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Abstract
Given a connected graph G, the total mutual-visibility number of G, denoted μt (G),
is the cardinality of a largest set S ⊆ V (G) such that for every pair of vertices
x, y ∈ V (G) there is a shortest x, y-path whose interior vertices are not contained in
S. Several combinatorial properties, including bounds and closed formulae, forμt (G)

are given in this article. Specifically, we give several bounds for μt (G) in terms of the
diameter, order and/or connected domination number ofG and show characterizations
of the graphs achieving the limit values of some of these bounds. We also consider
those vertices of a graph G that either belong to every total mutual-visibility set of G
or does not belong to any of such sets, and deduce some consequences of these results.
We determine the exact value of the total mutual-visibility number of lexicographic
products in terms of the orders of the factors, and the total mutual-visibility number
of the first factor in the product. Finally, we give some bounds and closed formulae
for the total mutual-visibility number of Cartesian product graphs.
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1 Introduction

Vertex visibility in networks is a topic that has motivated a significant number of
investigations in the last few years. These investigations have been taken into account
from two different points of view. On the one hand, the research has been conducted in
practical problems appearing in the area of computer science, through the studyof some
robot navigation models, mainly focused on the visibility required for some robots to
move around a network in order to avoid collisions. For some examples of researches
on this topic, we suggest for instance [1, 2, 6]. On the other hand, a theoretical point of
view has been considered, where the investigation mainly concentrates the attention
into finding combinatorial properties of “visible” sets in networks. The first ideas on
this direction were presented in [7], where the concept of mutual-visibility number in
graphs was introduced. This latter style of theoretical study was extended in [4, 5].

Let G = (V (G), E(G)) be a connected and undirected graph, X ⊆ V (G), and
x, y ∈ X . If there exists a shortest x, y-path (also called geodesic) whose internal
vertices are all not in X , then x and y are X -visible. The set X is amutual-visibility set
of G, if every two vertices x and y of X are X -visible. The cardinality of the largest
mutual-visibility set of G is the mutual-visibility number of G denoted by μ(G).

The topic of mutual-visibility in graphs is closely related to the general position
problem in graphs, which was formally, independently, and recently defined in [11,
18], although its notion is already known fromprevious investigations, like for instance
[13], where the concept was considered only for hypercubes. A general position set in
a graph G can be understood as a mutual-visibility set in G in which any two vertices
of such set are “visible” not only through at least one shortest path but through every
possible shortest path between the two vertices. The general position problem has
been intensively studied in the last 5 years, and by now there are many ongoing
investigations on this topic and its variations. For some significant cases, we suggest
some of the most recent ones [8, 10, 12, 14, 15, 17].

In order to give more insight into the mutual-visibility number of strong product
graphs, Cicerone et al. [5] introduced the notion of total mutual-visibility as a natu-
ral extension of the mutual-visibility, which can also be seen in a computer setting
navigation model, where not only the robots are required to be “visible” with respect
to themselves, but also the remaining nodes of the networks have a similar property
among them, and with respect to the navigating robots. This setting is clearly more
restrictive, but it surprisingly turns to become very useful while considering some
networks having some Cartesian properties in the vertex set, namely that ones of
product-like structures, when a product is understood in the sense of the four classical
graph products as defined in the book [9].

As it happens, the concept of total mutual-visibility might be also of independent
interest, as already pointed out in [5], since the visibility is extended to all vertices in
the graph, not only for the vertices frommutual-visibility set. This is clearly a property
of independent interest, and its study is worthy of being continued. This was indeed
already done in [16], and it is our goal to continue finding more contributions on this
regard. Moreover, the NP-completeness of the decision problem concerning finding
μt (G) was recently proved in [3]. Formally, X ⊆ V (G) is a total mutual-visibility
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set of G, if every two vertices x and y of G are X -visible. A largest total mutual-
visibility set of G is a μt (G)-set; its cardinality is the total mutual-visibility number
of G denoted by μt (G).

Wenowgive somebasic terminology and basic definitions that shall be used through
our whole exposition. Clearly, we continue considering here only connected and undi-
rected graphs. Given a graph G and two vertices x, y ∈ V (G), the distance dG(x, y)
between x and y in G is the length of a shortest x, y-path. The diameter diam(G) of
G is the largest distance between pairs of vertices of G. The subgraph of G induced
by S ⊆ V (G) will be denoted by G[S], and the complement of a graph G is G. A
subgraph H of G is convex if for each two vertices x, y ∈ V (H), all shortest x, y-
paths in G lie completely in H . As usual, the domination number of G is denoted by
γ (G), which is the cardinality of a smallest set such that any vertex not in the set is
adjacent to at least one vertex of such set. By n1(G), we denote the number of vertices
of degree one in G, also known as the number of leaves of G, when G is a tree. We
next continue with some extra information (basic results) that we would need for our
purposes.

We first recall that there exist graphs where X = ∅ is the only μt (G)-set, like the
case of cycles of order at least 5, and graphs where X = V (G) is the only μt (G)-set,
like the case of complete graphs. Thus, for any graph G, 0 ≤ μt (G) ≤ n(G), where
n(G) denotes the order of G. Also, the following observation from [16] is of interest.

Proposition 1.1 [16] If X ⊆ V (G) is a total mutual-visibility set of a graph G and
Y ⊆ X, then Y is also a total mutual-visibility set of G.

To close this section, we present the plan of our article. In Sect. 2, several bounds for
μt (G) in terms of the diameter, order, and/or connected domination number of G are
given.We also show characterizations of the graphs achieving the limit values of some
of these bounds and present some consequences that give the exact value of μt (G)

when G is a join or a corona graph. Section3 is dedicated to consider those vertices of
a graph G that either belong to every total mutual-visibility set of G or do not belong
to any of such sets. In Sect. 4, we consider the lexicographic product of graphs G and
H and compute the exact value of its total mutual-visibility number in terms of the
orders of G and H and the total mutual-visibility number of G. In Sect. 5, we give
some bounds and closed formulae for the total mutual-visibility number of Cartesian
product graphs. We determine such value for some specific families of graphs that are
generalizing some other results recently presented in [16]. Finally, in the concluding
section some open problems and directions for further investigation are indicated.

2 General Bounds and Consequences

Our first contribution describes a relationship between the total mutual-visibility
number and the diameter of a graph.

Proposition 2.1 For any connected graph G,

0 ≤ μt (G) ≤ n(G) − diam(G) + 1.

123



197 Page 4 of 17 D. Kuziak, J. A. Rodríguez-Velázquez

Proof By definition of total mutual-visibility number, μt (G) ≥ 0. Now, let X be a
μt (G)-set. If u, v ∈ V (G) are two diametral vertices, then there exists a diametral
path u = x0, . . . , xk = v such that {x1, . . . , xk−1} ∩ X = ∅. Therefore, μt (G) =
|X | ≤ n(G) − (k − 1) = n(G) − diam(G) + 1. ��

All graphs with μt (G) = 0 were characterized in [16]. Next we consider the case
of graphs with μt (G) = n(G) − diam(G) + 1.

Proposition 2.2 Given a connected graph G of order n(G) ≥ 2, the following
statements are equivalent.

(i) μt (G) = n(G) − diam(G) + 1.
(ii) There exists a diametral path x0, . . . , xk such that for every pair u, v of vertices

of G there exists a shortest path u = y0, . . . , yk′ = v such that {y1, . . . , yk′−1} ⊆
{x1, . . . , xk−1}.

Proof First, we assume that (i) holds. Let X be a μt (G)-set. Let x, y ∈ V (G) be two
diametral vertices. Since x and y are X -visible, there exists a path P between x and
y whose set Y of internal vertices satisfies X ∩ Y = ∅. Hence, Y ⊆ V (G)\X , and so
from (i) we deduce that

diam(G) − 1 = |Y | ≤ |V (G)\X | = diam(G) − 1.

Therefore, X = V (G)\Y , which implies that P satisfies (ii).
Conversely, if W is the set of internal vertices of a diametral path P satisfying (ii),

then V (G)\W is a totalmutual-visibility set, which implies that n(G)−diam(G)−1 =
|V (G)\W | ≤ μt (G). In such a case, by Proposition 2.1 we deduce that (i) holds. ��

FromProposition 2.2,wededuce the following resultwhich characterizes the graphs
with large values of total mutual-visibility number.

Corollary 2.3 Given a graph G, the following statements hold.

(i) μt (G) = n(G) if and only if G is a complete graph.
(ii) μt (G) = n(G) − 1 if and only if G is a non-complete graph with γ (G) = 1.

Now, we establish an interesting connection between the total mutual-visibility
number and the connected domination number, denoted by γc(G), which represents
the minimum cardinality among all dominating sets of G whose induced subgraphs
are connected. A smallest connected dominating set of G is a γc(G)-set.

Theorem 2.4 For any connected non-complete graph G,

μt (G) ≤ n(G) − γc(G).

Proof Let X be a μt (G)-set and X ′ = V (G)\X . Since G is a non-complete graph, by
Proposition 2.1 and Corollary 2.3, we deduce that X ′ 
= ∅. If there exists x ∈ X such
that N (x) ∩ X ′ = ∅, then for every x ′ ∈ X ′ we have that x and x ′ are not X -visible,
which is a contradiction. Hence, X ′ is a dominating set. Now, if x ′ and x ′′ are vertices
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Fig. 1 {u1, . . . , u5} is a
γc(G)-set

u

u1 u2 u3 u4 u5

v

of two different components of the subgraph of G induced by X ′, then x ′ and x ′′ are
not X -visible, which is a contradiction again. Thus, X ′ is a connected dominating set
of G. Therefore, n(G) = |X | + |X ′| ≥ μt (G) + γc(G), as required. ��

It is easy to construct examples of graphs achieving the bound above. In particular,
as we will show in Theorem 2.9, the bound is achieved for connected corona graphs.

Corollary 2.5 Let G be a non-complete graph. If μt (G) = n(G) − diam(G) + 1, then
γc(G) = diam(G) − 1.

Proof Since any path between twodiametral vertices has diam(G)−1 internal vertices,
it is clear that γc(G) ≥ diam(G) − 1. Hence, if μt (G) = n(G) − diam(G) + 1, then
by Theorem 2.4 we have

n(G) − diam(G) + 1 = μt (G) ≤ n(G) − γc(G) ≤ n(G) − diam(G) + 1,

which implies that γc(G) = diam(G) − 1. ��
The converse of Corollary 2.5 does not hold. For instance, ifG is the graph shown in

Fig. 1, then γc(G) = 5 = diam(G)−1, whileμt (G) = 2 < 7 = n(G)−diam(G)+1.
Notice that since γc(G) ≥ diam(G) − 1, the upper bound of Proposition 2.4 is

always better than the one of Proposition 2.1. However, finding the connected domi-
nation number of a graph cannot be usually efficiently made, while the diameter can
be easily known, thus justifying the inclusion of Proposition 2.1 in our exposition.

Proposition 2.6 Given a connected non-complete graph G, the following statements
are equivalent.

(i) μt (G) = n(G) − γc(G).

(ii) There exists a γc(G)-set S such that for every pair u, v of vertices of G there exists
a shortest path u = y0, . . . , yk′ = v such that {y1, . . . , yk′−1} ⊆ S.

Proof First, we assume that (i) holds. Let X be a μt (G)-set and X ′ = V (G)\X . As
we have shown in the proof of Theorem 2.4, X ′ is a connected dominating set, and so
from (i) we deduce that

γc(G) ≤ |X ′| = |V (G)\X | = n(G) − μt (G) = γc(G).

Therefore, X ′ is a γc(G)-set which satisfies (ii).
Conversely, if S is a γc(G)-set satisfying (ii), then V (G)\S is a total mutual-visible

set, which implies that n(G) − γc(G) = |V (G)\S| ≤ μt (G). In such a case, by
Theorem 2.4 we deduce that (i) holds. ��
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Notice that from Proposition 2.6 we deduce the following result which was recently
obtained in [16].

Corollary 2.7 [16] For any tree T , μt (T ) = n1(T ).

Next we will apply Proposition 2.6 to the cases of join and corona graphs. The join
graph G + H is defined as the graph obtained from the disjoint union of a copy of G
and a copy of H by adding an edge between each vertex of G and each vertex of H .

Corollary 2.8 Let G and H be two non-simultaneously complete graphs.

(i) If γ (G) = 1, then μt (G + H) = n(G) + n(H) − 1.
(ii) If γ (G) 
= 1 and γ (H) 
= 1, then μt (G + H) = n(G) + n(H) − 2.

Proof Since every universal vertex of G is a universal vertex of G + H , from
Proposition 2.6 or from Corollary 2.3, we deduce (i).

Now, if γ (G) 
= 1 and γ (H) 
= 1, then γc(G + H) = 2 and we only need to
observe that for any vertex g ∈ V (G) and any vertex h ∈ V (H), the set {g, h} is a
connected dominating set of G + H which satisfies Proposition 2.6 (ii). ��

LetG and H be graphs where V (G) = {u1, . . . , un(G)}. The corona product G�H
is defined as the graph obtained from the disjoint union of a copy ofG and n(G) copies
of H , denoted by Hi , i ∈ {1, 2, . . . , n(G)}. The product G � H is then constructed
by making ui adjacent to every vertex in Hi for each i ∈ {1, 2, . . . , n(G)}. Notice that
the corona product K1 � H is isomorphic to the join graph K1 + H .

Corollary 2.9 For any connected graph G and any graph H,

μt (G � H) = n(G)n(H).

Proof We only need to observe that V (G) is a γc(G � H)-set which satisfies
Proposition 2.6 (ii). ��

3 Compulsory Vertices and Forbidden Vertices in Any �t(G)-Set

In order to give some additional results on the total mutual-visibility number of a
graph, we need to introduce the following notation. Given a graph G, we define the
set F(G) ⊆ V (G) as the set of forbidden vertices in any μt (G)-set, i.e., the set of
vertices not belonging to any μt (G)-set.

We also define C(G) as the set of compulsory vertices in any μt (G)-set, i.e., the
set of vertices belonging to every μt (G)-set.

If X is a μt (G)-set, then by definition of C(G) and F(G) we have that C(G) ⊆
X ⊆ V (G)\F(G). Therefore, the following proposition follows.

Proposition 3.1 If G is a connected graph, then |C(G)| ≤ μt (G) ≤ n(G) − |F(G)|.
Although the following statement is also immediate, it is very useful.
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Fig. 2 C(G) = {a, d, g, i} is the
only μt (G)-set
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Proposition 3.2 Given a graph G, the following statements are equivalent.

(i) μt (G) = |C(G)|.
(ii) μt (G) = n(G) − |F(G)|.
(iii) |C(G)| + |F(G)| = n(G).

Proof If (i) ⇔ (ii) holds, then the other equivalences are deduced by Proposition 3.1.
Therefore, we will limit ourselves to prove the equivalence (i) ⇔ (ii).

Let X be a μt (G)-set. Since C(G) ⊆ X , if μt (G) = |C(G)|, then C(G) is the only
μt (G)-set. In such a case, V (G)\C(G) = F(G), and so |F(G)| = n(G) − μt (G), as
required.

Conversely, if μt (G) = n(G) − |F(G)|, then V (G)\F(G) is the only μt (G)-set,
and this implies that V (G)\F(G) = C(G). Therefore, μt (G) = n(G) − |F(G)| =
|C(G)|. ��

Figure 2 shows an example of graph which illustrates Proposition 3.2.
A vertex of a graph is a simplicial if the subgraph induced by its neighbors is a

complete graph. Let S(G) be the set of simplicial vertices in G. Observe that S(G) ⊆
C(G), since any simplicial vertex x is not in any shortest path between any two vertices
of G different from x . Let P(G) be the subset of V (G) such that v ∈ P(G) if and
only if there exist two vertices u, w ∈ V (G) such that NG [u] ∩ NG[w] = {v}, i.e.,
v ∈ P(G) if and only if v is the middle vertex of a convex P3 in G. Obviously,
P(G) ⊆ F(G).

Notice that the problem of deciding if a vertex belongs to S(G), or to P(G), is
algorithmically simple. Therefore, the following result is an important tool to estimate
the value of μt (G).

Proposition 3.3 Given a connected graph G, the following statements hold.

(i) μt (G) ≥ |S(G)|.
(ii) If μt (G) = |S(G)|, then μt (G) = n(G) − |P(G)|.
(ii) [16] μt (G) ≤ n(G) − |P(G)|.
(iv) If μt (G) = n(G) − |P(G)|, then μt (G) = |C(G)|.
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Fig. 3 C(G) = {a, d, g, i, l,m}
is the only μt (G)-set
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Proof From Propositions 3.1 and 3.2, we deduce (i), (iii), and (iv). We proceed to
prove (ii). Since S(G) ⊆ C(G), if μt (G) = |S(G)|, then the set S(G) of simplicial
vertices is the onlyμt (G)-set. If there exists a vertex x ∈ V (G)\(S(G)∪P(G)), then
for every pair of non-adjacent vertices y, z ∈ NG(x), there exists w ∈ V (G)\S(G)

such that y, z ∈ NG(w), and so S(G) ∪ {x} is a total mutual-visibility set, which is a
contradiction. Therefore, V (G) = S(G) ∪ P(G), as required. ��

ThegraphG shown inFig. 1 is also an example,which illustrates Proposition3.3 (ii).
The set S(G) is formed by the bold vertices, and P(G) by the white ones. Moreover,
as previously mentioned, μt (G) = 2.

As we can expect, the converse of Proposition 3.3 (ii) does not hold. For instance,
if G is the graph shown in Fig. 2, then S(G) = {a, g} ⊆ {a, d, g, i} = C(G) and
P(G) = V (G)\C(G). Therefore, μt (G) = n(G) − |P(G)| = |C(G)| = 4 > 2 =
|S(G)|.

Notice also that the converse of Proposition 3.3 (iv) does not hold. For instance, ifG
is the graph shown in Fig. 3, then P(G) = {b, c, e, f , h, j} ⊆ {b, c, e, f , h, j, k} =
F(G). In this case, μt (G) = |C(G)| = n(G) − |F(G)| = 6 < 7 = n(G) − |P(G)|.

Since the vertex set of any non-complete block graph G can be partitioned as
V (G) = P(G) ∪ S(G), we deduce the following result, which is already known. In
[5], it was established that if G is a block graph, then μ(G) = μt (G), while in [7]
μ(G) was shown.

Corollary 3.4 If G is a block graph, then μt (G) = |S(G)| = n(G) − |P(G)|.

4 The Case of Lexicographic Product Graphs

The lexicographic product G ◦ H of two graphs G and H is a graph with vertex set
V (G◦H) = V (G)×V (H). Twovertices (x, y) and (x ′, y′) are adjacent if xx ′ ∈ E(G)

or (x = x ′ and yy′ ∈ E(H )). The lexicographic product is a kind of generalization of
join because K2 ◦G ∼= G +G for any graph G. If S ⊆ V (G ◦ H), then the projection
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Fig. 4 Lexicographic products K1,3 ◦ P3 and P3 ◦ K1,3

SG of S on G is the set {g ∈ V (G) : (g, h) ∈ S for some h ∈ V (H)}. The projection
SH of S on H is defined analogously.

Since the concept of total mutual-visibility is defined for connected graphs, we
should remember that a lexicographic product G ◦ H is connected if and only if G is
connected. Moreover, the relation between distances in a lexicographic product graph
and in its factors can be presented as follows.

Remark 4.1 [9] If G is a connected non-trivial graph, then the distance between two
vertices (g, h) and (g′, h′) of G ◦ H is given by:

dG◦H ((g, h), (g′, h′)) =
{
dG(g, g′) if g 
= g′,
min{dH (h, h′), 2} if g = g′.

Figure 4 illustrates two examples of lexicographic products and at the same time
emphasizes the fact that the lexicographic product is not commutative. For more on
the product graphs, see [9].

Lemma 4.2 Let G be a graph with γ (G) ≥ 2 and let H be a graph. If X is a μt (G ◦
H)-set, then |{u} × V (H) ∩ X | ≥ n(H) − 1 for every vertex u ∈ V (G).

Proof Let u ∈ V (G). By the maximality of the cardinality of X , if there exist two
different vertices v, v′ ∈ V (H) such that (u, v), (u, v′) /∈ X , then {u′} × V (H) ⊆ X
for every u′ ∈ NG(u). Now, since γ (G) ≥ 2, there exists w ∈ V (G)\NG [u], and so
two vertices (u, v) and (w, v) are not X -visible, which is a contradiction. Therefore,
the result follows. ��
Lemma 4.3 Let G be a graph with γ (G) ≥ 2. For any μt (G)-set X and any vertex
v ∈ V (G), NG(v) ∩ (V (G)\X) 
= ∅.

Proof Suppose that there exits a μt (G)-set X , and a vertex v ∈ V (G), such that
NG(v) ⊆ X . Since γ (G) ≥ 2, there exists u ∈ V (G)\NG[v]. Hence, u and v are not
X -visible, which is a contradiction. ��
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Theorem 4.4 Let G be a connected graph with γ (G) ≥ 2. For any graph H,

μt (G ◦ H) = n(G)(n(H) − 1) + μt (G).

Proof Let S be a μt (G)-set and let v ∈ V (H). We proceed to show that X = S ×
V (H)∪ (V (G)\S)× (V (H)\{v}) is a total mutual-visibility set. We differentiate two
cases for (u, v), (u′, v′) ∈ V (G ◦ H).
Case 1: u = u′. By Lemma 4.3, there exists a vertex w ∈ NG(u) ∩ (V (G)\S). Thus,
the vertices (u, v) and (u′, v′) are X -visible.
Case 2: u 
= u′. Let u = u0, u1, . . . , uk = u′ be a shortest path in G such that
{u1, . . . , uk−1} ∩ S = ∅. Since (u, v) = (u0, v), (u1, v), . . . , (uk, v) = (u′, v′) is a
shortest path in G ◦ H and {u1, . . . , uk−1} × {v} ∩ X = ∅, the vertices (u, v) and
(u′, v′) are X -visible.

Therefore, X is a total mutual-visibility set, and so

μt (G ◦ H) ≥ |X | = n(G)(n(H) − 1) + μt (G).

LetW be aμt (G◦H)-set andW ′ = V (G◦H)\W . LetW ′
G be the projection ofW ′ in

G. We proceed to show thatWG = V (G)\W ′
G is a total mutual-visibility set of G. For

every pair of different vertices x, x ′ ∈ V (G) and y ∈ V (H), there exists a shortest path
(x, y) = (x0, y0), . . . , (xk, yk) = (x ′, y) such that (x1, y1), . . . , (xk−1, yk−1) /∈ W .
Thus, x = x0, . . . , xk = x ′ is a shortest path in G and x1, . . . , xk−1 /∈ WG . Hence, the
pair of vertices x and x ′ are WG -visible and so |WG | ≤ μt (G). Therefore, by Lemma
4.2 we have that

μt (G ◦ H) = |W |
= |WG | · n(H) + |W ′

G |(n(H) − 1)

= n(G)(n(H) − 1) + |WG |
≤ n(G)(n(H) − 1) + μt (G),

as required. ��
Theorem 4.5 Let G be a graph with γ (G) = 1.

(i) If H is a non-complete graph with γ (H) = 1, then

μt (G ◦ H) = n(G)n(H) − 1.

(ii) If H is a graph with γ (H) ≥ 2, then

μt (G ◦ H) = n(G)n(H) − 2.

Proof Let u be a universal vertex of G. If v is a universal vertex of H , then (u, v) is a
universal vertex of G ◦ H , and so by Corollary 2.3 we conclude that (i) follows.

In order to prove (ii), we take an arbitrary vertex u′ ∈ V (G)\{u} and an arbitrary
vertex v ∈ V (H), and since u is a universal vertex of G, it is readily seen that
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Fig. 5 Cartesian products C5�K2 and K1,3�P3

X = V (G ◦ H)\{(u, v), (u′, v)} is a total mutual-visibility set of G ◦ H . Hence,
μt (G ◦ H) ≥ |X | = n(G)n(H) − 2. Now, if γ (H) ≥ 2, then γ (G ◦ H) ≥ 2, and as a
result, Corollary 2.3 leads to μt (G ◦ H) ≤ n(G)n(H)−2, which completes the proof
of (ii). ��

5 The Case of Cartesian Product Graphs

Let G and H be two graphs. The Cartesian product of G and H is the graph G�H
with V (G�H) = V (G) × V (H), where two vertices (x, y) and (x ′, y′) are adjacent
if and only if either x = x ′ and yy′ ∈ E(H), or xx ′ ∈ E(G) and y = y′. A Cartesian
product graph is connected if and only if both of its factors are connected. The distance
between (x, y) and (x ′, y′) in G�H is given by:

dG�H ((x, y), (x ′, y′)) = dG(x, x ′) + dH (y, y′).

Figure5 shows two examples of Cartesian products. For more information on structure
and properties of the Cartesian product of graphs, we refer the reader to [9].

We recall that the general position and the mutual-visibility problems were inves-
tigated recently, for instance, in [8, 12, 17] and [4], respectively. Moreover, Tian and
Klavžar [16] most recently studied the total mutual-visibility number of Cartesian
product graphs. In the referred work, the authors gave general bounds on the total
mutual-visibility number of Cartesian product graphs, and they also obtain closed for-
mulas on this novel parameter for specific families of Cartesian product graphs. To
continue our exposition, we mention these bounds. For this sake, we need to introduce
the following concept defined in [16]. An independent total mutual-visibility set of a
graph G is a set of vertices in G that is both an independent set and a total mutual-
visibility set of G. The cardinality of a largest independent total mutual-visibility set
is the independent total mutual-visibility number of G, denoted by μi t (G).

Theorem 5.1 [16] If G and H are graphs with n(G) ≥ 2, n(H) ≥ 2, μi t (G) ≥ 1, and
μi t (H) ≥ 1, then

max{μi t (H)μt (G), μi t (G)μt (H)} ≤ μt (G�H) ≤ min{n(G)μt (H), n(H)μt (G)}.
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In order to present a result which improves the upper bound mentioned above, we
need to state the following lemma.

Lemma 5.2 For any connected graph G of order at least two,

P(G) × V (H) ⊆ P(G�H).

Proof If x ∈ P(G), then there exist two vertices g, g′ ∈ V (G)\{x} such that NG [g]∩
NG [g′] = {x}. Hence, for any vertex y ∈ V (H),

{(x, y)} = NG [g] ∩ NG [g′] × {y}
= (NG [g] × {y} ∪ {g} × NH [y]) ∩ (NG [g′] × {y} ∪ {g′} × NH [y])
= NG�H [(g, y)] ∩ NG�H [(g′, y)].

Hence, (x, y) ∈ P(G�H), which implies that P(G) × V (H) ⊆ P(G�H). ��
Theorem 5.3 For any connected graphs G and H,

μt (G�H) ≤ min{(n(G) − |P(G)|)μt (H), (n(H) − |P(H)|)μt (G)}.

Proof Let X be a μt (G�H)-set. By Lemma 5.2, we deduce that, (P(G) × V (H)) ∩
X = ∅. Hence,

μt (G�H) = |X | =
∑

u∈P(G)

|({u} × V (H)) ∩ X | +
∑

u /∈P(G)

|({u} × V (H)) ∩ X |

≤ 0 + (n(G) − |P(G)|)μt (H).

Analogously we can prove that μt (G�H) ≤ (n(H) − |P(H)|)μt (G). Therefore,
the result follows. ��

By Theorem 5.3 and Proposition 3.3 (ii), we deduce the following bound.

Theorem 5.4 Let G and H be two connected graphs. If μt (G) = |S(G)| or μt (H) =
|S(H)|, then μt (G�H) ≤ μt (G)μt (H).

As we will show below, the bound above is tight.

Theorem 5.5 [16] If T is tree with n(T ) ≥ 3 and H is a graph with n(H) ≥ 2, then
μt (T�H) = μt (T )μt (H).

We next show a result which includes Theorem 5.5 as a particular case. Notice
that for any tree T the only μt (T )-set is the set of leaves (simplicial vertices) and
clearly it is an independent set. Moreover, there exist numerous examples of graphs,
where μt (G) = |S(G)| and S(G) is an independent set, and among them we have,
for instance, the corona products G ∼= G∗ � Kn , for any graph G∗, and any graph G ′
obtained as follows. We begin with a Hamiltonian graph H∗ with Hamiltonian cycle
v0v1 . . . vn(H∗)−1v0 and n(H∗) vertices u0, u1, . . . un(H∗)−1. Then, to form G ′ we join
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each vertex ui with vi and vi+1, for i ∈ {0, 1, . . . , n(H∗) − 1} (where the operations
with the subscripts i are expressed modulo n(H∗)). Notice that every vertex of H∗
belongs to P(G ′).

Theorem 5.6 If S(G) is an independent set of G and μt (G) = |S(G)|, then

μt (G�H) = μt (G)μt (H).

Proof The result is obtained by combining the upper bound given by Theorem 5.4 and
the lower bound given by Theorem 5.1. ��
Corollary 5.7 If T1, . . . , Tk is a family of trees of order at least three, then

μt (T1� · · · �Tk) =
k∏

i=1

n1(Ti ).

We will now establish the following lemma, which will be one of our tools.

Lemma 5.8 Let x, x ′ be two adjacent vertices of a graph G, and let y, y′ be two
adjacent vertices of a graph H. If X is aμt (G�H)-set and (x, y) ∈ X, then (x ′, y′) /∈
X.

Proof Suppose that (x, y), (x ′, y′) ∈ X . Since the only shortest paths between (x ′, y)
and (x, y′) are (x ′, y), (x ′, y′), (x, y′) and (x ′, y), (x, y), (x, y′), the vertices (x, y)
and (x ′, y′) are not X -visible, which is a contradiction. ��

The set S(G) of simplicial vertices of a graph G can be partitioned into true twin
equivalence classes where two vertices g, g′ ∈ S(G) belong to the same class if and
only if they are true twins, i.e., whenever NG [g] = NG [g′].
Theorem 5.9 Let G be a graph and let {C1, . . . ,Ck} be a partition of S(G) into true
twin equivalence classes. If μt (G) = |S(G)|, then for any integer n ≥ 2

μt (G�Kn) =
k∑

i=1

max{|Ci |, n}.

Proof Let v ∈ V (Kn) be a fixed vertex of Kn , and let ui ∈ Ci be a representative
vertex of the class Ci . We define the following set.

X =
⎛
⎝ ⋃

n≥|Ci |
{ui } × V (Kn)

⎞
⎠ ⋃ ⎛

⎝ ⋃
n<|Ci |

Ci × {v}
⎞
⎠ .

We proceed to show that X is a total mutual-visibility set of G�Kn . To this end, we
differentiate the following cases for two vertices (g, h), (g′, h′) ∈ V (G) × V (Kn).
Case 1. g, g′ ∈ Ci for some class Ci . Since the subgraph of G induced by Ci is
complete, the subgraph of G�H induced by Ci × V (Kn) is the Cartesian product of
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two complete graphs, and by the construction of X the subgraph induced by Xi =
X ∩ (Ci × V (Kn)) is also complete. Hence, it is readily seen that (g, h) and (g′, h′)
are Xi -visible, and so they are X -visible.
Case 2. g /∈ Ci for every classCi . Let g = g0, . . . , gl = g′ and h = h0, . . . , hr = h′ be
two shortest paths. If g = g′, then the shortest path (g, h) = (g, h0), . . . , (g, hr ) =
(g′, h′) does not have vertices in X . Now, assume g 
= g′. Notice that S(G) is a
μt (G)-set and, by Proposition 3.3 (ii), P(G) = V (G)\S(G). Hence, the path g =
g0, . . . , gl = g′ is S(G)-visible, and by the construction of X , the path

(g, h) = (g, h0), . . . , (g, hr−1), (g, h
′), (g1, h′) . . . , (gl , h

′) = (g′, h′)

is X -visible.
According to the two cases above, X is a total mutual-visibility set ofG�Kn , which

implies that

μt (G�Kn) ≥ |X | =
k∑

i=1

max{|Ci |, n}.

Now, let W be a μt (G�Kn)-set. As mentioned above, V (G) = S(G) ∪ P(G)

and, by Lemma 5.2, we know that P(G) × V (Kn) ⊆ P(G�Kn), which implies that
W ∩ (P(G) × V (Kn)) = ∅. On the other side, since the subgraph of G induced
by any class Ci is complete, by Lemma 5.8 we can conclude that for any pair of
different vertices x, x ′ ∈ Ci and any pair of different vertices y, y′ ∈ V (Kn) we have
that |W ∩ {(x, y), (x ′, y′)}| ≤ 1 and |W ∩ {(x, y′), (x ′, y)}| ≤ 1. Hence, |W ∩ Ci ×
V (Kn)| ≤ max{|Ci |, n} for every class Ci . Thus,

μt (G�Kn) =
k∑

i=1

|W ∩ (Ci × V (Kn))| ≤
k∑

i=1

max{|Ci |, n}.

Therefore, the result follows. ��
From Theorem 5.9, we derive the following result, which was recently obtained in

[16].

Corollary 5.10 [16] If m, n ≥ 2 are integers, then μt (Km�Kn) = max{m, n}.
Based on the corollary above, onemight think that the totalmutual-visibility number

of the Cartesian product of at least three complete graphs Kn1 , Kn2 , . . ., Knk (k ≥ 3)
equals max{n1, n2, . . . , nk}. However, this seems to be far from the reality. To see
this, we consider the example K3�K3�K2. Figure6 shows a total mutual-visibility
set (in bold) of K3�K3�K2 of cardinality 4 > max{3, 3, 2}. This situation allows to
think that finding μt (Kn1�Kn2� · · · �Knk ) (in particular for Hamming graphs) is a
challenging problem.

If v ∈ V (K2) and X is a μt (G)-set, then X × {v} is a total mutual-visibility set
of G�K2. Hence, the lower bound μt (G�K2) ≥ μt (G) follows. Therefore, from
Theorem 5.1 we derive the following remark.
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Fig. 6 K3�K3�K2 with total
mutual-visibility set of
cardinality 4 in bold

Remark 5.11 For any connected graph G,

max{2μi t (G), μt (G)} ≤ μt (G�K2) ≤ 2μt (G).

Furthermore, if μt (G) = μi t (G), then μt (G�K2) = 2μt (G).

From this remark, we derive some open problems stated below.

6 Concluding Remarks

In this article, we have considered the total mutual-visibility number of graphs, by
giving some tight bounds and closed formulae for this parameter.We have emphasized
the investigation for the case of lexicographic and Cartesian product of graphs. Next,
we propose some specific problems and possible research lines that can be taken as
starting point for further researching on this topic.

• Investigate the behavior of the total mutual-visibility number for the case of strong
product graphs, direct product graphs, generalizedSierpiński graphs andHamming
graphs (with emphasis on hypercubes).

• Investigate how μt (G) is related to parameters other than diam(G) and γc(G).
• Characterize the vertices of a graph belonging to C(G)\S(G) and derive
consequences of these characterizations.

• Characterize the vertices of a graph belonging to F(G)\P(G) and derive
consequences of these characterizations.

• For connected graphs, whose complement is connected, study the existence of
Nordhaus–Gaddum-type relations.

• Characterize the graphs G with μt (G�K2) = μt (G).

• Characterize the graphs G with μt (G�K2) = 2μi t (G).

• Characterize the graphs G with μt (G�K2) = 2μt (G).
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