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Serverless platforms offer high resource elasticity and pay-as-you-go billing, making them a compelling 
choice for data analytics. To craft a “pure” serverless solution, the common practice is to transfer 
intermediate data between serverless functions via serverless object storage (IBM COS; AWS S3). However, 
prior works have led to inconclusive results about the performance of object storage systems, since they 
have left large margin for optimization. To verify that object storage has been underrated, we devise 
a novel shuffle manager for serverless data analytics called Seer. Specifically, Seer dynamically chooses 
between two shuffle algorithms to maximize performance. The algorithm choice is made online based on 
some predictive models, and very importantly, without end users having to specify intermediate shuffle 
data sizes at the time of the job submission. We integrate Seer with PyWren-IBM [31], a well-known 
serverless analytics framework, and evaluate it against both serverful (e.g., Spark) and serverless systems 
(e.g., Google BigQuery, Caerus [46] and SONIC [22]). Our results certify that our new shuffle manager can 
deliver performance improvements over them.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

In the pursuit of higher elasticity, major cloud providers have 
recently begun to offer new computation infrastructures such as 
serverless computing. While initially geared towards web microser-
vices and IoT applications, the latest literature has started to scru-
tinize the role of serverless computing in data-intensive applica-
tions [16,11,38,6,22,46,48,2]. Altogether, this handful of studies has 
shown that serverless computing is far an appealing choice for 
data analytics.

Typically, data analytics frameworks use a directed acyclic 
graph (DAG) to represent the computation logic of an analytics 
job, with stages as its vertices, and the dependencies between 
stages as its edges. Each stage consists of a set of parallel tasks, 
each processing a partition of the dataset. While traditional server-
centric deployments utilize clusters provisioned with a fixed pool 
of compute resources to run the parallel tasks in a job, server-
less deployments execute them as cloud functions [11,38,22,46]. 
Billed only for their running time (pay-as-you-go model), along 
with their fast provisioning times, functions enable the allocation 
of compute resources at the task level, avoiding the under- and 
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over-provisioning of resources that occur when they are provi-
sioned at the job granularity. For instance, the intermediate data 
size across various stages in a typical TPC-DS query [28] ranges 
from 0.8 MB to 66 GB, a difference of 5 orders of magnitude! [19].

The problem of serverless shuffle. Despite these benefits, directly 
using a serverless platform for processing a DAG is problematic. 
By design, serverless functions are not network addressable, so 
direct point-to-point communication is hard. This limitation imme-
diately reverberates into data shuffles, which naturally turn up in 
many data transformations like groupBy or join operations. But, 
what is a data shuffle? In a nutshell, shuffling is the process of 
redistributing or re-partitioning the data at the different machines 
across new partitions. To better understand this, pretend that a big 
table with two columns, e.g., Date and Customer, is split by rows, 
with different ranges of rows stashed on two different partitions 
as depicted in Fig. 1. If a user wished to group the data by the 
column Customer, the execution of the groupBy operation would 
require to redistribute the data in each worker into new partitions 
as illustrated in Fig. 1. This repartitioning of data is what is called 
a shuffle. In this specific case, the redistribution of data between 
the two partitions is performed using a hash partitioner, i.e., which 
decides the output partition based on the hash code computed for 
the column Customer.

What is the main problem? The biggest issue is that shuffles re-
quire all-to-all communication between all workers, which can-
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Fig. 1. Example of a data shuffle triggered by a groupBy operation on the column Customer.
not be directly implemented with serverless functions. Sharing in-
termediate data between serverless functions have become one of 
the major challenges in serverless data analytics [14,29,23,36,22].

As of today, the state-of-the-art practice for exchanging (in-
termediate) state between serverless functions is through remote 
storage. In practice, there are two types of remote storage sys-
tems that have been examined in the literature: 1. Elastic far-
memory systems such as Pocket [21], Jiffy [19], and Crucial [6], 
which achieve low-latency (sub-millisecond), and 2. Object storage
systems such as Amazon S3, which are much slower, but cheaper 
and optimized to deal with big data objects. Although far-memory 
storage systems are faster than disk-based object stores [29,6], and 
are a solid alternative to share intermediate data, they also have 
their disadvantages. For instance, they typically scale up the mem-
ory capacity by adding more virtual machines (VMs) at the data 
plane, which is a time costly operation and can take minutes de-
pending on the instance type [21]. Moreover, VM scaling tends 
to act at a coarse granularity, which may lead to either system 
degradation or resource underutilization in the absence of prior 
knowledge [19,21].

Our approach. In this research work, we focus on object storage 
for one powerful reason: the need to develop a high-performance, 
“pure” serverless solution to serverless data shuffles. Object storage 
is available in all public clouds, and because it is an “always on” 
service, it incurs no start-up delay, thereby keeping the serverless 
principle of “no server management from the end users” intact. In 
principle, this makes it possible to design a pure serverless solu-
tion, but there are some knobs to tune to get the best out of object 
storage.

We propose in this work a smart serverless shuffle auto-tuner 
called Seer. More precisely, Seer chooses “on the fly” between 
two shuffle implementations to deliver improved efficiency: the di-
rect solution, akin to the hash-based solution in Spark [44], and 
the multi-round shuffle introduced in [23], which trades off I/O 
throughput for latency. To go “serverless”, Seer makes this decision 
based upon the evaluation of two performance analytic models: 
one for direct shuffle, and the other for the simplest incarnation 
of multi-round shuffling, i.e., the two-level, mesh-like algorithm 
presented in [23]. Importantly, the selection of the optimal imple-
mentation is made at runtime, and the only input these models 
need from a job is the volume of data to be shuffled at the current 
stage, which can be dynamically inferred as the sum of the indi-
vidual data partitions. Simply put, Seer does not require jobs to 
know (even an estimate of) intermediate data sizes a priori. When 
a data shuffle operation is encountered, Seer dynamically deter-
mines the right shuffle implementation, along with the optimal 
degree of parallelism that minimizes shuffle time. The performance 
2

models require the characterization of the remote object storage 
service via a series of basic measurements. For this work, we char-
acterized the performance of IBM Cloud Object Storage (COS), but 
we sense that other object stores behave similarly (e.g., S3 [29]).

Moreover, we integrate Seer into PyWren-IBM [31], a serverless 
data analytics engine that executes on IBM Cloud, and compare 
our integration to several state-of-the-art data analytics systems of 
distinct flavors, from serverful systems such as Spark to serverless 
cloud services such as Google BigQuery [9] and Google server-
less Spark [13], and research prototypes such as Caerus [46] and 
SONIC [22]. Our results confirm the accuracy of our auto-tuning 
approach, but more importantly, attest that object storage is a 
practical but powerful approach for shuffling data. To give some 
first numbers, the performance of Seer is 5.6X better than server-
less Spark in TPC-DS. Similarly, Seer is 6X faster than serverful 
Spark for the 100 GB Terasort benchmark for the same number of 
vCPUs. In comparison to other serverless systems, Seer also deliv-
ers better performance across all the workloads. Just to illustrate, 
we would have achieved up to 9.9X higher performance/$ (here 
performance denotes the inverse of latency) over SONIC+S3, being 
direct shuffle the optimal choice in this case. The comparison with 
SONIC is very alluring to practitioners because it examines the 
cost-efficiency aspect of Seer against a strong baseline. It must be 
noticed that for this workload, we also ran Seer over AWS S3 ob-
ject store to gain a broader view of the problem. Interestingly, we 
found that the underpinning cost model of Seer for both IBM COS 
and AWS S3 is almost identical, which is useful to measure how
Seer is able to improve data shuffles in different cloud providers.

Very interestingly, Seer is a slightly faster (13%) than Caerus, 
albeit Caerus uses Jiffy [19], a far-memory system. At least for us, 
this result calls in question the often quoted mantra that object 
storage is ill-suited for serverless shuffles [29,23], and advocates 
for more research.

Contributions. The key contributions of this paper are:

• Development of performance models for the direct and two-
level shuffle methods (§4), and the performance characteri-
zation of the IBM COS service (§2). Using these models, we 
analyze their trade-offs, and show that no single method holds 
an edge over the other under all conditions, which motivates 
the need for a hybrid and dynamic approach.

• Design of Seer, a shuffle manager which dynamically chooses 
the optimal shuffle implementation for a given stage in a DAG 
without prior knowledge (§4).
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• Integration of Seer with PyWren-IBM [31],1 along with its 
evaluation against Spark and serverless analytics systems, in-
cluding BigQuery and serverless Spark, and some research pro-
totypes (e.g., Caerus and SONIC). In addition to latency, the 
comparison against some of these systems includes cost to as-
sess the cost-efficiency of Seer. Our results demonstrate that
Seer is cheaper, or similar in cost, than “serverful” alternatives 
such as Apache Spark and serverless systems such as BigQuery. 
(§5, §6).

A preliminary version of this work has appeared at ACM/IFIP 
Middleware’22 [34]. Compared to the conference version, we have 
extended the characterization of the IBM COS service, added a 
comparative analysis between both shuffle methods, and an evalu-
ation against SONIC [22], a manager that selects the optimal data-
passing method for each edge of a serverless DAG.

2. Preliminaries

2.1. Problem statement and system model

The core idea behind serverless data analytics is to use func-
tions to dynamically adjust resources over time, and avoid both re-
source under- or over-provisioning, which lead to resource wastage 
or performance degradation in server-centric deployments, respec-
tively. In this sense, serverless platforms facilitate fine-grained scal-
ing of resources to match application needs.

Given the fine-grained elasticity of cloud functions, and server-
less storage systems such as Amazon S3, or IBM Cloud Storage 
(COS), the main challenge in executing shuffles is:

Problem statement: Given the fine-grained scaling of compute 
resources, can we find a way to determine at runtime the opti-
mal number of functions (degree of parallelism) that better utilizes 
remote object storage without extra knowledge at job submission 
time?

This is one of the main goals pursued by Seer: being the “living 
proof” that it is possible to tune shuffles at runtime in order to 
maximize the I/O efficiency of object storage.

Since Seer optimizes shuffle operations, it is important to de-
fine what we understand by “parallelism” in the context of server-
less data shuffling. Compute parallelism will be of course lever-
aged by function invocations, which will we refer to in this paper 
as “workers”. Nonetheless, we will limit the inner parallelism of 
workers to 1 vCPU, which can be achieved in IBM Cloud Func-
tions by provisioning 2, 048 MB of RAM to the workers. The reason 
for this is two fold. On the one hand, the equivalent of a single 
core “worker” can be found in all FaaS platforms under different 
memory allocations, which opens the door to a potential general-
ization of our insights to other cloud providers and systems. On the 
other hand, a single core prevents the use of well-known optimiza-
tions to achieve improved I/O efficiency, such as the exploitation of 
intra-worker parallelism to overlap computation and communica-
tion, and so far hide the access latency to remote storage. In this 
sense, our results are conservative, and should be interpreted as 
a baseline with room of improvement. Despite the use of single-
vCPU workers, Seer is able to outperform other systems with more 
CPU cycles and memory allocation (see §6).

As a result of the provisioning of all workers to access 1 vCPU, 
we will be able to unambiguously refer to the number of work-
ers that concurrently run (in a shuffle operation) as the degree of 
parallelism. As typical in data analytics frameworks (e.g., Spark), 

1 now recast as Lithops [32,33].
3

we will assume that operations with wide dependencies [44] like
groupBy will trigger a shuffle that Seer will optimize.

2.2. Object storage

To be able to choose the most appropriate configuration of 
shuffle algorithm and parallelism, it is crucial to characterize the 
object storage performance to ascertain if it is possible to build 
useful analytical models for the shuffle algorithms. Unsurprisingly, 
the answer is “yes” and can be achieved in terms of I/O through-
put and bandwidth as usual. Although our focus is on IBM Cloud 
Storage (COS), this characterization is general enough to encom-
pass other object stores such as Amazon S3, Google Cloud Storage, 
and Azure Blob Storage. All the measurements of this section were 
conducted on the us-east region.

(I/O Throughput). In this context, read or write throughput refers 
to the rate of read or write operations to an object store. Con-
cretely, we measure the throughput as the number of read or write 
operations per second, abbreviated as OPS/s.

Object stores have not been conceived to deliver high through-
put for small files, and indeed public cloud vendors impose request 
limits on them [4,12,5]. To wit, as of April 2022, the rate limit on 
Amazon S3 is of 3.5k write and 5.5k read requests/sec per prefix in 
a bucket. The first interesting observation for IBM COS is that there 
is no limit on the number of requests/sec. Consequently, we had 
to measure how much throughput functions can glean from IBM 
COS. As a first result, we did not observe any significant improve-
ment by increasing the number of buckets and prefixes. Specifi-
cally, we found that the only two factors dominating throughput 
were the object size (s) and the degree of parallelism (p). To give 
a sense of how these two factors affect the I/O throughput, we 
benchmarked the read and write throughput as we changed the 
degree of parallelism for several object sizes.

Throughput results are shown in Fig. 2 for the maximum possi-
ble memory size. As expected, throughput decreases as the object 
size inflates, with the read throughput being much higher than 
the write throughput, thereby showcasing strong asymmetry. In all 
cases, I/O throughput scales linearly up to a certain parallelism, 
where the curve begins to flatten out. The flattening point depends 
exclusively on the request size. This behavior makes it easy to 
model the throughput curve as function q of two variables q(s, p), 
where for low degrees of parallelism the curve exhibits a linear 
behavior. Likewise, the non-linear part is smooth, so it can be well 
approximated with a small number of measurements. In Fig. 4, we 
illustrate the fitted throughput curves for 10 MB-sized files as an 
example. Both curves were built from only 27 measurement sam-
ples (3 probes per parallelism degree) with a total measurement 
cost of $3.3 each curve (each worker ran for 15 seconds).

(Bandwidth). Fig. 3 depicts the per-worker bandwidth (in MB/s) as 
we vary the degree of parallelism and the request size. From this 
figure, we find a very important result: as the degree of parallelism 
increases, the read bandwidth almost does not change for up to 
400 workers, and only the per-worker write bandwidth degrades 
slightly for large request sizes. This result is good news, since it 
allows us to treat the per-worker bandwidth as a constant in the 
analytical models developed in §4.3 for up to 400 workers with 
high accuracy, and therefore, simplify our equations.

(Effect of the worker memory size). To glean more insight into 
the performance of object storage, we studied the effect of worker 
memory size on throughput. Specifically, we quantified its influ-
ence from two distinct angles. Firstly, we did so by varying the 
degree of parallelism. Then, we measured its impact by modifying 
the file size. Fig. 5 reports the results for 10 MB-sized file requests 
when the degree of parallelism is increased. Non-surprisingly, as 
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Fig. 2. Measured read/write throughput (thousand OPS/s) for increasing parallelism and file sizes.

Fig. 3. Measured per-worker read/write bandwidth (in MB/s) for increasing parallelism and file sizes.

Fig. 4. Fitted throughput curves q(10 MB, p).
CPU power is allocated proportionally to the amount of RAM pro-
visioned, both read and write throughput is maximized for 2 GB-
sized serverless workers. However, the increment in throughput is 
sub-linear. The most striking observation, though, is the fact a large 
number of small workers is not always ideal. As can be seen in 
Fig. 5, it is better off having 100 workers of 2 GB of memory than 
200 workers, each sized with 0.5 GB of RAM.

Nevertheless, the sub-linear advantage of a larger memory al-
location may make more cost-optimal the exploitation of a larger 
fleet of smaller memory workers. We say “may”, because as paral-
lelism increases, the size of the intermediate files being generated 
during the shuffling process decreases, which could worsen per-
formance. To better understand this, let us go back at Fig. 2 and 
multiply the object size with the throughput to approximate the 
aggregated bandwidth. Then, it is easy to see that using smaller 
object sizes (e.g., of 1 MB) means a lower aggregated bandwidth 
and worse performance. This finding is well-aligned with previous 
4

work [29]. Further, sub-linearity of memory size is also maintained 
across object sizes as can be seen in Fig. 6.

(Practical takeaway). As a practical result of the above analysis, 
characterizing the performance of object storage to store shuffle 
data is practical. However, we observed that worker memory size 
affects throughput, which is maximized for the maximum memory 
allocation of 2 GB for IBM Cloud Functions. This result is not sur-
prising, since CPU power is allocated proportionally to the amount 
of RAM provisioned. What might complicate matters is the treat-
ment of memory allocation as an optimization variable. Although 
the above characterization proves useful for any worker memory 
size, memory allocation and I/O throughput exhibit a sublinear 
behavior, which was also observed in [29] for AWS Lambda. For 
instance, we got a read throughput of 782 requests/sec for 1 GB-
sized workers in a shuffle operation with a degree of parallelism of 
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Fig. 5. Measured read and write throughput (in OPS/s) for different memory allocations as parallelism is varied.

Fig. 6. Measured read and write throughput (in OPS/s) for different memory allocations as object size is varied.
200 workers. Doubling the memory size, only improved this quan-
tity by 1.47×.

3. Shuffling methods

3.1. Direct shuffle

The direct shuffle algorithm is the most preponderant in the 
serverless literature, with many research works taking it up as 
the default all-to-all data passing method for intermediate data 
[29,23,36]. This method has a simple description: each of the p
workers holds a split of the input data in memory, and uses a 
partitioning routine to divide it into p partitions, one per receiver 
(e.g., based on the hash value of the records from the input split). 
Whatever the partitioning routine, each worker writes the data of 
each partition into an independent file following a naming con-
vention that typically reflects its own ID along with the ID of the 
receiving worker of the file. Finally, each worker reads all files that 
include its own ID as a receiver. Since the “source” workers may 
be slower than a receiver, a receiver must watch for a file until it 
exists.

The problem with this method is that the total number of files 
is quadratic in p: each of the p workers reads from and writes to 
p intermediate files. Simply put, as the parallelism degree raises, 
the quadratic number of requests may saturate or cause throt-
tling of the object store throughput. For example, consider the 
shuffling of 10 TB data. As noted before, cloud functions have 
stringent resource limitations that restrict the amount of data a 
serverless worker can process (e.g., up to 2 GB of RAM for IBM 
Cloud Functions). Assuming 1 GB input splits to maximize mem-
ory utilization, this will result in 104 partitions, and 108, or 100
million, intermediate files. Considering a write throughput of 10
thousand requests/sec, just writing all the intermediate files would 
5

take around 2.7 hours, which is impractical in terms of runtime 
complexity. However, our validation results show that this method 
could be a compelling solution to the serverless shuffling prob-
lem for many production workloads (e.g., found at Microsoft or 
Google [26]). Loosely speaking, although the input data may be big 
in production, the amount of data shuffled is between 5-10X less 
than the amount of input data [26]. As seen in [45], very often the 
limiting factor encountered in many production workloads is that 
number of map tasks, say M , and reduce tasks, say R , is oversized 
in relation to the shuffle data size D , yielding intermediate files of 
a few kBs: 

(
D

M×R

)
.

With Seer, however, we demonstrate that direct shuffling over 
remote object storage can outperform VM deployments with Spark 
for medium scales (e.g., a few GBs), provided that the optimal 
number of workers is used. Recall that for direct shuffling the total 
number of I/O requests is � 

(
p2

)
. We have seen that it is possible 

for many practical shuffle data sizes to find a p value that leads 
to sufficiently large intermediate files 

(
D
p2

)
that can: 1. Effectively 

exploit the high bandwidth of object storage, and 2. Maintain the 
quadratic pressure on throughput at bay. Contrary to prevailing 
wisdom, we have found that this simple form of shuffling is not 
a bottleneck for many jobs, in a similar way as the network has 
ended up being not so important in “serverful” data analytics [26].

3.2. Two-level shuffle

As just discussed above, for larger shuffles it is vital to reduce 
the request complexity, so that the throughput requirements do 
not lead to degraded performance. We observe that even if a sin-
gle file with all intermediate partitions is produced per “source” 
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Fig. 7. Two-level shuffle communication pattern.

Algorithm 1 Two-level shuffle algorithm.
Input: x: int (worker ID); p: int (degree of parallelism);
Dx: InputSplit (x’s input data partition)

Require: p ∈N0 s.t. (√p)2 = p; 0 ≤ x < p.
〈xh, xv 〉 ← F (x) 	 (x’s projection to the logical grid)
Hx ← {y|0 ≤ y < p : yh = xh} 	 (x’s horizontal group)
Vx ← {y|0 ≤ y < p : yv = xv } 	 (x’s vertical group)
tmp ← DirectGroupShuffle(x, Hx, Dx)

result ← DirectGroupShuffle(x, Vx, tmp)

worker (e.g., as it happens in Spark [44]2), the total number of 
concurrent read or fetch requests still amounts to p2, bottleneck-
ing the system for large p values [45].

To circumvent this bottleneck, [23] presented a multi-level 
shuffle operator that needs O( k

√
p) requests to exchange all the 

data among the p workers, where k refers to the number of levels. 
This approach, well-known in the HPC literature, consists of logi-
cally structuring the serverless workers into a k-dimensional mesh 
with side length k

√
p, and use an all-to-all collective operator k

times, once for each dimension to realize the full exchange of data 
among the workers.

The fundamental difference with a parallel architecture is that 
the all-to-all operator cannot use direct communication between 
the group of workers in each dimension. For this reason, the all-
to-all operator is simply replaced in [23] by the direct shuffle 
method in all the k dimensions. As a result, the number of requests 
will increase sub-quadratically with the dimension size (essen-
tially, p k

√
p), rather than quadratically with the number of workers.

In this work, we will employ only the two level version, as 
it suffices for our purposes here to examine “when” the multi-
level approach is actually effective. Then, this algorithm can be 
simply implemented by projecting the set of workers onto a log-
ical two-dimensional mesh, and let each worker firstly perform 
a horizontal exchange followed by a final vertical shuffle. For a √

p × √
p lattice, the projection function is as simple as F (x) :=

〈xh, xv〉 := 〈
x mod

√
p, x/

√
p
〉
. Simply put, F (x) projects a worker’s 

ID x, 0 ≤ x < p, onto coordinates 〈xh, xv〉, where “mod” and / are 
the modulo and integer division, respectively. We refer to Direct-

GroupShuffle(·) as the invocation of the direct shuffle method for 
the group of workers in each of the two dimensions with respect 
to a worker’s ID (see Fig. 7). Algorithm 1 describes the two-level 
approach under this notation.

Although efficient to reduce throughput requirements, the two-
level shuffle method is not always the best option due to the two 
full scans of the input data (see §4.3 for details). Our model, how-

2 In Spark, at the end of any map-side shuffle task, a pair of files is produced, one 
for the shuffle data and other to index shuffle blocks in the former.
6

Fig. 8. Architecture overview of Seer. Example of a data shuffle.

Table 1
Comparison of the shuffle methods. D refers to the shuffle size, p the num-
ber of workers.

Method # of reqs. request size # of scans shuffle time

Direct 2p2 �
(

D
p2

)
1 Eq. (1)

Two-level 4p
√

p �
(

D
p
√

p

)
2 Eq. (2)

ever, allows us to anticipate “when” this method will be the most 
efficient to minimize the shuffle time, falling back to direct shuf-
fling in the event of “augured” insufficient performance. Table 1
and Table 2 compare both methods.

4. Design

4.1. Architecture overview

For Seer, one of our main design goals is to use only exist-
ing serverless components. Fig. 8 depicts its high-level architecture. 
The Seer client runs on the local development machine of the data 
scientist. It has been built upon PyWren-IBM [31]. But it reworks 
part of its base code to introduce additional modules, such as a 
stage scheduler and our smart shuffle method selector. More pre-
cisely, PyWren has been leveraged to invoke a (potentially large) 
number of serverless workers, who execute the analytics job in a 
data-parallel manner. Fig. 8 shows an example of a data shuffle 
operation. During a data shuffle, workers communicate exclusively 
through remote object storage (e.g., IBM COS). We recall that a data 
shuffle operation involves a pair of stages: the current stage where 
each worker (or “mapper”) performs a shuffle write at the end, and 
the subsequent stage, where each worker (or “reducer”) reads the 
needed intermediate partitions through a shuffle read operation. 
For both shuffle writes and reads, Seer borrows the asyncio li-
brary [7] to achieve high concurrency for I/O-heavy tasks.

The shuffle selector module is responsible for choosing the opti-
mal shuffle implementation and level of parallelism per stage. This 
selection is made at runtime from only the total volume of data 
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Table 2
Comparative analysis of both shuffle algorithms for different configurations of workers and data sizes. The check marks identify the 
dominant factors: throughput (abbreviated “Tput.”) and bandwidth (abbreviated “BW”) that limit the performance of each algorithm 
according to equations (1) and (2). The shadowed cells show the configurations where direct exchange is better (Speedup < 1).

Data 
size 
(GB)

# of 
workers

Dominant Factors Speedup
(

Tdirect
T2level

)
Direct 2-level
write 
Tput.

write 
BW

read 
Tput.

read 
BW

write 
Tput.

write 
BW

read 
Tput.

read 
BW

Predicted Empirical

1 9 � � � � 0.47 0.53
16 49 � � � � 0.63 0.65
32 196 � � � � 1.32 1.24
40 289 � � � � 1.84 1.74
to be shuffled. When a data shuffle operation is found, the Seer

client calls the selector module to dynamically determine the right 
shuffle implementation (see §4.5 for further details).

Job execution is managed by a separate scheduler module. 
Based on an intuitive annotation API, the scheduler extracts the 
dependencies between stages, parses data types and disseminates 
execution parameters. Stage execution is performed in topological 
order based on the dependency tree. That is, independent stages 
are executed in parallel, while dependent stages are run serially 
but in a pipelined fashion (see §5 for details).

4.2. Job execution

After the introduction of the main components of the architec-
ture, we are now in position to portray a typical execution of an 
analytics job with Seer. It involves the following five steps: ❶ The 
user starts up the Seer client. Once up and running, the sched-
uler module in the Seer client elicits the dependencies between 
stages and parses the data types from the DAG representation of 
the job; ❷ Then, the scheduler starts to execute the stages in topo-
logical order based upon the dependency tree. As in other analytics 
frameworks such as Spark [44], Seer assumes that each stage con-
cludes with an operator that requires a data shuffle (e.g., a sort). 
The scheduler uses these breakpoints to determine the appropriate 
level of parallelism for optimally shuffling the intermediate parti-
tions. ❸ Concretely, this is achieved by calling the shuffle selector 
module when the breakpoint at the end of each stage is found. ❹ 
With the optimal level of parallelism, the scheduler leverages the 
underlying PyWren-IBM API to invoke the corresponding number 
of serverless workers. ❺ Finally, the exchange of the intermediate 
data takes place according to the chosen shuffle algorithm by the 
shuffle selector module.

4.3. Performance models

As argued in the literature, tuning shuffle in frameworks such 
as Spark is hard to achieve without tedious experimentation [45,
39] for several reasons. To begin with, Spark materializes the in-
termediate shuffle data on disks for better fault tolerance, and it 
is thus exposed to HDD efficiency issues, e.g., due to small ran-
dom disk reads. This makes the tuning of shuffle in Spark to have 
to consider many factors, such as the existing trade off between 
shuffle and disk spilling I/O efficiency [45]. Fortunately, object stor-
age performance is much easier to characterize as seen in §2.2. For 
a fixed worker memory size, there exist representative bandwidth 
limits on the one hand, while I/O throughput can be approximated 
pretty well with a few measurements on the other. We want to 
point out here that our goal with Seer is not to estimate exact 
shuffle times, but to provide an online method to choose the most 
adequate shuffle algorithm along with its optimal number of work-
ers. Our evaluation results verify that Seer attains by far this goal.

For our models, we assume that the volume of data to be shuf-
fled through serverless storage is known and amounts to D bytes. 
Details of how D can be estimated are given in §5.
7

(Performance factors). As demonstrated in §2.2, there are two 
factors that limit the performance of object storage systems: the
per-worker bandwidth and throughput. As observed in §2.2 and 
prior measurements [29], per-worker bandwidth is typically asym-
metric, for we denote the maximum available per-worker read and 
write bandwidth as br and bw , resp. We also assume that there 
is a limit on the number of read and write operations/sec. Re-
call that these limits are determined by multiple factors, including 
the 1. Blob size, and 2. Degree of parallelism, for a given worker 
memory size. This leads to throughput limits that are non-linear 
functions of these factors, for we represent these limits as qr(s, p)

and qw(s, p), respectively, where s refers to the blob size in bytes.
For simplicity, we assume that the per-worker read and write 

bandwidth limits, namely br and bw , respectively, are valid as the 
number of workers or parallelism increases. Although this is not 
always the case, we empirically found that I/O throughput is the 
dominating bottleneck for large parallelism. Put differently, we as-
sume that the available per-worker bandwidth stays constant for 
the parallelism level where throughput is not the major bottleneck. 
This is clearly seen in Fig. 3 that shows little or no degradation in 
the bandwidth for up to 400 workers.

(Direct shuffle). In the direct approach, each worker first writes 
its input split of size D

p bytes to object storage by issuing p con-

current requests of average size D
p2 . Given that we must perform 

p2 write requests with an aggregated throughput of qw

(
D
p2 , p

)
, 

the time to complete these requests can thus be approximated by 
p2

qw
(

D/p2,p
) when throughput is the major system bottleneck. Anal-

ogously, assuming that the per-worker write bandwidth limit bw is 
the main bottleneck, the time to complete these requests becomes 

D
bw ×p . Finally, considering both potential bottlenecks, the time it 
takes the write stage of direct shuffling is:

T w = max

{
D

bw × p
,

p2

qw
(

D/p2, p
)}

.

By evident dual reasoning, it can be easily seen that the read 
stage takes Tr = max

{
D

br×p ,
p2

qr
(

D/p2,p
) }. Thus, the shuffle time of 

the direct method is given by:

Tdirect = T w + Tr = max

⎧⎨⎩ D

bw × p
,

p2

qw

(
D
p2 , p

)
⎫⎬⎭+

max

⎧⎨⎩ D

br × p
,

p2

qr

(
D
p2 , p

)
⎫⎬⎭ . (1)

Typically, for a small degree of parallelism, direct shuffle is limited 
by the per-worker bandwidth. But as the amount of data to shuffle 
grows, so as the number of workers needed to store the input data 
due to the memory limits of functions (e.g., up to 2 GB in IBM 
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Cloud Functions), throughput ends up dominating the shuffle time 
method as stated in Eq. (1).

(Two-level shuffle). In essence, the two-level approach can be in-
terpreted as an execution of direct shuffle two times in a row, 
where each worker first communicates with the subset of work-
ers in its horizontal group, and then, within the members of its 
vertical group. The practical interest of this approach is that the 
total number of requests in each phase increases only quadrati-
cally with the horizontal and vertical group sizes and not with the 
number of workers. For optimality, the two-level shuffle method 
assumes symmetric group sizes, that is, both horizontal and ver-
tical groups have a size of 

√
p workers. So, to derive the optimal 

shuffle time for this method, one mostly needs to properly plug 
in the factor 

√
p in Eq. (1). Observe that this method consists of 

four stages: a write stage followed by a read stage to accomplish 
horizontal group communication, plus another write-read stage for 
the vertical data exchanges. Altogether, this leads to a total shuffle 
time of:

T2level = Thorizontal + T vertical = (T w + Tr) + (T w + Tr)

= 2T w + 2Tr = 2 × max

⎧⎨⎩ D

bw × p
,

p
√

p

qw

(
D

p
√

p , p
)

⎫⎬⎭+

2 × max

⎧⎨⎩ D

br × p
,

p
√

p

qr

(
D

p
√

p , p
)

⎫⎬⎭ . (2)

Two important subtleties arise from Eq. (2) and this method. 
Firstly, it reads and writes the input data two times, instead of just 
one. That is, a full transfer of the input data takes place in each of 
the two levels, which may increase the running time, though each 
level performs better than direct shuffle thanks to the reduction 
in the number of I/O requests. Second, such a reduction comes at 
the expense of an increased request size. More concretely, this method 
performs exactly p

√
p requests in each of its four stages, which 

means a fall-off factor of 
√

p compared to direct shuffling. This re-
duction factor is, however, transfered to the size of requests, which 
increases by a factor of 

√
p. While the average request size for 

direct shuffling is of sdirect = D
p2 bytes, it grows to s2level = D

p
√

p

for the two-level method. Simply put, the two-level algorithm de-
creases the number of requests but makes them heavier. Since I/O 
throughput degrades as the object size increases, the time of each 
of the two levels may not necessarily be a 50% shorter than the 
overall time taken by direct shuffling. Jointly, these subtleties blur 
the line between direct shuffle and two-level shuffle, and as we 
shall see in §6.

4.4. Comparative analysis

In Table 1, we report a summary of the differences between 
both shuffle algorithms. Succinctly, the major issue of direct shuffle 
is the steep growth in the number of requests, which is quadratic 
on the size of the worker pool. Nevertheless, it only requires a full 
scan of the dataset compared to the two-level algorithm, which 
reads and writes the input data two times. Recall that the two-
level algorithm needs to horizontally exchange a full copy of the 
input dataset. And once this is materialized, it proceeds with a 
vertical exchange of the partially redistributed data across the 

√
p

horizontal groups to create the final partitions. We see that the √
p fall-off factor in the total number of requests will only be 

useful when the two scans on the input data do not become the 
dominant factor. To put it bluntly, while each of the two exchange 
phases in the two-level approach, namely horizontal and vertical, 
8

can be individually faster than the single-phase direct shuffle, their 
sum can take longer, blurring the boundaries between both algo-
rithms.

To shed light on this matter, we have used our performance 
models to determine the most effective shuffle algorithm for dif-
ferent configurations, and pinpoint what factor is limiting the per-
formance of each shuffle algorithm. Furthermore, we have lever-
aged each configuration and executed an equivalent real experi-
ment to validate our analytical models. Concretely, we have issued 
a groupBy query on four metabolomics datasets from METAS-
PACE [27], and recorded the empirical speedup of the two-level 
method compared to direct shuffle: Speedup :=

(
Tdirect
T2level

)
. Accord-

ingly, speedup values below unity mean that the direct approach 
is better, while speedup values greater than one mean that the 
two-level approach is more efficient. Performance results are given 
in Table 2.

The first interesting insight is that our performance models es-
timate general trends pretty well. For all the configurations, the 
predicted speedup values are almost identical to the empirical 
ones with a margin of error below 15% in all cases. This opens the 
door to the exciting avenue of leveraging our performance models 
to automatically identify the most performant combo of shuffle al-
gorithm and parallelism (see §4.5). The difference in time between 
the estimated and real values can be attributed to the fact that 
we do not account for certain overheads such as the variance of 
IBM COS, which is a globally shared service; serialization latency; 
data formats; data skewness, etc. In spite of this, we believe that 
our models are sufficiently accurate to make informed scheduling 
decisions.

The other key observations are the following:

• For a few tens of workers, or equivalently stated, when I/O 
throughput is not the limiting factor, direct exchange is faster 
than the two-level approach. For the dataset of 16 GB and 
49 workers, direct shuffling spent 33.24 ± 0.71 seconds ver-
sus the 49.01 ± 0.64 spent by the two-level method. This is 
mostly due to the fact that two-level shuffling transfers the 
dataset two times. Indeed, the dominant factors in the two-
level method confirm this fact. As listed in Table 2, the read 
and write bandwidth were the two factors that bottlenecked 
the two-level method in this case. Interestingly, each individ-
ual phase in two-level shuffling took less than direct shuffle, 
i.e., around 21 seconds per phase. But altogether they took 
much more time.

• Related to the above observation, if we cross-compare the per-
formance of both algorithms for the 16 GB dataset against 
the smallest one of 1 GB, another interesting insight ensues. 
Specifically, the returns of the two-level approach over the di-
rect shuffling are sublinear both in the number of workers 
and the dataset size. Despite increasing the data size from 1
GB to 16 GB, the �Speedup is only of 0.12. The reason for 
this result is that the required aggregate bandwidth per phase 
is the same as in the direct method, while it is the request 
size that increases. In the direct method, the average request 
size is of O

(
D
p2

)
bytes, growing to O

(
D

p
√

p

)
bytes for the 

two-level approach. Hence, the penalty introduced by a higher 
number of write and read requests in the direct algorithm (i.e., 
492 = 2, 409 write and read requests) is to a certain extent 
compensated by the two scans of the two-level approach.

• Only when the scale grows to hundreds of workers, the two-
level method increasingly becomes better, and clearly holds an 
edge over the direct approach for 289 workers. It is worth 
to note here that for 289 workers the limiting factor of di-
rect shuffle is throughput, whereas the limiting factor of the 
two-level approach becomes the available bandwidth between 



G.T. Eizaguirre and M. Sánchez-Artigas Journal of Parallel and Distributed Computing 183 (2024) 104763
the object store and the workers, as pointed out by the check 
marks in Table 2. Since I/O bandwith is not infinite, sooner or 
later, the per-worker bandwidth will not be longer constant, 
thereby preventing the two-level shuffle from scaling as ex-
pected due to the two full scans of the input data. As shown 
in Fig. 3, the per-worker bandwidth starts to level-off and de-
viate from the linear trend around 400 workers in IBM COS. 
Indeed, the maximum speedup we recorded was of 4.1X in 
our experiments.

(Practical takeaway). To wrap up, there is no one-size-fits-all so-
lution to shuffle data through remote object storage, for which 
prediction tools, e.g., based on our performance models, are “de 
rigueur” to optimize latency. This is vital in workflows comprised 
of multiple stages, where each stage may have a specific amount 
of data to exchange, so that the appropriate parallelism along with 
the correct shuffle strategy can make a big difference.

4.5. Shuffle method selection

One important benefit of our models is that they can be em-
ployed, for instance, as a basis to select the optimal shuffle algo-
rithm for each stage of a DAG execution plan. Remember that in 
standard data analytics tools (e.g., Spark), the intermediate data 
between stages is transferred via the shuffle operation, so the ap-
propriate choice of the shuffle method can trigger significant sav-
ings. The “beauty” of our models is that they only require the 
size of the data to shuffle at the end of each stage as per-job 
information. Thus, Seer permits to employ late binding to delay 
the decision of which shuffle algorithm to apply until a shuffle is 
scheduled at the end of the stage. These are good news for several 
reasons: 1. Practicality, since there is no need to profile the DAG 
to determine the shuffle data size for every stage; only the storage 
parameters of the remote storage service are necessary; and 2. Op-
timality, as it makes possible to efficiently reach a global optimum 
making local selections at each stage without prior user informa-
tion at job submission time.

Note that for a specific shuffle data size D , the search space of 
parameter p in both Eq. (1) and Eq. (2) is discrete and bounded. 
More specifically, the search space reduces to the interval p :=⌈ D

w

⌉
, 
⌈ D

w

⌉ + 1, . . . , P , where w denotes the worker memory size, 
and P is the maximum concurrency limit (e.g., of 1k activations 
for IBM Cloud Functions). This ensures that the global minimum 
can be found after just a few evaluations of Eq. (1) and Eq. (2). 
The search space is so constrained (at most a few thousand eval-
uations) that locating the global minimum, even when using an 
inefficient linear search mechanism, has negligible impact on sys-
tem performance in comparison to the much longer shuffle time.

Algorithm 2 reports the pseudocode of our selection method 
for minimizing the shuffle time in a single stage. The algorithm is 
self-explanatory. First off, for each shuffle method j, the optimal 
degree of parallelism p̂ j and shuffle time T̂ j is found by searching 
over the discrete space R :=

{⌈
Di
w

⌉
,
⌈

Di
w

⌉
+ 1, . . . ,P

}
. Next, the 

algorithm computes the speedup of the two-level method com-

pared to direct shuffle: ϕ = T̂direct
T̂2level

, where T̂direct and T̂2level are 
the estimated minimum shuffle times of the direct and two-level 
methods, resp. Finally, the two-level method is used for ϕ > 1, or 
Algorithm 2 falls back to the direct shuffling otherwise.

Interestingly, if for whatever reason, the parallelism is fixed for 
a given stage, or throughout the entire DAG, choosing the optimal 
shuffle algorithm takes only O(1) time per stage, instead of O(P). 
This occurs, for instance, in query processing engines such as Spark 
SQL [3], which employs a default number of 200 partitions for ag-
gregations and joins. In this case, Eq. (1) and Eq. (2) are evaluated 
9

Algorithm 2 Shuffle method selection algorithm.
Input: Di : int (shuffle data volume at stage i of the DAG); P : int (maximum al-

lowed
concurrency); w: int (worker memory size);
S := 〈br ,bw ,qr ,qw 〉: tuple (storage parameters)

Begin:

R ←
{⌈

Di
w

⌉
,
⌈

Di
w

⌉
+ 1, . . . ,P

}
	 (p’s search range)〈̂

Tdirect , p̂direct
〉 ← ExhaustiveSearch(R, Eq. (1), S)〈̂

T2level, p̂2level
〉 ← ExhaustiveSearch(R, Eq. (2), S)

Calculate ϕ = T̂direct
T̂2level

	 (Normalized speedup)

if ϕ > 1 then
result ← 〈“Two-Level”, p̂2level〉

else
result ← 〈“Direct”, p̂direct 〉

end if

with the specific D and p values (e.g., p = 200 in Spark SQL), and 
the algorithm with the smallest shuffle time is chosen.

5. Implementation

The Seer prototype has been built on top of PyWren-IBM [31],3

an extension of PyWren [16] to run Python-based analytics jobs on 
top of IBM Cloud Functions. While PyWren allows users to imple-
ment custom functions to execute shuffles with other cloud ser-
vices, it lacks an actual shuffle operator, as noted by their authors 
in [29]. Likewise, PyWren-IBM [31] does not support shuffling, but 
provides a built-in mapreduce operator where the output from all 
the parallel map function instances is collected onto a single re-
duce function. So, Seer augments PyWren with support for data 
shuffles. The implementation includes the two shuffle algorithms, 
the models to select the optimal shuffle approach, and the set of 
operators (e.g., sort and groupBy) needed to implement the dif-
ferent benchmarks and analytics applications. The source code and 
artifacts are available at: https://github .com /GEizaguirre /seercloud.

(Job scheduling). PyWren is not equipped with a scheduler. In 
other words, it only supports the parallel execution of plain Python 
functions. Therefore, end users are given the responsibility to man-
ually specify the job execution plan by writing code. Since the 
objective of Seer is not to design a fully-fledged scheduler (see, for 
instance, Caerus [46] for that purpose), we provide a simple anno-
tation API that users can employ to specify the stage information
Seer expects. The following is an example of a Seer job:

from seercloud.scheduler import Job
from seercloud.operation import Scan, Exchange, Sort

job = Job(num_stages = 2)
job.add(stage = 0, op = Scan , file = "Terasort_1GB.csv",

Bucket = "seer-datasets")
job.add(stage = 0, op = Exchange)
job.add(stage = 1, op = Sort, key = "c0")
job.dependency( parent = 0, child = 1)
job.run()

(Shuffle execution plan). In terms of execution, we map the log-
ical execution plan (i.e., the shuffle write and read tasks) of each 
shuffle method into a physical plan of two stages. For the two-
level shuffle method, this means that the first three logical phases 
(i.e., the write and read tasks of the first level, and the write tasks 
of the second level, in this specific order) are mapped to the first 
physical stage, deferring the pending shuffle read phase to the sec-
ond stage. This design facilitates their potential integration of tools 
like WholeStageCodegen [24] into Seer, which fuses operators 
as much as possible into a single task to maximize performance. 
The generated code in these tools is typically composed of blocks 

3 now recast as Lithops [32].

https://github.com/GEizaguirre/seercloud
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separated by pipeline breakers, where each block corresponds ex-
actly to a stage in our annotation model.

For fast intermediate data (de)serialization, we use PyArrow,4

a Python extension library for the C++ Arrow framework. We also 
use Snappy compression to reduce data size. Due to the absence of 
intra-level parallelism within workers [23] and the infamous global 
interpreter lock (GIL), we leverage the Python’s asyncio module 
[7] to handle concurrent requests to remote storage.

Seer makes use of a simple algorithm to approximate the total 
shuffle data size D . Specifically, each mapper writes the size of its 
deserialized data partition to object storage, and the PyWren client 
retrieves and adds up all these values to compute the total shuffle 
data size D . Because the size of deserialized data is larger than the 
data in serialized form (recall that Seer utilizes Apache Arrow se-
rialization), this approach overestimates the real data size, which 
may affect the accuracy of Seer. In our experiments, however, we 
did not appreciate a loss of prediction accuracy due to the small 
blowup factor across all workloads. In fact, the highest blowup fac-
tor showed up for the 100 GB TeraSort workload (§6), where the 
serialized and compressed shuffle write size was 79.5% lower than 
the data size in memory.

(Operators). Internally, we have used Pandas5 to implement the 
operators (e.g., groupBy). In some cases, we modify Pandas in-
ternal implementation to improve performance. To wit, when the 
sorting key is smaller than the whole record, we manage the keys 
and records in a separate way as 〈key, record-pointer〉 tuples. We 
then sort only such tuples, thus better exploiting cache locality. We 
employ Pandas’ views to avoid unneeded memory copies whenever 
possible.

(Stage identification). To support TPC-DS [28] queries in Seer, we 
have used the new output of the explain command available 
in Apache Spark 3. In particular, we have used the new mode 
called formatted, which returns the formatted physical plan of 
any query. The output not only includes the “naked” tree of the 
operators with a number in parenthesis that indicates their exe-
cution order, but the id of the codegen stage of each operator. 
With this knowledge, it is easy to: 1. Identify the stages and the 
tasks within a stage; and 2. Specify them using our annotation 
API. Stages are separated by Exchange operators (i.e., shuffle op-
erations), while the tasks within a stage share the same codegen 
id.

5.1. Extensions

(Straggler mitigation). Similarly to other recent works [29,46], we 
have observed unpredictable performance variations in our job ex-
ecutions for large parallelism due to sudden slow access to object 
storage from some workers. To handle unforeseen variability, we 
have implemented a “lightweight” version of Late [43] that ex-
ploits speculative execution to eliminate network stragglers. We 
adopted Late, since FaaS platforms permit the quick launching of 
speculative replicas of the slowest workers without effort. In Seer, 
we speculate a percentage (by default, 10%) of the tasks.

(Pipelining). Seer supports the eager scheduling of reduce tasks 
in the second physical stage. The lazy approach simply starts up a 
reduce task only when all the map tasks have terminated, while 
the eager approach starts launching reduce tasks after 25% (de-
fault) of the map workers have finished. If the concurrency limit 
of 1, 000 concurrent invocations is hit, the second-stage workers 
are gradually spawned as soon as there are free slots. By default,

4 https://arrow.apache .org /docs /python /index .html.
5 https://pandas .pydata .org/.
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Seer employs eager scheduling. But, it also supports the lazy ap-
proach, because each type of scheduling optimizes different key 
performance indicators. On the one hand, the lazy approach is 
cost-efficient [46]: since reduce tasks waste no time waiting for 
upstream map tasks to finalize, individual worker execution is 
minimized, and hence, the cost. On the other hand, the eager ap-
proach enables pipelining of the first and second physical stages, 
which minimizes the shuffle time, though at a higher cost.

6. Evaluation

In this section, we describe our evaluation plan. We first com-
pare both shuffle methods and gauge the accuracy of our models 
(§6.1). Next, we assess our dynamic selection method using TPC-
DS [28] (§6.2). To conclude, we evaluate Seer using the TeraSort 
benchmark (§6.3).

(Setup). Unless otherwise stated, the setup will be as follows. For 
the serverless workers, we use functions of 2 GB of RAM (i.e., 1
vCPU) and IBM COS for storage, all from the same region (us-
east). We warm up the functions by default to alleviate the im-
pact of the stragglers in our tests.

For our comparisons against Spark, we also use IBM Cloud in 
the us-east region and Apache Spark 3.2.0 (Oct 13, 2021). We 
create two clusters of different sizes. A larger cluster of 10 work-
ers nodes for Terasort, and a smaller cluster of 4 nodes for TPC-
DS. Worker nodes are instances of type cx2-16x32 (16 vCPUs, 32
GB RAM). In both clusters, we set up a bx2-2x4 instance (2 vC-
PUs, 4 GB RAM) to operate as master node. Network bandwidth 
(measured using Linux iperf6) was of 16.2 Gbit/s between worker 
nodes, and of 3.3 Gbit/s between the master and worker nodes. We 
deployed HDFS (Hadoop 3.3.1; replication level 1) in both clusters 
and used it to store the different datasets. We configured Spark to 
launch executors with 8 GB of RAM and 4 cores per executor. This 
gives us 2 GB of RAM per core on average, leading to an equivalent 
configuration with that of cloud functions. We enabled the Spark 
External Shuffle Service (ESS) for better fault tolerance.

For serverless Spark [13], Google Cloud allocates executors with 
the following configuration by default: 4 cores and 13, 626 MB of 
RAM, and leverages Spark’s dynamic resource allocation mecha-
nism to auto-scale them, starting at least from a minimum pool 
of two executors.

6.1. Direct or two-level shuffle?

Yet, one of the lingering questions in this work boils down to 
show that no shuffle implementation holds an edge over the other 
in all cases. We prove this in this section.

(Strong scaling). Strong scalability quantifies how well a shuffle 
method scales with increasing parallelism for a fixed workload. For 
this test, we use two real datasets from METASPACE [27] of 5.1 GBs 
(CT26_Xenograft.csv) and 19.7 GBs (X089-Mousebrain_842x603.

csv), resp. We run a simple job composed of a groupBy operation. 
to group the x-coordinate of the associated mass spectrometry 
(MS) image [37].

Results are displayed in Fig. 9a for the Xenograft dataset and in 
Fig. 9b for the MouseBrain dataset. Non-surprisingly, the two-level 
method scales better with growing parallelism. However, such an 
observation overlooks the important subtlety that direct shuffle is 
on par with the two-level method. More concretely, direct shuf-
fle delivers a comparative minimum latency to that of two-level 
shuffle, but with less amount of parallelism (e.g., about 3.6X less 
number of workers for MouseBrain).

6 iPerf, https://iperf .fr/.

https://arrow.apache.org/docs/python/index.html
https://pandas.pydata.org/
https://iperf.fr/
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Fig. 9. Strong and weak scaling of direct and two-level shuffle for two omics datasets.
Table 3
Start-up time for optimal parallelism in MouseBrain (19.7 GB).

Algorithm Optimal
# of workers

Shuffle time Start-up time

Direct 121 21.78 s 7.30 s
Two-level 441 21.44 s 19.96 s

A smaller parallelism is highly desirable because it is less sen-
sitive to stragglers, cold starts, etc. To better understand this, we 
report in Table 3 the start-up time for the optimal parallelism, or 
the time spent on starting up all the workers that minimizes the 
job completion time in the MouseBrain dataset. The table shows 
that the start-up time is much up higher for the two-level method, 
yet rendering equivalent shuffle time. So, direct shuffle is prefer-
able in practice unless a higher degree of parallelism is needed for 
some reason.

(Weak scaling). We also measure the ability of each shuffle 
method to scale while keeping the problem size per worker con-
stant. Cloud functions are hugely limited by memory (up to 2 GB 
for IBM Cloud Functions). It is thus relevant for many end users, 
e.g., those with restricted budget, to find what dataset sizes qualify 
as “shuffable” under the same resource usage per worker. For shuf-
fle methods, this means observing what happens when the dataset 
size (D) and parallelism (p) increase in proportion. To investigate 
this, we kept the size of the input partitions fixed at approx. 25
MB, and increased parallelism so that D = (0.0244) × p gigabytes. 
Data for the input partitions came from the Mousebrain dataset.

Fig. 9c illustrates the weak scaling of both algorithms. The most 
relevant observation from this figure is that none of the two shuf-
fle algorithms weakly scale. On one hand, direct shuffle is hindered 
by insufficient throughput. This occurs because if the amount of 
data processed per worker stays the same, the number of inter-
mediate files grows quadratically as the dataset size increases. On 
the other hand, the two-level approach pays the price of passing 
two times the entire dataset. The O(

√
p) reduction in the num-

ber of requests is unable to compensate the linear increase in the 
dataset size. This feature that is key to strongly scale renders use-
less to weakly scale. Yet this reinforces our expectations that no 
algorithm prevails under all scenarios.

(Accuracy). To assess the accuracy, all the subplots in Fig. 10 in-
clude the speedup (ϕ) curve of the two-level approach relative to 
direct shuffle as calculated by Algorithm 2. As shown in all sub-
plots, our performance model is accurate, and characterizes pretty 
well the regions where one shuffle algorithm is better than the 
other. Some of the subfigures present a small underestimation of 
the true break-even point, with an average error of only 5.91%. 
This error is caused by overheads not captured by our model such 
as the variance of IBM COS, which is a globally shared service, or 
11
the effect of serialization on the estimation of the shuffle data size 
(§5).

6.2. TPC-DS

To confirm that Seer chooses the optimal algorithm for each 
stage of a real application DAG, we run Query 1 (Q1) from the TPC-
DS benchmark [28]. This benchmark has a set of standard decision 
support queries typically used by retail product suppliers. Query 1
is very convenient, because its physical plan has a complex DAG 
comprising multiple stages that process a variable amount of data, 
which allow us to put under test the correctness of our shuffle 
manager. We evaluate Q1 at scale factors (SF) 1k and 5k, which 
represents a total input volume of 1 TB and 5 TB of data for various 
tables, respectively. For Q1, however, this amounts to 35 GB and 
175 GB of input data in practice.

As detailed in §5, we extract the physical plan for query Q1
from Spark SQL, code it into Seer using our stage annotation API 
and execute it. This has the desirable side effect of enabling a
one-to-one comparison between Seer and Spark, including the 
brand-new serverless Spark [13] service hosted in Google Cloud. In 
short, serverless Spark, which became generally available in early 
2022, allows users to run Spark jobs without having to worry 
about right-sizing their cluster of virtual machines. In this sense, 
we wanted to see whether serverless Spark auto-scales well, and 
compared it to Seer (+ PyWren), a FaaS-based serverless solution.

In addition to Spark, we also compared Seer to BigQuery [9], 
the Query-as-a-Service (QaaS) system from Google Cloud. All the 
tables per scale factor were exported to Google Cloud Storage (us-
east-1 region). Tables were loaded to BigQuery as not-partitioned 
external tables in CSV format. Table schemas were specified ac-
cording to the official TPC-DS specs.

As our interest is only in shuffling through remote storage, we 
found it more appropriate to report the shuffle time of two dis-
tinct operations, rather than the total query time. Since the late 
stages of Q1 process much less data compared to early stages, we 
chose one early and one late operations in the query plan to see 
whether our system dynamically readjusts the number of workers. 
Specifically, we grabbed the groupBy operation on the store_re-

turns fact table as an early operation. As a late operation, we chose 
one of the two sort operations from the final SortMergeJoin that 
implements the orderBy clause in Q1.

(Sanity Check). To spill clear water into the performance of Seer, 
we first conducted a sanity check to ascertain whether it cor-
rectly chooses the optimal algorithm as the degree of parallelism 
increases. To this end, we ran Q1 using three different configura-
tions: one using our dynamic selection method (labeled ‘Dynamic’ 
in Fig. 10a) against a version of Seer that always uses either the 
direct or two-level shuffle implementations (labeled ‘Direct’ or 
‘Two-level’ in Fig. 10a).
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Fig. 10. Results for TPC-DS Q1 workload for two scale factors 1k and 5k.
Results are illustrated as stacked bars. The upper bars report 
the shuffle time for the sort operator, whereas the lower bars do 
so for the heavier groupBy task. To aid interpretation, solid bars in-
dicate the use of direct shuffle, whereas dashed bars pinpoint the 
use of the two-level algorithm. As shown in Fig. 10a, our results 
demonstrate that our dynamic approach always infers the optimal 
combination of shuffle algorithms for Q1 in both scale factors. In 
cases where both algorithms need to be mixed, our smart shuffle 
manager is able to capitalize on the optimal choice and diminish 
the overall shuffle time by 33.64% (SF 5k; 64 workers). As contrar-
ily argued in [23], this figure proves that the two-level method is 
not always the best option.

(Spark). We compare Spark against Seer in two ways. On the one 
hand, we use our serverful deployment of Spark on IBM Cloud. 
On the other hand, we use the brand-new serverless Spark ser-
vice from Google Cloud. For the former, we sought for the number 
of cores in Spark that delivered a performance on par with Seer, 
as Seer is faster than Spark with the same number of vCPUs (see 
§6.3). We needed to provision a cluster of 4 Spark servers. In the 
latter case, the TPC-DS tables were fetched from Google Cloud 
Storage and imported as Spark SQL tables.

Results are provided in Fig. 10b. The numbers in brackets above 
the points indicate the amount of workers (or cores in Spark) that 
were allocated in the two shuffle operations. In terms of shuffle 
time, both Seer and Spark are the systems that exhibit the most 
constant latencies. While for Spark, this simply “ratifies” that the 
cluster had sufficient resources for both scale factors, this result 
verifies that Seer is able to use proportionally more workers as 
the data set grows. Actually, the Spark cluster was overprovisioned 
for the smaller scale factor. At SF 1k, Spark utilized only 36 vCPUs, 
half of the total compute power. Seer auto-adjusted the compute 
resources to the workload, achieving a similar performance to that 
of Spark with less resources for both scale factors (see Table 4). Al-
though functions are more expensive than VMs per unit of time,
12
Table 4
Resource allocation breakdown at SF 5k.

System Total # of workers Total memory (GB)

Spark 64 + 64 = 128 128 + 128 = 256
Seer 49 + 4 = 53 98 + 8 = 106

Seer was between 24% − 46% cheaper than Spark thanks to its 
more fine-grained allocation of compute resources.

In contrast to Seer, we discovered that serverless Spark does not 
scale up their resources as quickly as required to keep up with the 
current load. At SF 1k, it used only the two executors allocated by 
default, whereas for the largest scale factor, it strove to scale to 
four executors. Non-surprisingly then, Seer outperformed server-
less Spark by 5.6X, yet being 1.5X less expensive. We were only 
able to scale serverless Spark to 9 executors (36 cores) by request-
ing them from the start. Fig. 10c depicts the number of running
executors over time for the SF 5k, sampled every 30 seconds, as re-
turned by the Dataproc service. In addition to the active number 
of executors, we also plot the curve for the maximum number of 
required executors. This metric is determined by Spark according 
to the length of pending task queue. The figure clearly shows that 
the number of active executors does not match at all the comput-
ing requirements of the workload. We speculate that this behavior 
is to avoid overprovisioning. In the end, perhaps, serverless Spark 
has not been conceived for short-running jobs, where serverless 
solutions like Seer can have the biggest advantage.

(BigQuery). As in the previous experiments, we ran Q1 in Big-
Query. Since individual shuffle times are not available for this 
service, we only report in Fig. 10d the total query time. In terms 
of end-to-end execution time, BigQuery is somewhat faster than
Seer at SF 1k. At SF 5k, the running time increases in both sys-
tems, though sublinearly, indicating that both systems use more 
resources for the larger scale factor. This is one of the main ben-
efits of a shuffle manager such as Seer, where the number of 
workers can be automatically adjusted with the dataset size, en-
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Fig. 11. CDF of shuffle write time for a 100 GB TeraSort job. Numbers in parentheses indicate the # of workers.
suring sublinear query latencies. It must be noticed that, although 
the performance gap between both systems increases at SF 5k, it 
is difficult to tell why in a proprietary product such as BigQuery.

Further, Seer is significantly cheaper than BigQuery for both 
scale factors. The difference in both cases is about one order of 
magnitude. For instance, BigQuery is 19.8X more expensive that
Seer for the large scale factor. This yields two interesting insights. 
First off, while a FaaS-based system like Seer runs on infrastructure 
that is rented per unit of time, the cost model of a QaaS system 
like BigQuery is based on the size of the data being stored and 
queried, which should be proportional to the resources used by 
the overall workload. However, it seems that for queries like Q1, 
a pricing model based on the number of bytes processed can be 
more costly than a one based on resource usage. Second, by jointly 
taking latency and cost, FaaS-based solutions like Seer can be more 
cost-efficient than QaaS systems for certain queries.

6.3. TeraSort

Most of the existing serverless analytics systems [29,36,46]
make use of the TeraSort benchmark [42] to evaluate their per-
formance. We see this workload as a good framework to compare
Seer to state of the art. We sort 100 GB of data, since some of the 
systems (namely, Locus [29] and Caerus [46]) have not released 
their source code yet, but luckily, have performance numbers for 
that specific size in their respective articles. Further, we succeeded 
in executing the Terasort job in Primula [36], and ran it for server-
ful Spark for 100 and 160 cores, respectively.

To make a fairer comparison between serverful Spark and the 
serverless systems, we adjusted the number of input partitions 
to match the same number of cores in Spark, to avoid multiple 
rounds of map tasks. By default, Spark creates one input partition 
for each block of a file stored in HDFS. Since the default block size 
in HDF is of 128 MB, this would mean 800 map tasks, and between 
5 − 8 rounds of map tasks, which would be unfair. The same was 
done for the number of reduce tasks by adjusting the property
spark.sql.shuffle.partitions to the number of available cores.

In this case, we measured the job execution time to make a 
fair comparison with the rest of systems. This time includes start-
up time, the time to read the input data partitions from IBM COS 
by the map tasks and the time to write the output by the reduce

workers. We used various scales of parallelism to provide a broader 
picture of its performance. For Spark, we used HDFS to store the 
Terasort dataset, which gave Spark a certain advantage over the 
serverless systems due to the exploitation of data locality.

Table 5 lists the execution time of the various approaches. In all 
cases, Seer outperforms the existing alternatives, with the excep-
tion of Locus for only 9 seconds, which is surprising, because Locus 
has been “bolstered up” with in-memory Redis instances. Further, 
we achieve a speedup of 2.17X compared with Primula [36], uti-
lizing the exact same resource configuration for workers, i.e., 2
13
Table 5
Comparison of Seer to state-of-the-art data analytics systems for 100 GB 
TeraSort.

System # workers Storage layer Exec. time

Qubole [30] 400 AWS S3 597.7 s
Locus [29] dynamic AWS S3/Redis 80 s to 140 s
Primula [36] 200 IBM COS 192.3 s
Caerus [46] 100 Jiffy [19] (VMs) 105 s

Serveful Spark
100

HDFS
600.12 s

160 493.94 s

Seer

(+direct)
100

IBM COS
95.06 s

225 89.96 s
256 96.13 s

(+two-level)
100

IBM COS
115.59 s

225 100.91 s
256 96.67 s

GB RAM workers. Interestingly, these results also confirm that the 
two-level method is heavily penalized by bandwidth: since each 
round writes and reads 100 GB of data, per-round transfer times 
cancel out the reduction in the number of requests. We notice that 
no configuration favors two-level shuffle in Table 5.

Compared with Spark, Seer is significantly better, around 6.31X 
faster for a hundred workers. Taking the best setup in each sys-
tem, this gap reduces to 5.49X, which is equally high. Since this 
large difference in time can be caused by many reasons, such as 
the scheduling overhead [25], we decided to investigate the root 
cause. After careful inspection of the Spark log files, the cause for 
such an event turned up. Mostly, the large execution time in Spark 
was attributable to the high disk contention caused by the shuffle 
write operations. Recall that a shuffle write is ran independently 
for each map data partition that has to be shuffled, which may 
translate into concurrent random I/O writes to disk. Fig. 11 shows 
the CDF of the shuffle write times for both Seer and Spark. As 
seen in the figure, shuffle write times in Spark are close to two 
orders of magnitude higher than Seer, which accesses serverless 
object storage without noticeable contention, despite being disk-
based storage too and thus, equally fault-tolerant.

(Comparison to Caerus [46]). We find specially interesting our 
comparison to Caerus. Caerus adopted Jiffy [19] in-memory data 
store for storing intermediate data. Since Jiffy runs on large VM 
instances (i.e., six m4.16xlarge EC2 instances), it was unex-
pected that Seer renders similar performance to that of Caerus 
using globally shared object storage. Caerus studied the impact of 
scheduling approaches on performance, specifically the lazy and 
eager scheduling of reducers, and proposed a new one: Nimble. 
Table 6 reports the execution time of the 100 GB TeraSort for 
these scheduling algorithms. Eager scheduling achieves better per-
formance than lazy scheduling. Our most performant configuration 
in Seer is direct shuffle+ eager scheduling, achieving 1.13X lower 
job execution time compared to Nimble. This result shows that ob-
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Table 6
Comparison with Caerus for TeraSort.

Scheme Caerus Seer

+direct
Seer

+two-level
Lazy Eager Nimble Lazy Eager Lazy Eager

Exec. time 124 s 105 s 107 s 105.7 s 95.06 s 125.7 s 115.59 s

Table 7
Pricing from IBM Cloud (us-east, Sept. 2022) and AWS (us-east, Mar. 2023).

Cost Description IBM Cloud Value AWS Value

c f Function execution 1.7 × 10−5 ($/sec/GB) 1.7 × 10−5 ($/sec/GB)
ci Function invocation 0.0 ($/invocation) 0.2 × 10−6 ($/invocation)
cs Storage capacity usage 8.1 × 10−9 ($/sec/GB) 8.9 × 10−9 ($/sec/GB)
cr Read request 5 × 10−7 ($/op) 4 × 10−7 ($/op)
cw Write request 5 × 10−6 ($/op) 5 × 10−6 ($/op)
ject storage is a practical approach for many serverless analytics 
systems.

(Comparison to SONIC [22]). SONIC studied the best way to share 
intermediate data between functions: more concretely, by sharing 
files within a virtual machine (VM), copying them across VMs, or 
via object storage. We replicate one of their experiments to see 
if Seer is competitive against another smart management layer 
such as SONIC. To this end, we chose the MapReduce sort ex-
periment with the same input volume of 1.5 GB. We evaluated 
both exchange algorithms equipped with lazy and eager scheduling 
schemes, as we did with Caerus. As a metric, we used Perfor-
mance/$, defined as:

Perf/$ := 1

Execution time(s)
× 1

Cost($)
, (3)

so that any improvement in latency, cost, or both, caused by our 
operators was subsumed into a single unit. We also employed the 
raw job execution time as a secondary metric to dissociate the $-
cost normalization effect. For Perf/$, higher is better.

Importantly, we also ran Seer in the AWS cloud for this ex-
periment. Our conviction was to evaluate whether the improve-
ments introduced by Seer hold across different clouds. To make a 
fair comparison, we selected the memory allocation that had the 
equivalent of 1 vCPU in both cloud providers. As of today, this cor-
responds to 2 GB of memory for IBM Cloud Functions and 1, 769
MB for AWS Lambda.

Because the Perf/$ metric requires a precise measurement of 
cost (see Eq. (3)), we developed a cost model to capture all the 
potential cost factors of a data shuffle within a single region. In a 
nutshell, the cost of a data shuffle operation consists of two parts: 
one for the compute functions and another for object storage. The 
computing cost comprises only two quantities: the duration cost 
of functions (c f ) measured as $/sec/GB of memory, and the cost 
of function invocations (ci ) measured as $/1M invocations. Addi-
tional chargeable features such as provisioned concurrency or extra 
ephemeral storage capacity in AWS Lambda7 are not used by Seer.

The storage cost is in turn split into two classes of components: 
one for the storage capacity used as cs $/sec/GB, and another for 
the operational requests charged as $/op. In some hyper-scalers 
(e.g., IBM Cloud), this cost breaks down further depending on the 
type of operation. As a result, we distinguished between the cost 
of read requests (cr ) from that of write requests (cw ), all measured 
as $/op.

Assuming that job execution happens in the same region, so 
there are no extra costs due to outbound data transfers, the overall 
cost is given by:

7 https://aws .amazon .com /lambda /pricing/.
14
Costmethod := [
c f × Tmethod + ci

] × p︸ ︷︷ ︸
Compute cost

+ (cr + cw) × Rmethod

2
+ cs × Tmethod × Dmethod︸ ︷︷ ︸

Storage cost

,

(4)

where Tmethod denotes the total shuffle time, Rmethod denotes 
the total number of storage requests and Dmethod represents the 
amount of intermediate data written to object storage. We have 
used the subscript “method” in all terms to indicate that these 
quantities depend on the specific shuffle method (see Table 1 for 
further details). For example, remember that the amount of inter-
mediate data written to object storage is two times larger in the 
two-level method than in direct shuffle, i.e., D2level ≈ 2 × Ddirect .

We list the pricing information for IBM Cloud and AWS in Ta-
ble 7. As shown in the table, storage costs are at least one order of 
magnitude smaller than compute costs, and might be thus ignored 
in practice. This large difference in cost is because object stores 
have been traditionally designed to persist data in the long term, 
and not to operate as a substrate for ephemeral data, thereby of-
fering cheap prices to customers. On the contrary, functions have 
taken the opposite tack.

Fig. 12 shows the results for 30 workers as in SONIC. For two-
level shuffle, we scaled down the number of workers to the near-
est quadratic integer, namely 25. Additionally, Fig. 12 reports the 
optimal parallelism for each shuffle method derived from our per-
formance model for the IBM Cloud, which was of 35 workers for 
direct shuffle and of 64 for two-level shuffle. For AWS, we ran Seer

with the same set of configurations as for IBM in order to better 
cross-compare the improvements of our novel shuffle manager.

As seen in this figure, our implementation achieves up to 9.93X 
better Perf/$ than SONIC as a consequence of the higher gains in 
execution time, concretely up to 7.2X faster, delivered by direct 
shuffle with 35 workers (optimal configuration for the IBM Cloud). 
We note that the cost of functions is the dominating cost fac-
tor as listed in Table 7. Since such a cost is proportional to the 
shuffle time, the significant reduction in the duration of serverless 
functions accomplished by Seer also signified a steep decrease in 
the overall cost, leading to higher Perf/$ values. Also interestingly, 
the performance of Seer in AWS was equally good, which demon-
strates that the core ideas behind Seer are general and straightfor-
ward to implement in other cloud providers as well. Irrespective 
of the shuffle method, we observe that eager scheduling achieved 
the best latency and Perf/$ results, as it allowed pipelining shuffle 
writes with shuffle reads.

(Summary of insights). Our comparison with state of the art leads 
to three key insights. First, one insight that holds across all the 
above scenarios is that direct shuffle is often the optimal solution 

https://aws.amazon.com/lambda/pricing/
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Fig. 12. Comparison with SONIC for MapReduce Sort. Bars represent Perf/$ (left axis). Points report execution time (right axis).
for practical problems, despite its quadratic request complexity. 
Second, sharing ephemeral data via object storage can be more 
cost-optimal than do so directly between VMs (as in SONIC) or 
through a storage cluster of VMs (as in Caerus), which makes ob-
ject storage a solid substrate for serverless analytics. And finally, 
the core ideas behind Seer are general enough to get large im-
provements in other cloud providers, as shown in the SONIC ex-
periments for IBM Cloud and AWS.

7. Related work

We are not the first to identify the problem of data passing as 
a key challenge for serverless analytics jobs [15,10,11,14,17,20,1,
6,22]. Pocket [21] develops a multi-tier storage approach to im-
prove the performance of ephemeral data sharing. gg [11] has 
shown that serverless functions can communicate directly using 
NAT traversal techniques in the AWS Lambda service. However, 
this requires that both endpoint functions are up at the time of 
the data transfer, which complicates fault tolerance. Object storage 
enables time decoupling instead, which favors resource elasticity: 
new functions can be launched without disrupting the others. Also, 
it enables the persistence of intermediate state, as data analytics 
frameworks such as Spark perform with local disks, which gives 
comparable fault tolerance guarantees.

Only a few works have specifically studied the problem of how 
to efficiently shuffle data in serverless architectures [29,23,36]. Lo-
cus [29] designs a multi-round shuffle algorithm that uses the 
direct approach to do smaller shuffles (e.g., of 100 GB). Locus 
adopts a hybrid architecture, combining object storage with fast, 
in-memory storage. The major drawback of this approach is that 
the in-memory instances have to be manually provisioned by 
users, which affects the usability of the whole system. To curtail 
the throughput demands, Lambada [23] proposed the two-level 
approach, but without comparing it thoroughly against the direct 
approach. As we have proven in this research work, the two-level 
approach is not a silver bullet, which calls for smart managers such 
as Seer.

Another related work is SONIC [22]. SONIC reduces job latency 
by jointly optimizing how data is shared —e.g., by replicating files 
across VM instances or sharing them through object storage. Un-
fortunately, SONIC leaves significant headroom for improvement 
since it does not optimize object storage data passing as we re-
alize in Seer. Much in the same way, we see that a large collection 
of serverless data analytics systems (e.g., PyWren [16], Ripple [18], 
Caerus [46] and Kappa [47], etc.), may adopt Seer, or benefit from 
the insights contributed by this work. Seer only uses object stor-
age and cloud functions, which are serverless services available in 
15
all public clouds. This makes Seer a very practical and portable 
solution across all cloud providers.

Adding a modicum of statefulness to serverless workflows, 
other works recognize the need for sharing state [6,40,8,35,19]. 
Crucial [6] improves data sharing and coordination by means of 
distributed shared objects. Cloudburst [40] focuses on distributed 
consistency of shared data through the Anna key-value store [41]. 
Cirrus [8] builds a parameter server abstraction on top of VM in-
stances, which serves as the storage access point of the global 
model shared by the all functions. Further, Mlless [35] uses Re-
dis instances to quickly exchange model updates between workers. 
Finally, Jiffy [19], an evolution of Pocket, realizes resource alloca-
tion at the granularity of memory blocks to keep up with the high 
elasticity of functions. These systems significantly improve data 
passing latency, but do not abide by a “pure” serverless architec-
ture. Users of Crucial and Cirrus must provision the total number 
of nodes required in advance, while Jiffy and CloudBurst scale up 
their capacity by adding more servers into the data plane, which 
may take too much time for moderate data shuffles. For instance, 
Cloudburst is bottlenecked by the latency of spinning up EC2 in-
stances (around 2.5 minutes), while 100 GB of data can be shuffled 
within 1.5 minutes via remote object storage.

8. Conclusion

We have presented Seer, a shuffle manager for serverless ana-
lytics that dynamically chooses the shuffle method, as well as the 
optimal degree of parallelism that maximizes the I/O efficiency to 
object storage. Seer resolves this decision problem formulating an 
analytical model, which has the desirable property that end users 
do not need to specify (or even estimate) intermediate data sizes 
at the job submission time, making Seer fully “serverless” by de-
sign. We show that for different analytics workloads, Seer is able 
to improve execution time by 1.1 − 7.2X for the same number of 
vCPUs, which contributes to confirm that object storage is a prac-
tical solution to serverless shuffling.

Future work includes the exploitation of intra-level parallelism. 
Although IBM Cloud Functions can get as much as 1 vCPU, other 
FaaS platforms have access to more vCPUs (e.g., AWS Lambda have 
access to up to 6 vCPUs). This will enable “fatter” workers and 
the exploitation of data locality during shuffling, which has not 
been leveraged at all by Seer, and can save significant network 
bandwidth.
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