenic context, and in female and male
rats to account for the significant sex differences in circadian
rhythms.

Materials and methods
Grape seed proanthocyanidin extract (GSPE)

GSPE was provided by Les Dérives Résiniques et Terpéniques
(Dax, France). According to the manufacturer, GSPE contains
21.3% of flavan-3-ols monomers, a 17.4% of dimers, a 16.3%
of trimers, a 13.3% of tetramers and a 31.7% of oligomers
(5–13 units). Table 1 shows the phenolic compound concen-
trations of GSPE analyzed by HPLC-MS/MS.46

Animal experimental procedure

Eight-week-old female (n = 64) and male (n = 64) Fischer 344
rats (Charles River Laboratories, Barcelona, Spain) were
housed in pairs in separated animal quarters at 22 °C under a
light/dark cycle of 12/12 h with ad libitum access to water and
food. After one week of adaptation to the facilities, animals
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were randomly divided into two dietary groups: (1) standard
chow diet-fed group (STD) (n = 32 female rats and n = 32 male
rats). The diet was composed by 72% kcal derived from carbo-
hydrates (CH), 8% kcal derived from lipid, and 19% kcal
derived from protein (Safe-A04c, Rosenberg, Germany); and (2)
cafeteria-fed group (CAF) (n = 32 female rats and n = 32 male
rats). CAF diet (58% kcal derived from CH, 31% kcal derived
from lipid and 11% kcal derived from protein) was freshly pre-
pared daily and included bacon biscuits with pâté, biscuits
with cheese, ensaimada pastry, carrot, sweetened milk (20%
sucrose w/v) and standard chow diet.

After 5 weeks of dietary feeding, female and male rats in
each dietary group were further randomly divided into four
groups according to the GSPE administration time (n = 8).
Thus, during the last 4 weeks of the experiment, animals were
administered with a daily oral dose of GSPE (25 mg per kg of
body weight (BW)) dissolved in vehicle (VH, condensed milk
diluted in water (1 : 4 v : v)) when the light was turned on (zeit-
geber time (ZT) 0; ZT0) or when the light was turned off (ZT12).
In addition, VH-administered animals were included as con-
trols. The experimental design is described in Fig. 1.

BW was recorded weekly in all groups throughout the
experimental procedure. At the end of the experiment,
animals were fasted for 3 hours after administration of the
last dose and sacrificed by decapitation. Thereby, animals
administered at ZT0 were sacrificed 3 hours after light was
turned on (ZT3) and animals administered at ZT12 were
sacrificed 3 hours after light was turned off (ZT15). Blood
was collected from the neck and serum was obtained by
centrifugation (1500g, 20 min, 4 °C). Hypothalamus samples
were collected, frozen immediately in liquid nitrogen and
stored at −80 °C until RNA extraction. The Animal Ethics
Committee of the Universitat Rovira i Virgili (Tarragona,
Spain) and the Generalitat de Catalunya approved all the
procedures (license number 9495) in accordance with the
EU Directive 2010/63/UE for animal.

RNA isolation and quantitative real-time PCR

Total RNA from hypothalamus samples was isolated using
TriPure reagent (Roche Applied Science, Indianapolis, IN,
USA) following the manufacturer’s protocol. RNA concen-
tration and quality were determined by spectrophotometry
(ND-1000; Nanodrop Technologies, Wilmington, DE, USA).
Reverse transcription was performed using the MMLV reverse
transcriptase system (Promega, Madison, WI, USA). Real-time
PCR (RT-PCR) analysis was carried out using Power SYBR
Green PCR Master Mix (Applied Biosystems, Foster City, CA,
USA). The primer sequences used to amplify target gene are
showed in Table 2. The cycling protocol used was 95 °C for
10 min, followed by 40 cycles of 95 °C for 15 s, 60 °C for 1 min
and a final step of 95 °C for 15 s, 60 °C for 15 s and 95 °C for
15 s. Cycle threshold (Ct) values were recorded by using the
ABI PRISM 7900 HT detection system (Applied Biosystems,
Foster City, CA, USA) and transformed to relative gene
expression values using the 2−ΔΔCt method.47 Rat peptidylpro-
lyl isomerase a (Ppia) was used as a housekeeping gene.

Melatonin analysis

Melatonin serum levels were analysed by enzyme-linked
immunosorbent assay (ELISA) kit (DRG, Marburg, Germany)
according to the manufacturer’s instructions.

Serum samples extraction for 1H NMR-based Metabolomics
assays

Hydrophilic and lipophilic metabolites from serum samples
were analysed by untargeted proton nuclear magnetic reso-
nance (1H NMR). To obtain hydrophilic metabolites, 0.2 mL of
serum was homogenized with a methanol : water (8 : 1) solu-
tion by vortexing. For lipophilic metabolites extraction, 0.1 mL
of serum was homogenized with a solution of methanol :
methyl tert-butyl ether : water (323 : 1077 : 180) by vortexing. All
homogenates obtained were centrifuged at 15 000g for 30 min

Table 1 Main phenolic compounds (flavanol-3-ols and phenolic acids)
of GSPE analyzed by HPLC-MS/MS

Compound
concentration (mg g−1)

Compound
concentration (mg g−1)

Gallic acid 31.07 ± 0.08
Protocatechuic acid 1.34 ± 0.02
Vanillic acid 0.77 ± 0.04
PA dimer B2 33.24 ± 1.39
PA dimer B1 88.80 ± 3.46
PA dimer B3 46.09 ± 2.07
Catechin 121.32 ± 3.41
Epicatechin 93.44 ± 4.27
Dimer gallate 8.86 ± 0.14
Epicatechin gallate 21.24 ± 1.08
Epigallocatechin gallate 0.03 ± 0.00
Epigallocatechin 0.27 ± 0.03
PA trimer 4.90 ± 0.47
PA tetramer 0.05 ± 0.01

Table adapted from Margalef et al. 2016.46 The results are expressed as
mg of phenolic compound/g of GSPE (mean ± SD). PA: proanthocyanin

Fig. 1 Animal experimental design. 8-week-female and male Fischer
344 rats were pair-housed and fed with STD or CAF diet for 9 weeks.
During the last 4 weeks, rats were daily treated with an oral dose of
GSPE (grape seed proanthocyanidin extract) (25 mg kg−1) dissolved in a
solution of water and condensed milk (4 : 1, VH) either when the light
was on (ZT0) or when light was off (ZT12). Animals administered with
vehicle (VH) were included as controls. Sacrifice was carried out at
either ZT3 or ZT15 according to the dose time administration. STD: stan-
dard chow diet; CAF: cafeteria diet.
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at 4 °C and the supernatants were collected and dried in speed
vac using nitrogen stream. Hydrophilic metabolites were
reconstituted with a solution of deuterated PBS buffer
(0.05 mM) and trimethylsilylpropanoic acid (TSP) (0.73 mM).
Lipophilic metabolites were reconstituted with a solution of
deuterated chloroform :methanol (2 : 1) and tertramethylsilane
(TMS).

1H NMR analysis
1H NMR measurements of the hydrophilic and lipophilic
extracts were performed following the protocol previously pub-
lished by Palacios-Jordan et al.48 Briefly, spectra were recorded
at 300 K on an Avance III 600 spectrometer (Bruker®,
Germany) operating at a proton frequency of 600.20 MHz and
using a 5 mm PABBO gradient probe. For metabolite identifi-
cation, all acquired 1H NMR spectra were compared with pure
compound references from the AMIX metabolic profiling
spectra database (Bruker®), HMDB, and Chenomx NMR suite
8.4 software (Chenomx Inc., Edmonton, AN, Canada).
Metabolites were assigned by 1H–1H homonuclear (COSY and
TOCSY) and 1H–13C heteronuclear (HSQC) correlation in 2D
NMR experiments and by correlation with pure compounds
performed in-house. After pre-processing, the specific 1H NMR
regions identified in the spectra were integrated using the
AMIX 3.9 software package and a data matrix with metabolite
concentrations was obtained.

Statistical analysis

Data are shown as mean ± standard deviation (SD) and were
plotted using Graphpad Prism 8.0 software (Graphpad software
Inc, San Diego, CA, USA). Statistical analyses were carried out
using SPSS software (IBS SPSS statistics 25, Chicago, IL, USA).
Normality and homogeneity of variance were evaluated by
Shapiro–Wilk and Levene’s test respectively. BW gain through-
out the experiment was analyzed by repeated measures ANOVA
followed by LSD post hot test at each individual time point.
Area under the curve (AUC) of BW gain and gene expressions
were analyzed by 4-way analysis of variance (ANOVA) to evalu-
ate sex, diet, GSPE and time of day (ZT) effects followed by LSD
post hot test, as well as by 2-way ANOVA to better evaluate
GSPE and ZT effects followed by LSD post hot test.

Metabolomic profiles were analyzed by 4-way ANOVA to
assess the sex, diet, GSPE and ZT effects and their interactions,

as well as by 2-way ANOVA to better evaluate GSPE and ZT
effects in each condition (Table S1†). When one or more main
effects were statistically significant (p < 0.05), one-way ANOVA
followed by LSD post hot test was used to determinate the
differences between groups. To control family-wise type I error
rate, p-values were corrected for multiple comparisons with
the false discovery rate (FDR) method (p < 0.05). Principal
component analysis (PCA) and heatmaps involving metabolite
levels data were analyzed and plotted using MetaboAnalyst
v.5.049 to determine the influence of different factors on the
metabolic profiles though a multivariate approach.

Pearson’s rank-order correlation analysis between gene
expression and metabolite levels were carry out using Python
script (PyCharm software v.2018.2.4, JetBrains s.r.o., Prague,
Czech Republic) as it was previously described by our group.50

Results
Body weight changes

CAF-fed rats showed a higher BW gain and corresponding AUC
compared to STD-fed rats from the second week of the experi-
ment. However, no effect of GSPE or time-of-day was observed
on the BW gain (Fig. S1†).

GSPE administration time modulates hypothalamus clock
genes depending on sex and diet

STD-fed females receiving VH at ZT12 and sacrificed at ZT15
showed a significant decrease of Bmal1 and an increase of Per1
and Per2 expression levels compared to those rats receiving VH
at ZT0 and sacrificed at ZT3, showing these genes a time-of-
day effect (Fig. 2a, c and d). However, this effect was not
observed in Clock, Cry and RORα gene expressions (Fig. 2b, e
and f). Interestingly, when GSPE was administered to STD-fed
female rats, expressions of Clock, Per1 and Per2 were increased
only at night (i.e., only at ZT12 compared to their respective
control) (Fig. 2b–d). Moreover, CAF altered the expression of
these genes in female rats in a time-of-day dependent manner,
increasing the levels of Per2 and Cry in VH-administered rats
at ZT0 and sacrificed at ZT3, while only Clock and Per2 gene
expression increased in VH-administered rats at ZT12 and
sacrificed at ZT15 (Fig. 2b, d and e). Additionally, CAF-fed
female rats treated with GSPE at ZT0 showed lower expression

Table 2 Primer sequences for hypothalamus gene expression analysis

Target Forward 5′–3′ Reverse 3′–5′

Ppia CTTCGAGCTGTTTGCAGACAA AAGTCACCACCCTGGCACATG
Bmal1 GACTTCGCCTCCACCTGTTC TCTTCGTCCAGCCCCATCTT
Cry GTTGCCTGTTTCCTGACCCG ATTGATGCTCCAGTCGGCGT
Clock ACTCCTTCTGCCTCCTCCAG TCCGCTGTGTCATCTTCTCA
Per1 AACAACAGCCACGGTTCTCA GCTACCACAGTCCACACAAGC
Per2 TGGAGCAGGTTGAGGGCATT GGGACACAGCCACAGCAAAC
RORα GGCTTCTTCCCCTACTGTTCC ATTGGCAGGTTTCCAGGTGC

Ppia: peptidylprolyl isomerase a; Bmal1: brain and muscle aryl hydrocarbon receptor nuclear translocator-like; Cry: Cryptochrome; Clock:
circadian locomotor output cycles kaput; Per1/2: period circadian regulator 1/2; RORα: Orphan nuclear receptor α.
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levels of Bmal1, Clock, Per2 and RORα compared to STD-fed
rats treated with GSPE at the same time (Fig. 2a, b, d and f).
Remarkably, in contrast to STD-fed female rats, GSPE
decreased the expression of Bmal1 and Cry when administered
at ZT0 in CAF-fed female rats (Fig. 2a and e). Thus, GSPE effect
on CAF-fed female rats was higher in the morning in compari-
son with STD-fed rats, which exhibited more GSPE effects at
night, suggesting that the GSPE effects depend not only on the
time of administration but also on the diet.

The clock gene expressions of STD-fed males that received
VH at ZT12 showed the same pattern than STD-fed females.
CAF influenced the expression of clock genes by promoting, in
males, the loss of the time-of-day effect in Bmal1, Clock and
Per1 (Fig. 2a–c). In contrast, Per2 showed the same time effect
that STD-fed males and Cry expression levels increased in rats
receiving VH at ZT12 (Fig. 2d and e).

Remarkably, an overall sex effect was found on the hypo-
thalamus clock genes, being this effect higher in STD-fed rats.

In this context, when comparing STD-fed males versus STD-fed
females, Bmal1 expression increased only in those rats treated
with GSPE, independently of the time of administration
(Fig. 2a), clock expression was higher in all STD-fed males
groups, except for STD-VH-ZT12, which did not show sex
differences, Per2 was increased in all STD-fed males, except for
STD-VH-ZT0 males (Fig. 2b and d), Cry expression increased in
all STD-fed groups, and Per1 and RORα expression only
increased in the STD-VH-ZT0 group (Fig. 2c, e and f). This sex
effect was lower in CAF-fed rats, and although CAF feeding in
males decreased the clock gene expressions compared to STD-
fed males, these levels were like those observed in CAF-fed
female rats.

The GSPE effects are also influenced by sex. When GSPE
was administered to STD-fed females, the extract effect was
only observed at night. However, when GSPE was administered
to STD-fed males, there was no clear pattern compared to STD-
fed females. Thus, GSPE administration to STD-fed males
resulted in increased expression levels of Bmal1 and Cry at
ZT12 and Per2 at ZT0, while RORα and Cry expression levels
decreased at ZT0 (Fig. 2a–f ). Moreover, CAF-fed males did not
show any GSPE effect at either ZT0 or ZT12 in contrast to CAF-
fed females, which showed a higher GSPE effect in the
morning. Therefore, GSPE influenced hypothalamus clock
genes in a diet and sex-dependent manner.

Melatonin levels are affected by sex in a time-of-day-dependent
manner, but not by GSPE treatment

Female rats showed a time-of-day effect on melatonin, inde-
pendently of diet, increasing at ZT15 (at night) in both STD-
and CAF-fed female rats (Fig. 3). An effect of diet on this
hormone was also observed. Melatonin levels were higher in
cafeteria-induced obese female rats at ZT15 compared to STD-
fed female rats. No GSPE effect was observed in female rats
(Fig. 3).

Fig. 2 Time-of-day effect and GSPE administration time effects on
hypothalamus clock genes expression. mRNA relative expression of (a)
Bmal1; (b) Clock; (c) Per1; (d) Per2; (e) Cry and (f ) RORα. Table below the
graphs indicates significant effect and interactions among the different
factors (D: diet; GSPE; ZT; S: sex) analyzed by 2-way or 4-way ANOVA
followed by LSD post hoc test: *, t, # and $ indicates significant GSPE,
ZT, diet and sex effect respectively (p < 0.05). Data are showed as mean
± SD (n = 6). STD: standard diet; CAF: cafeteria diet; GSPE: grape seed
proanthocyanidin extract; ZT: time of the day; ZT0: VH or GSPE time
administration (when light was turned on); ZT12: VH or GSPE time
administration (when light was turned off ); n.s: no significant differences
(p > 0.05).

Fig. 3 Time-of-day effect and GSPE administration time effects on
serum melatonin levels. Table below the graphs indicates significant
effect and interactions among the different factors (D: diet; GSPE; ZT; S:
sex) analysed by 2-way or 4-way ANOVA followed by LSD post hoc test:
t, # and $ indicates significant ZT, diet and sex effect respectively (p <
0.05). Data are showed as mean ± SD (n = 7–8). STD: standard diet; CAF:
cafeteria diet; GSPE: grape seed proanthocyanidin extract; time of day;
ZT0: VH or GSPE time administration (when light was turned on); ZT12:
VH or GSPE time administration (when light was turned off ); n.s: no sig-
nificant differences (p > 0.05).
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In addition, a significant sex effect was also found on mela-
tonin levels, being higher in STD-fed males at ZT15 compared
to STD-females. Interestingly, sex effect was not observed in
melatonin levels in CAF-fed rats.

Regarding the time-of-day effect in males, melatonin levels
showed the same pattern than those observed in females.
Melatonin levels were higher at night (ZT15) in both STD- and
CAF-fed males. In contrast to CAF-fed females, CAF did not
increase melatonin levels in males compared to STD-fed
males. However, GSPE also did not influence melatonin levels
in STD- and CAF-fed males.

GSPE effects on metabolic serum profile depend on the time
of administration in a sex-specific manner in standard-fed rats

CAF feeding and sex showed an impact on serum metabolic
profiles. Two main clusters were found according to the sex of
animals, and in turn, these were divided into two other clus-
ters according to the type of diet. Males fed a CAF showed
higher levels of lipid metabolites such as linoleic acid, mono-
unsaturated fatty acids (MUFAs), triglycerides, oleic acid, total
phospholipid, and polyunsaturated fatty acids (PUFAs), com-
pared to both STD- and CAF-fed females (Fig. 4a). Remarkably,
animals also clustered by the time of day, but no clusters were
observed by GSPE administration.

In addition, overall serum metabolic profiles were assessed
by PCA in each diet condition and sex to further evaluate the
GSPE effect on the metabolome depending on the time of
administration (Fig. 4b–e). STD-fed females showed a time
effect, and only rats receiving VH at ZT0 (in the morning) were
clustered separately. Interestingly, STD-fed females adminis-
tered with GSPE at ZT0 showed a similar metabolic profile to
those administered with VH or GSPE at ZT12 (at night),
suggesting that GSPE influenced the metabolic profile of STD-
fed female rats mostly when it was administered in the
morning (Fig. 4b). However, CAF-fed female rats did not show
a defined clustering, so neither time-of-day nor GSPE effects
were observed (Fig. 4c). Similarly to female rats, STD-fed males
showed a time-of-day effect, clustering separately rats that
received VH at ZT0 from those receiving VH at ZT12. However,
in this case, GSPE administration at both ZT0 and ZT12
changed the metabolic profile of these rats, clustering separ-
ately from controls administered with VH at both ZT0 and
ZT12, respectively (Fig. 4d). Moreover, CAF male rats, as in the
case of CAF females, did not show time-of-day or GSPE effect
since defined clusters were not observed (Fig. 4e).

GSPE modulates amino acid serum profile depending on the
time of administration in a sex- and diet-dependent manner

Firstly, a sex and diet effect was observed in amino acids levels
in a time of day-dependent manner: tyrosine (Tyr), phenyl-
alanine (Phe), valine (Val), glycine (Gly) and glutamine (Gln)
levels were different according to sex, showing STD-fed male
higher levels of these amino acids compared to STD-fed
female rats at ZT3 (Table 3). Interestingly, sex differences were
lower at ZT15, showing STD-fed male lower levels of leucine
(Leu), Tryptophan (Trp) and Lysine (Lys) compared to STD-fed

females. CAF feeding significantly decreased some amino acid
levels, being a high number of amino acids affected in males.
In this context, CAF-fed females showed higher levels of
alanine (Ala) and lower levels of Trp and Gly at both ZT3 and
ZT15 compared to STD-fed females at the same time of day.
CAF decreased Leu levels only at ZT15 in comparison with
STD-fed females and increased glutamate (Glu) at ZT3. In con-
trast, CAF feeding decreased Leu, Lys, Phe, isoleucine (Ile), Val
and Trp at both ZT3 and ZT15 compared to STD-fed males,
while Gly, histidine (His) and Gln only were decreased at ZT3.
Interestingly, although CAF feeding decreased amino acids
levels, it did not abolish the time-of-day effect shown in rats
on the STD diet (Table 3).

In STD-fed females, GSPE administered at ZT0 did not exert
any effect on amino acids levels. However, when GSPE was
administered at ZT12, Lys, Ile and Val levels were significantly
decreased compared to its respective control. GSPE in CAF-fed
females significant decreased Leu, Ile and Val levels compared
to CAF females received with VH at both ZT0 and ZT12. Lys
levels were decreased only by GSPE at ZT12, showing a time-of-
day effect not observed in control rats. On the other hand, in
STD-fed males, the amino acids Leu, Tyr, Lys, Phe, Ile, Ala, Val,
His and Glu were decreased at night. GSPE treatment led to a
decrease of Trp at both ZT0 and ZT12, and an increase of Phe
only when it was administered at ZT12. When male rats were
fed a CAF diet, a similar time-of-day effect pattern was
observed in amino acid levels in VH groups, significantly
decreasing at night (Leu, Tyr, Lys, Ile, Ala and Val). However,
GSPE effect only was found when it was administered at ZT0,
increasing Lys, Gly and Gln levels (Table 3).

GSPE increases glucose levels only at ZT0 in CAF-fed males

Glucose levels did not show differences between groups in
STD-fed animals. However, glucose levels increased at ZT12 in
both CAF-fed females and males receiving VH compared to
their respective controls at ZT0. Moreover, a GSPE effect was
demonstrated at ZT0 in CAF-fed males, increasing glucose
levels compared to control rats at the same time point.
Regarding metabolites involved in glycolysis, no significant
differences were found in pyruvate and lactate (Table 3).

GSPE modulation of lipid serum profiles depend on the
administration time, sex, and type of diet

An overall sex and diet effect was observed in lipid serum
metabolites (Table S1†). ARA + EPA (arachidonic acid + eicosa-
pentaenoic acid), triglycerides, free cholesterol, oleic acid,
MUFAs, linoleic acid, total fatty acids, diglycerides, DHA (doco-
sahexaenoic acid), glycerol, cholesterol and acetate levels were
influenced by the sex of the rats. These lipid metabolites
together with PUFAs and total phospholipids were also
affected by CAF feeding, resulting in a significant time-of-day
effect in CAF-fed females and increasing ARA + EPA, free chole-
sterol, PUFAs, esterified cholesterol and cholesterol at ZT15.
However, STD-fed females did not show any differences
between ZT3 and ZT15. Otherwise, STD-fed males showed a
time-of-day effect increasing free cholesterol and acetate levels
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and decreasing DHA at ZT15. CAF-fed males also showed a
high number of changes in lipid serum metabolites depending
on the time of day, with lower levels of triglycerides, free chole-
sterol, oleic acid, MUFAs, linoleic acid, total fatty acids, DHA,
total phospholipids, cholesterol, and acetate at ZT15 (Table 3).

GSPE effect was different according to the diet, sex and
time of administration (Table 3). When GSPE was adminis-
tered at ZT0 in STD-fed females, higher levels of free chole-

sterol, total fatty acids and diglycerides were observed com-
pared to its respective control rats. In CAF-female rats, GSPE
administered at ZT0 increased ARA + EPA, free cholesterol and
cholesterol levels. However, GSPE decreased levels of esterified
cholesterol and cholesterol when it was administered at ZT12
in female CAF rats compared to its respective control. In STD-
fed males GSPE significantly decreased free and total chole-
sterol at ZT0 and ZT12, while increased acetate at ZT0. In

Fig. 4 Effects of GSPE administration time on metabolic serum profile. (a) Heatmap of serum metabolic profiles. (b–e) Principal component analysis
(PCA) showing GSPE and dose time effect in (b) STD-fed females; (c) CAF-fed females; (d) STD-fed males; and (e) CAF-fed males. STD: standard diet;
CAF: cafeteria diet; GSPE: grape seed proanthocyanidin extract; time of the day; ZT0: VH or GSPE administration time (when light was turned on);
ZT12: VH or GSPE administration time (when light was turned off ).
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males CAF rats, GSPE decreased DHA only at ZT0, showing
lower effect than in female CAF rats.

GSPE do not influence choline metabolism

Choline levels were higher in STD-fed females at ZT15 com-
pared to ZT3, and no GSPE effect was observed. However, CAF-
induced obese females lost the time-of-day effect observed in
STD-fed females, whereas GSPE administration at ZT12
restored it, with higher levels of choline at night. In contrast,
STD-fed males had no effect of either time-of-day or GSPE
effect. CAF-fed males displayed lower levels of choline com-
pared to STD-fed males. On the other hand, betaine metabolite
only showed a diet effect, being its levels lower in CAF-fed
animals (females and males) (Table 3).

GSPE influences differently formate levels in female and male
rats depending on the diet

Although no effect was observed in STD-fed females in formate
levels, CAF-fed females showed a GSPE dependent effect,
decreasing formate levels when GSPE was administered at ZT0.
In contrast, GSPE administration in STD-fed males decreased
formate levels at both ZT0 and ZT12, but no time-of-day effect
was found. GSPE did not show any effect in CAF-fed males
(Table 3).

GSPE affects differently cholate levels depending on the time
of administration in male rats on a standard diet

No effect was observed in STD- or CAF-fed rats in cholate
levels, although STD-males showed lower levels of cholate than
STD-fed females, showing a diet effect influenced by sex, since
it was not observed in females (S × D, p < 0.05). However, in
STD-fed males, GSPE increased cholate levels when adminis-
tered at ZT0, whereas it decreased them when administered at
ZT12. CAF-fed males showed higher levels of cholate than
STD-fed males (Table 3; Table S1†).

Clock genes correlate with serum melatonin and amino acids
levels

To evaluate the influence of clock genes on melatonin and
serum metabolite levels, correlations between these para-
meters were carried out. Only a significant positive correlation
was observed between Per2 and melatonin (Fig. 5a; Table S2†).
However, several significant correlations were found between
clock genes and serum metabolite levels (Table S3†). The
strongest significant correlations were observed between
amino acids levels and clock genes (R = ±0.4) (Fig. 5b–e). Per2
negatively correlated with Tyr, Ala, and Leu (Fig. 5b–d) and
Per1 negatively correlated with Ala (Fig. 5e). Other significant
correlations (R = ±0.3) were found between clock genes and
amino acids levels (Table S3†): Per2 negatively correlated with
Iso, Val, Trp and His; Bmal1 positively correlated with Glut and
Tyr; and Per1 negatively correlated with Lys and Tyr. Moreover,
significant correlations were found between Cry and Betaine (R
= 0.329) and between RORα and Glycerol (R = −0.305).
Additionally, the following weaker significant correlations (R =
0.2) were observed: Cry positively correlated with choline, Gly,T
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glucose and Phe, and negatively correlated with glycerol; Per2
positively correlated with choline, and negatively with linoleic
acid. RORα positively correlated with Gly, Phe, free cholesterol
and Leu. Finally, negative significant correlations were found
between Bmal1 and free cholesterol, diglycerides and ARA +
EPA.

Discussion

GSPE has a wide range of beneficial effects on health, one of
them being the prevention of obesity and metabolic-related
disorders.51,52 GSPE has also been found to be a key factor
influencing clock genes.40,42 This fact is relevant since circa-
dian rhythms are essential to maintain host homeostasis, and
their alteration by misalignment cues such as obesogenic diets
is associated with the development of metabolic disorders,
including obesity.53 Remarkably, it has recently been reported
that GSPE effects on liver and adipose tissue depended on the
time of administration,43,44 and that the plasma bioavailability
of GSPE also was impacted by the administration time of this
proanthocyanidin-rich extract.45 Therefore, it is likely that
there is a bidirectional relationship between GSPE and circa-
dian rhythms. Hence, the current study evaluated if GSPE
effects on the metabolome are conditioned by the time-of-day
in both healthy and obesogenic context, investigating also the
influence of the sex, which is an important factor to take into

account as circadian rhythms influence females and males
differently.15,16 To achieve this goal, GSPE was orally adminis-
tered at 25 mg kg−1 day−1. This dose is within the estimated
range of polyphenol intake in humans54–56 and is equivalent
to the daily intake of 367 mg for a 70 kg person, calculated
using the body surface area normalization method.57

The circadian clock system can be disturbed by obesogenic
diets, affecting in turn to hormone and serum metabolites
rhythmicity12,58 and contributing to the development of meta-
bolic disorders.59 Additionally, obesogenic diets do not act in
the same manner in both sexes.60,61 For instance, plasma para-
meters associated with metabolic syndrome, such as leptin
and insulin, are modulated in a sex-specific manner by obeso-
genic diets.62 This fact could be explained because circadian
rhythms also exhibit differences between females and males,
showing differences in the clock gene expressions.15 In this
regard, this study showed that the clock gene expressions, as
well as metabolite levels showed a time-of-day effect, differ-
ently influenced by the diet in a sex-dependent manner. These
changes observed in the clock genes expressions were signifi-
cantly correlated with melatonin and different serum metab-
olites. Melatonin levels, positively correlated with the relative
expression of Per2, being in concordance with other studies in
which the increase of melatonin raise the expression of Per2 in
both SCN and pituitary gland.63 Furthermore, melatonin levels
and Per2 expression were higher at night independently of
health condition or sex, since the secretion of melatonin by
the pineal gland occurs at night under the control of the light–
dark cycles.64 Thus, pineal gland and central clock tissue inter-
act with each other;63 SCN relays photoperiodic information
through the retina to the pineal gland via sympathetic nervous
system, and based on the information provided by the SCN,
the pineal gland either up- or down-regulates the production
of melatonin.65 In turn, melatonin signal impacts the function
of the SCN, regulating the central clock genes and synchronize
physiological activities.66 Interestingly, STD-fed males showed
higher melatonin levels, and in consequence higher expression
of Per2, compared to STD-fed females. These results could be
associated with the fact that in women melatonin cycle has a
higher amplitude and the secretion peak appears earlier than
in males.67 Therefore, at ZT15 (at night) the highest peak of
melatonin secretion may have already occurred in females,
whereas in males this process is occurring in that point of
time. Moreover, hypersecretion during metabolic syndrome,
due to an increase of the sympathetic activity in the SCN,68

could explain the higher levels of this hormone showed by
CAF-fed females compared to STD-fed females.

Amino acids, lipid and choline metabolism was also
affected depending on the time-of-day, diet and sex. These
results were expected since metabolomic profiles vary due to
health status, sex and diurnal variations,69 as it is discussed
above. Regarding to the sex differences, the molecular mecha-
nisms which explain them remain largely unidentified,
although it seems that sex hormones play an important role.
Hence, it has been described that estrogen in women and
androgen in men impact on the fatty acid, triglyceride, and

Fig. 5 Correlations between hypothalamus clock genes and serum
melatonin or serum metabolites levels. (a) Significant correlations
between hypothalamus clock genes and serum melatonin levels, (b–e)
strongest significant correlations between hypothalamus clock genes
and serum metabolite levels. The analyses were performed by Pearson’s
rank correlation coefficient (R).
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cholesterol metabolism.70 Furthermore, these differences by
sex could be explained by the different expressions of the
enzymes for fatty acids synthesis and oxidation, which have
been reported to be more active in females and in males,
respectively.71 The sexual dimorphism in the amino acid
metabolism has not been elucidated yet, but in the same
manner, sex hormones appear to be crucial, promoting differ-
ences in musculature and in turn, in the protein
metabolism.72,73 Serum metabolites were also correlated with
changes in clock gene expressions. Amino acids and other
metabolites such as betain, choline, DAG, glycerol and free
cholesterol were significantly correlated with the central clock
genes, indicating that circadian clocks can control the metab-
olism in a time-of-day-dependent manner.21,26 Among amino
acids, it is worth highlighting the changes observed in the
levels of Trp, and its negative correlation with Per2. Trp is an
essential amino acid supplied by diet. It can be metabolized
into different metabolites in both the gut microbiota and
tissue cells, being a precursor of a large number of biologically
active metabolites.74 Trp is the sole precursor of the serotonin
synthesis in the brain, and subsequently, of the melatonin
hormone in the pineal gland.75 However, over 90% of seroto-
nin is located in the gastrointestinal tract, and it is produced
from enterochromaffin cells. Moreover, more than 90% of total
Trp is catabolized, via the kynurenine pathway, into kynure-
nine in the liver, which can be further metabolized into
kynurenic acid and quinolinic acid (QUIN) called kynurenine
(inflammatory mediators capable of reach the brain).76 Finally,
QUIN can be converted into nicotinamide adenine dinucleo-
tide (NAD) that play a key role in the energy homeostasis,76 fol-
lowing 24 h rhythmicity.77 Also, a small amount of Trp is con-
verted by gut microbiota into indole and its derivatives, which
have exhibited protective effects.78 In addition, Trp metab-
olism has been shown to follow circadian/diurnal oscillations,
and Trp and their derived are believed to modulate circadian
rhythms via multiple molecular mechanism.79 Along this line,
our results show lower levels of Trp in healthy females and
males rats at night, which could be associated with the
increased levels of melatonin at that point. Furthermore,
healthy males showed higher levels of Trp compared to
females, showing also higher levels of melatonin as it was
commented above. However, in females and obese rats, Trp
levels decrease at both in the morning and at night, losing the
rhythmicity. This fact could be explained by an overactivation
of the kynurenine pathway since diseases characterized by a
low grade-inflammation and a dysbiosis of the gut microbiota,
such as obesity show higher levels of kynurenine.74

Nevertheless, the decrease of Trp in the morning was not
linked to higher melatonin level in the morning. In this
regard, clock genes were studied only in two time points.
Therefore, a further study to evaluate rhythmicity may be
necessary to obtain more differences or significant correlations
in comparison with the current results. Moreover, further
studies would be needed to evaluate the Trp metabolism and
stablish how Trp and its derivate could modulate circadian
system, promoting a good health state, evaluating also the gut

microbiota composition and their produced metabolites,
which is essential in the homeostasis maintenance.80,81

GSPE has been shown to modulate clock genes in a time-of-
day-dependent manner in liver43 and in the adipose tissue44 in
male rats to prevent the obesity development. GSPE could
therefore modulate also central clock genes and its effect on
the circadian clocks may influence several metabolic pathways
to ameliorate obesity disease, and this could be reflected in
the serum metabolic profiles. The current study shows that
GSPE impacts on the central clocks and metabolome and, for
the first time to our knowledge, reports that GSPE effects not
only are influence by the time of day but also are strongly
influenced by the health condition and sex. In this regard,
these results showed that GSPE influence the expression
pattern of clock genes in the hypothalamus differently in
healthy and obesogenic conditions in a sex-specific manner.
Particularly, GSPE influenced clock, Per1 and Per2 at night in
STD females, whereas in CAF females, GSPE affected the
expression of Bmal1 and Cry in the morning. Furthermore,
GSPE effects on clock genes in STD males were found at both
morning and night, whereas in CAF males no GSPE effects on
clock genes were found. Thus, these results indicate that
ability of PAs to modulate the hypothalamic clock genes
depends largely on the time of administration and importantly
on the diet and sex. Interestingly, in this case, GSPE did not
affect melatonin hormone levels, in contrast to another acute
study in which GSPE modulated plasma melatonin levels
when the extract was administered in the morning.41 However,
the different strain of rats used, the lower dose of GSPE admi-
nistered in this study (versus 250 mg kg−1) and the different
time points in which melatonin was measured, may explain
this discrepancy. Furthermore, Trp levels were also not altered
significantly by GSPE, which could also explain why no differ-
ences in melatonin levels are observed by GSPE. To date, a
relationship between melatonin and bioactive compounds
such as PAs has not yet been established, so it would be inter-
esting to continue investigating in this field to elucidate the
role of clock genes and melatonin as well as the derived-mela-
tonin metabolites in the metabolome and whether they can be
modulated by proanthocyanidin-rich extracts. Moreover, as
GSPE modulates gut microbiota composition,82 it would be
interesting to advance in the study of its composition and the
metabolites derives from it, and how it may regulate the host
homeostasis impacting on the circadian rhythms.

It has been recently reported that GSPE administration at
night restore the rhythmic metabolism of Ala, aspartate (Asp)
and Glu in male CAF-fed rats.83 The changes observed in
amino acids levels by GSPE according to the time-of-day could
be explained due to the different clock gene expressions in the
hypothalamus. Amino acids and skeletal muscle clock genes
are intimately linked,84 and observational studies showed a
link between diurnal variations in amino acid plasma concen-
trations and insulin resistance and diabetes.85,86 Hence, the
beneficial effect of GSPE on insulin resistance and obesity-
related disorders may depends on the time of administration,
sex and diet. In the same way, lipid metabolism was influenced
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by the time of GSPE administration according to the diet and
sex. In this case, GSPE administered at night to CAF-fed
females had a beneficial effect, decreasing cholesterol, total
fatty acids and diglycerid levels. Interestingly, when GSPE was
administered in the morning to both STD- and CAF-fed female
rats, GSPE effects were detrimental, increasing the levels of
these lipid metabolites. In males, the effect of GSPE adminis-
tration was less remarkable. CAF-fed male rats only showing
lower DHA levels in the morning, whereas GSPE decreased free
and total cholesterol levels in STD-fed males when it was admi-
nistered both in the morning and at night. These findings
indicate that beneficial GSPE effects are strongly influenced by
the time of the day in which it is administered, being sex and
health status two key factors in its functionality. It is described
that cholesterol is synthetized following a circadian rhythmi-
city in the liver thought the circadian expression of
HMG-CoA.87 Moreover, enzymes that regulate fatty acids syn-
thesis also present rhythmic expression patterns.88 Therefore,
to get beneficial effects, GSPE may act on these pathways,
being important the time of administration according to the
circadian expression patterns of the enzymes involved.
Furthermore, it has been reported that GSPE repress the
expression of the clock gene Cry in the inguinal WAT in males
rats only at night, which was associated with a lower adiposity
in this tissue,44 suggesting that GSPE is influenced by the cir-
cadian rhythms. Cholate levels were also affected by GSPE
administration time in a diet and sex-dependent manner.
Cholate as a primary bile acids, is synthetized from cholesterol
via two major pathways in hepatocytes.89 The key enzyme,
cholesterol 7α-hydroxylase (CYP7A1), and the serum levels of
total bile acids in mice have been shown to follow diurnal
rhythmicity, playing the circadian rhythms a crucial role in the
maintenance of bile acid homeostasis.24,90 In fact, it has been
reported that the alteration of hepatic clock gene expressions
by a HFD or restringing feeding, disrupts bile acid metabolism
and trigger metabolic diseases.91 Moreover, CYP7A1 and trans-
porters involved in bile acid homeostasis display significant sex
differences.92 Additionally, the bile acid metabolism is closely
linked with the gut microbiota composition,93 which is also influ-
enced by many factors including biological rhythms,94,95 diet,96

or sex.97 A recent study has shown that an apple polyphenol
extract may modulate bile acid metabolism and gut microbiota
via clock genes regulation.98 Accordingly, it has been recently
described by our group, using the same experimental design,
that the bioavailability of GSPE, especially the microbiota-derived
metabolites, depends on the time of administration and the sex
of the animals.45 In this context, significant higher overall levels
of microbial colonic metabolites were found when GSPE was
administered in the morning in CAF-fed rats, increasing these
colonic metabolites in females rats fed with CAF compared to
male rats, and being this effect no observed in STD-fed rats.45

Hence, gut microbiota play an important role in the metabolism
of these PAs, exerting their derived metabolites several
functions.99–101 Furthermore, gut microbiota has been also
demonstrate to follow a diurnal rhythmicity102 and to be intrinsi-
cally influence by sex,97,103 so it may be a key factor in the mecha-

nism of GSPE. Therefore, futures studies about the gut micro-
biota composition and their derived colonic metabolites bioactiv-
ities would be necessary to further evaluate the effects of GSPE
on the metabolome and its relationship with circadian clocks.
Therefore, although further studies are needed, these findings
contribute to a better understanding the mechanism by which
PAs may prevent and ameliorate metabolic-related disorders,
adding knowledge in the chrononutrition field, which are cur-
rently continuously growing.

Conclusions

The findings of the current study advance on research focused
on targeted nutritional recommendations and chrononutrition,
showing that PAs can impact on circadian rhythms system, mod-
ulating the hypothalamic clock gene expressions and the amino
acid and lipid metabolism in a time-of-day-, diet- and sex-depen-
dent manner. Although further investigation is needed to eluci-
date the molecular mechanisms, our work highlights the need to
take into account the time of day in which bioactive compounds
or functional foods are administered, as well as the health of
state and the sex in the design of new experiments and in the
interpretation of the results, in order to make further progress
towards personalized nutrition to improve metabolic diseases.
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