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1. Introduction

Intensity modulated radiation therapy (IMRT), including volumetric modulated arc therapy (VMAT), is 
currently a standard of care technique for many disease sites. This delivery technique allows for better dose 
conformity than traditional 3D conformal radiation therapy while simultaneously sparing normal tissues from 
extraneous radiation dose. However, this technique also requires variations in multileaf collimator (MLC) 
motion, as well as gantry rotation speed and dose rate in some cases. Such sources of variability increase the plan 
‘complexity’, a term describing the frequency and amplitude of fluctuations in IMRT dose distributions (Mohan 
et al 2000). Thus, a simple IMRT treatment consists of large beam apertures of regular shapes, and complex 
IMRT beams tend to have small, narrow, or irregularly shaped apertures.

Many have previously reported that the degree of complexity (i.e. beam modulation) may be associated with 
greater uncertainties in radiation treatments (McNiven et al 2010, Younge et al 2012, Masi et al 2013, Crowe et al 
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Abstract
Previous works indicate that intensity-modulated radiotherapy (IMRT) and volumetric modulated 
arc therapy (VMAT) plans that are highly complex may produce more errors in dose calculation 
and treatment delivery. Multiple complexity metrics have been proposed and associated with IMRT 
QA results, but their relationships with plan performance using in situ dose measurements have 
not been thoroughly investigated. This study aimed to evaluate the relationships between IMRT 
treatment plan complexity and anthropomorphic phantom performance in order to assess the extent 
to which plan complexity is related to dosimetric performance in the IROC phantom credentialing 
program. Sixteen complexity metrics, including the modulation complexity score (MCS), several 
modulation indices, and total monitor units (MU) delivered, were evaluated for 343 head and neck 
phantom irradiations, comprising both IMRT (step-and-shoot and sliding window techniques) 
and VMAT. Spearman’s correlations were used to explore the relationship between complexity 
and plan performance, as measured by the dosimetric differences between the treatment planning 
system (TPS) and thermoluminescent dosimeter (TLD) measurement, as well as film gamma 
analysis. Relationships were likewise determined for several combinations of subpopulations, based 
on the linear accelerator model, TPS used, and delivery modality. Evaluation of the complexity 
metrics presented here yielded no significant relationships (p  >  0.01, Bonferroni-corrected) and all 
correlations were weak (less than  ±0.30). These results indicate that complexity metrics have limited 
predictive utility in assessing plan performance in multi-institutional comparisons of IMRT plans. 
Other factors affecting plan accuracy, such as dosimetric modeling or multileaf collimator (MLC) 
performance, should be investigated to determine a more probable cause for dose delivery errors.
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2014, Du et al 2014, Park et al 2014, Götstedt et al 2015). This is a logical supposition as high-complexity treatment 
plans include more challenging dose calculations and increased sensitivity to mechanical delivery performance, 
especially when using very small fields. The potential for delivery errors associated with highly complex plans 
has ushered the need to characterize and mitigate complexity in IMRT. To do so, researchers have developed sev-
eral metrics as indicators of plan complexity, consisting of both fluence map-based and aperture-based metrics 
(McNiven et al 2010, Younge et al 2012, Masi et al 2013, Crowe et al 2014, Du et al 2014, Park et al 2014, Götstedt 
et al 2015). Fluence map-based metrics, such as the modulation index proposed by Webb, measure the variations 
in photon fluence between adjacent pixels in a fluence map (Webb 2003). Aperture-based approaches measure 
complexity by directly measuring the irregularity of the treatment field, as defined by the MLC, although some 
metrics also evaluate other plan parameters, such as leaf speed and variations of the dose rate and gantry speed.

Complexity metrics have also been suggested to be a time-efficient complement to current IMRT quality 
assurance (QA) methods, as they further inform the extent of beam modulation in the treatment and therefore 
may flag cases where modulation is higher than would normally be expected. This application is of particular 
interest to the Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. IROC seeks to 
confirm that institutions participating in National Cancer Institute sponsored clinical trials, including those uti-
lizing IMRT, can calculate and deliver radiation doses consistently and accurately. For IMRT, this is done through 
the use of end-to-end anthropomorphic phantom irradiations whereby institutions irradiate an IROC phantom 
containing thermoluminescent dosimeters (TLD) and radiochromic film (Molineu et al 2005). The measured 
dose distribution is then compared to the institution’s calculated dose distribution. Yet, even with improvements 
in IMRT planning and delivery over time, and relatively lax dosimetric agreement criteria for the phantom (7%), 
a sizeable percentage of institutions continue to fail the phantom test; only 85%–90% of institutions have passed 
in recent years (Molineu et al 2013). Of concern, dose calculation inaccuracies have been shown to be a leading 
cause of treatment delivery error (Carson et al 2016, Kerns et al 2017). If complexity could be used to predict 
treatment accuracy, such analysis would aid in identifying the cause of phantom failures.

Therefore, the purpose of this study was to investigate the relationship between treatment plan complex-
ity and treatment accuracy, with the aim of identifying which complexity metrics best predict planning and/
or delivery errors and how much complexity contributes to dosimetric errors in IMRT delivery. To date, a com-
prehensive evaluation of a broad range of complexity metrics has not been done, particularly using a single, 
controlled patient geometry. This evaluation, as performed using IROC phantoms, has the potential to identify 
metrics related to the agreement between dose calculations and measurements. In addition, the information 
produced in this work may be used to better inform the treatment planning process or guide QA testing in order 
to mitigate potential errors.

2. Methods

2.1. Phantom plans
A total of 343 IMRT and VMAT irradiations of IROC’s head and neck (H&N) phantom (including 11 repeat 
irradiations) were performed by 312 different institutions between September 2011 and December 2016 as part 
of IROC’s phantom credentialing program. The H&N phantom was chosen for evaluation because it is the most 
frequently irradiated phantom and is the default credentialing phantom for IMRT. The phantom contains two PTV 
targets and an organ at risk, and the dose was assessed with six double-loaded TLD and two sheets of film. Phantom 
performance was evaluated by comparing the dose calculated by the TPS with the dose actually delivered. Additional 
details on the phantom and analysis program are available in the literature (Molineu et al 2005).

Despite the uniform geometry and planning objectives, the phantom irradiations were done with a broad 
cohort of delivery methods, and thereby a variety of different complexities. The demographics of these are 
detailed in table 1. This cohort was limited to 6 MV photon treatments administered by Varian and Elekta linear 
accelerators, which account for the vast majority of H&N phantom irradiations. For all of these irradiations, 
institutions irradiated identical phantoms and were instructed to follow the same IROC protocol for phantom 
irradiation, thus achieving very similar dose distributions (Molineu et al 2005).

2.2. Complexity metrics
In this study, sixteen identified measures of complexity were computed for each of the 343 phantom plans in 
order to provide a comprehensive view of complexity definitions, including both aperture-based and fluence 
map-based metrics. Here we considered both established measures of IMRT complexity from the literature, as 
well as several additional metrics describing variations within the MLC position, gantry position, and dose rate, 
thus allowing for a more well-rounded assessment of IMRT treatment delivery. For each of the metrics described 
herein, complexity was calculated for each beam or arc in a treatment plan, and subsequently averaged for all 
beams or arcs to yield the plan’s average complexity. The following indices were evaluated:

Phys. Med. Biol. 63 (2018) 205015 (10pp)
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 (a)  Total MU delivered. In general, a high degree of complexity is typically associated with a large number 
of MU; this has been used as a surrogate for treatment plan complexity previously, though correlations 
have not been definitive (Masi et al 2013, Agnew et al 2014, Kry et al 2014, Crowe et al 2015).

 (b)  Modulation complexity score (MCS) (McNiven et al 2010). The MCS aims to characterize beam 
complexity in terms of the aperture shapes and area present throughout treatment. This metric was 
originally conceptualized for step-and-shoot delivery but was later adapted for sliding window and 
VMAT techniques (Masi et al 2013). A smaller MCS indicates more complex apertures.

 (c)  Edge metric (EM) (Younge et al 2012). This metric defines complexity as a ratio of MLC side length 
edge to aperture area. In this study the original recommendations for the input parameters (C1  =  0 and 
C2  =  1) were used. A larger EM index signifies larger positional differences between adjacent leaves.

 (d)  Plan irregularity (PI) and plan modulation (PM) (Du et al 2014). PI describes the non-circularity of 
the MLC apertures, whereas PM indicates to what extent the beam delivery is delivered into smaller 
apertures.

 (e)  Modulation indices (MIspeed, MIaccel, MItotal) (Park et al 2014). MIspeed and MIaccel evaluate the extent 
of variation within the speed and acceleration of the MLC, respectively. In addition to these variations, 
MItotal also considers variations in gantry speed and dose rate to quantify the total delivery complexity.

 (f)  Leaf travel (LT) (Masi et al 2013). LT indicates the average distance traveled by the MLC leaves. Because 
LT was originally designed for single full arc treatments, this metric is divided by the treatment’s 
corresponding arc length to allow for comparisons with treatments with multiple arcs or partial arcs. 
Here the metric is denoted ‘LT/AL’ to establish this modification.

 (g)  Mean dose rate variation. This metric is defined as the sum of dose rate variations from all control 
points, divided by arc length (to allow comparisons of plans with different numbers of control points).

 (h)  Mean gantry speed variation. Like mean dose rate variation, this index is the sum of variations in 
gantry speed, divided by arc length.

 (i)  Percentage of MLC gaps  >10 mm. This metric describes the cumulative window width for MLC leaves. 
Plans with a small cumulative metric indicate the use of many small MLC gaps. Here we choose 10 mm 
as an appropriate threshold in order to delineate the difference between large and small leaf gaps.

 (j)  Mean tongue and groove index. This index is calculated for each pair of leaves and for each control 
point as a fraction of the MLC gap adjacent to a consecutive leave. The mean index is then obtained by 
averaging all the pairs of leaves inside the beam and all the control points.

 (k)  MLC interdigitation. This index characterizes the overlap between consecutive leaves from opposing 
banks with respect to the maximum interdigitation, taking into account the complete irradiated area 
outline of the MLC.

Table 1. Demographics of IMRT technique, treatment planning system (TPS), linear accelerator 
manufacturer, and linac-TPS combination for the sample of this study.

N %

IMRT technique

Dynamic MLC 93 27.1

Static MLC 43 12.5

VMAT 207 60.3

Linear accelerator manufacturer

Elekta 39 11.4

Varian 304 88.6

Treatment planning system (TPS)

Eclipse 249 72.6

Pinnacle 69 20.1

RayStation 9 2.6

Othera 16 4.7

Linac-TPS combination

Elekta-Eclipse 1 0.3

Elekta-Pinnacle 24 7.0

Elekta-RayStation 4 1.2

Varian-Eclipse 248 72.3

Varian-Pinnacle 45 13.1

Varian-RayStation 5 1.5

a Other TPS include XiO, iPlan, Monaco, and Oncentra.

Phys. Med. Biol. 63 (2018) 205015 (10pp)
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 (l)  Mean MLC speed variation. The mean variation in MLC speed is computed as the sum of MLC speed 
variations (i.e. MLC accelerations), divided by the total leaf travel.

 (m)  Mean Gap speed variation. The mean variation of gap sizes is computed as the sum of gap size 
variations, divided by the total leaf travel.

2.3. Data analysis
To quantify the previously described complexity indices, a MATLAB-based software called PlanAnalyzer was 
used to read the DICOM plans submitted by the institutions undergoing phantom credentialing (Hernandez 
et al 2018). These measures of plan complexity were compared against the dosimetric error found for each 
delivered plan. The average TLD error was defined as the average magnitude percentage difference between 
the TPS-calculated doses and the corresponding measured doses for the TLD in the H&N phantom (six TLD 
per phantom). Because point dosimetry may not fully characterize the irradiation conditions, plan error was 
also measured by the percentage pixels passing from radiochromic film gamma analysis, following IROC’s 
protocol for analysis with the criteria of 7% dose agreement and 4 mm distance to agreement (Molineu et al 
2013).

Correlations between complexity metrics and phantom plan error were determined using Spearman’s rank-
order correlation coefficients (with Bonferroni corrections applied for multiple comparisons). For the purposes 
of this work, the strength of the association in absolute value was defined as follows: 0–0.19 was regarded as ‘no 
correlation’, 0.20–0.39 as ‘weak’, 0.40–0.59 as ‘moderate’, and 0.60–1 as ‘strong’. Correlations were evaluated 
for the entire sample, as well as according to TPS (Pinnacle and Eclipse), machine type, and delivery technique, 
as delineated in table 1. Similarly, poor phantom results, those with at least one TLD measuring  >5% error, were 
segregated, and the same analyses were applied to visualize whether such clinically underperforming plans had 
distinguishing features.

3. Results

3.1. The relationship between TLD-based plan error and complexity metrics
Despite the uniformity of the phantom and dose objectives, the plans in this study had a comprehensive 
assortment of treatment complexities; for example, MU used in delivery ranged from 458 to 3358 with a mean of 
1883. Figure 1 shows the distributions of the MCS and corresponding plan error for the total sample and multiple 
subsamples examined in this work. Visually, these distributions represent poor ability of complexity metrics to 
be utilized as a means of distinguishing irradiations prone to error, at least under the circumstances examined 
herein. Other complexity metrics appeared similarly and yielded indistinguishable relationships.

Relationships between complexity metrics and plan error are shown in table 2. The only index to achieve 
significance was MLC interdigitation (p  <  0.003); no other complexity metric significantly predicted dosimetric 
inaccuracies in the calculation or delivery of the radiation dose. However, even this single significant relation-
ship, found for the total sample and also only Varian machines, had a very low correlation strength (|rs|  <  0.18), 
which indicated no clinically meaningful relationship by our criteria. The highest correlation was found between 
LT/AL and Elekta machines supported by Pinnacle (rs  =  −0.395, p  =  0.116), but this correlation coefficient was 
still classified as ‘weak’ and was not found to be a significant relationship, partly due to the small subsample size. 
From this data, it is evident that complexity metrics are not related to the TLD error observed in IROC’s H&N 
phantom practice, regardless of delivery technique, TPS, or machine manufacturer.

3.2. The relationship between gamma-based plan error and complexity metrics
Figure 2 shows the distributions of treatment complexity and corresponding average film gamma percentage 
pixels passing for two prominent metrics, MCS and MU. Much like the results of section 3.1, no significant 
relationships were evident, regardless of how the sample was broken down (rs  <  0.206, p  >  0.05). Upon further 
inspection, this result is expected because the average absolute TLD error is correlated with the average gamma 
pass rate (rs  =  −0.464, p  <  0.001), meaning similar information is provided by both methods of plan error 
measurement.

3.3. The relationship between poor performing phantom irradiations and complexity metrics
Of the 343 phantom irradiations initially analyzed, 96 cases were identified as ‘poor performers’ based on a 
threshold of 5% TLD dose error for any given TLD within the phantom. Figure 3 depicts two distributions of 
treatment complexity and corresponding plan error. Like previous cases, no relationships were found to be 
significant, meaning that trends could not be distinguished in even the most concerning of irradiations.

Phys. Med. Biol. 63 (2018) 205015 (10pp)
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4. Discussion

In this study, we examined several known measures of complexity, as well as additional plan metrics. These 
metrics generally have clear physical meanings that describe the beam aperture or fluence. The rationale for 
examining sixteen metrics was because others have suggested that a single measure may not be able to reveal 
all the details of the complexity in IMRT plans, nor may an individual metric be suitable for all TPSs (Du et al 
2014, Hernandez et al 2018). By evaluating several metrics, we quantify different aspects of complexity and 
generate a much clearer, more comprehensive picture of a treatment plan and its potential challenges. Here the 
use of complexity metrics allowed for the potential identification of specific relationships that can influence plan 
performance in IROC’s uniform phantom program.

Unfortunately, the results of this work show that there are no observable correlations between complexity 
metrics and the observed plan error in recent IROC H&N phantom performance. These results are interesting 
because they corroborate well with preliminary work that evaluated the utility of the MCS with a small cohort of 
H&N phantom plans on a single machine (Tonigan 2011). It was expected that certain metrics would not pro-

Figure 1. Scatter plots of average absolute TLD error versus complexity metrics for the whole sample and several subsamples in this 
work. The distributions showed no correlation between the measured TLD error and the assessed complexity metric, here shown as 
the MCS (smaller values of MCS correspond to more complex plans). SMLC  =  static MLC, DMLC  =  dynamic MLC.

Phys. Med. Biol. 63 (2018) 205015 (10pp)
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Table 2. Summary of Spearman correlations (rs) comparing average absolute TLD error and complexity metric value for the subsamples described in this study (i.e. machine manufacturer, TPS, or delivery method).

MU MCS EM PI PM MI speed MI accel. MI total LT/AL

Mean 

DR Var.

Mean 

GS Var.

Gap  >   

10 mm Mean TG

MLC inter-

digitation

Mean MLC 

speed var.

Mean gap 

speed var.

All machines rs −0.025 0.031 −0.119 −0.082 −0.018 −0.024 −0.028 −0.007 −0.006 0.025 −0.006 −0.018 −0.080 −0.176 −0.132 −0.134

N  =  343 p 0.645 0.570 0.027 0.130 0.742 0.655 0.599 0.899 0.931 0.650 0.917 0.740 0.141 0.001* 0.015 0.013

Varian machines rs −0.022 0.040 −0.107 −0.065 −0.011 −0.010 −0.011 0.008 0.002 0.039 0.008 0.015 −0.065 −0.174 −0.120 −0.124

N  =  304 p 0.699 0.484 0.063 0.256 0.853 0.864 0.853 0.896 0.976 0.500 0.890 0.798 0.256 0.002* 0.036 0.030

Elekta machines rs −0.016 −0.303 −0.150 −0.071 0.016 −0.241 −0.223 −0.283 −0.095 −0.237 −0.227 −0.044 −0.075 0.002 −0.130 −0.174

N  =  39 p 0.924 0.061 0.363 0.668 0.922 0.140 0.173 0.081 0.636 0.147 0.165 0.791 0.649 0.991 0.429 0.289

Pinnacle TPS rs 0.208 −0.103 0.233 0.188 0.158 0.018 0.022 0.020 −0.173 0.002 0.049 0.200 0.171 0.089 0.140 0.159

N  =  69 p 0.087 0.397 0.054 0.122 0.196 0.883 0.855 0.872 0.274 0.986 0.688 0.100 0.159 0.466 0.253 0.193

Eclipse TPS rs 0.025 0.017 −0.093 −0.058 0.055 −0.080 −0.066 −0.070 −0.059 −0.063 −0.075 0.029 −0.022 −0.110 −0.131 −0.104

N  =  249 p 0.697 0.785 0.142 0.364 0.390 0.208 0.298 0.269 0.467 0.322 0.236 0.646 0.730 0.082 0.039 0.102

Varian  +  Eclipse rs 0.024 0.019 −0.094 −0.058 0.056 −0.078 −0.065 −0.070 −0.054 −0.065 −0.076 0.028 −0.022 −0.114 −0.131 −0.106

N  =  248 p 0.708 0.768 0.141 0.362 0.382 0.221 0.306 0.274 0.509 0.309 0.236 0.659 0.725 0.073 0.039 0.096

Varian  +  Pinnacle rs 0.143 0.116 0.235 0.200 0.080 0.149 0.124 0.127 0.327 0.103 0.192 0.144 0.124 −0.042 0.231 0.242

N  =  45 p 0.349 0.447 0.121 0.187 0.603 0.327 0.417 0.405 0.110 0.499 0.207 0.344 0.417 0.782 0.127 0.109

Elekta  +  Pinnacle rs 0.296 −0.446 0.131 0.120 0.225 −0.295 −0.282 −0.314 −0.395 −0.311 −0.187 0.244 0.195 0.203 −0.144 −0.111

N  =  24 p 0.160 0.029 0.541 0.576 0.291 0.161 0.182 0.135 0.116 0.139 0.381 0.250 0.361 0.341 0.502 0.607

VMAT rs 0.005 0.021 −0.077 −0.008 0.040 0.100 0.089 0.148 −0.006 0.122 0.119 0.176 −0.008 −0.140 −0.159 −0.177

N  =  207 p 0.945 0.765 0.272 0.903 0.571 0.151 0.200 0.033 0.931 0.079 0.086 0.011 0.904 0.044 0.022 0.011

DMLC rs −0.218 0.240 −0.188 −0.079 −0.088 −0.052 −0.179 −0.220 0.065 0.160

N  =  93 p 0.036 0.021 0.071 0.450 0.402 0.623 0.086 0.034 0.534 0.127

SMLC rs 0.212 0.057 −0.003 0.119 0.097 0.067 0.111 −0.031

N  =  43 p 0.172 0.719 0.987 0.446 0.535 0.670 0.480 0.846

Note. DMLC  =  dynamic MLC, SMLC  =  static MLC, MU  =  monitor units, MCS  =  modulation complexity score, EM  =  edge metric, PI  =  plan irregularity, PM  =  plan modulation, MI  =  modulation index, LT/AL  =  leaf travel per 

arc length, DR  =  dose rate, GS  =  gantry speed, TG  =  tongue and groove.
* Correlation is significant at the 0.3% level (required for Bonferroni correction).
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duce strong correlations based on typical clinical practices: for example, variations of the dose rate are generally 
well-controlled, and many IMRT plans do not have any dose rate variation. Other studies have also described 
how some metrics, such as the MCS, do not have a large effect on IMRT QA performance, which may then trans-
late to a lack of relationship in our work (McNiven et al 2010, Rajasekaran et al 2015). Additionally, certain met-
rics provide similar information, as was determined by Hernandez et al in their comparisons of MCS, PI, and 
EM, meaning these indices should consequently produce similar results (Hernandez et al 2018). However, what 
is somewhat surprising from this work is that none of the sixteen complexity metrics even remotely produced 
viable relationships with the IROC H&N phantom results under the range of conditions evaluated. Our analyses 
show that complexity metrics were poor tools for predicting phantom performance and may have limited utility 
in determining the accuracy of treatment delivery.

Previous works examining IMRT complexity have shown mixed success in determining relationships with 
plan performance. Götstedt et al observed strong correlations between several metrics and gamma pass rates 
for both EBT3 film and portal imaging using a variety of MLC aperture shapes (Götstedt et al 2015). Likewise, 
both Masi et al and Agnew et al determined that the MCS correlates with gamma analyses for patient-specific QA 
(Masi et al 2013, Agnew et al 2014). Building on these ideas, Crowe et al suggested that there exist threshold com-
plexity values that can defined to identify plans that are likely to fail QA (Crowe et al 2014). However, others, such 
as Du et al and McNiven et al, conceded that their proposed complexity indices did not yield correlations with 
plan quality metrics (including IMRT QA) but could still have utility in limiting the uncertainty in IMRT per-
formance (McNiven et al 2010, Du et al 2014). Of particular interest, the work of McGarry et al, which observed 
QA phantom irradiations from multiple institutions, discovered weak but significant relationships between MU 
and plan quality, as well as MCS and plan quality, for all linear accelerators or Varian accelerators considered in 
their work (McGarry et al 2016). The work presented here clearly shows no indication of significant relationships 
between complexity and plan performance based on a relatively large sample of irradiations performed using 
multiple TPS, linear accelerator models, and delivery techniques.

Figure 2. Scatter plots of average gamma pass rate versus complexity metrics for all irradiations examined in this work: (a) MCS, (b) 
total MU.
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In previous works relating complexity and plan quality, patient-specific IMRT QA was typically used as a 
measure for plan performance accuracy. More recently, IMRT QA has come under scrutiny because of it is inabil-
ity to discriminate unacceptable plans (Kruse 2010, Nelms et al 2011, Kry et al 2014, Stojadinovic et al 2015). 
Between different institutions, IMRT QA is completed using a plethora of devices, delivery techniques, and cri-
teria for acceptability, which also limit the reproducibility and applicability of results derived from IMRT QA 
analysis. This work differs from previous studies of IMRT plan complexity in that it is among the first to examine 
complexity on a single patient geometry, the H&N phantom, using in situ dose measurement to characterize 
plan error for a multitude of institutions. Although both IMRT QA and IROC phantoms are designed to verify 
the accurate delivery of IMRT, this distinction is important because the phantom provides a direct comparison 
between the dose that was planned and that which was delivered, whereas IMRT QA measurements serve as a 
proxy for treatment accuracy. The H&N phantom is advantageous because all the plans observed had similar 
treatment objectives, thus eliminating the variability found between patient plans. This phantom also has a con-
ceptual advantage over IMRT QA because its analysis was designed with consistent dose delivery in mind: all its 
irradiations are processed, analyzed, and evaluated in a consistent manner, and the uncertainties of this process 
are documented and well controlled (Molineu et al 2005). Such standardized treatment limits variability and 
allows for better understanding of overall performance trends in the radiotherapy community.

However, this approach is not without its own limitations. While the phantom test can control for many 
factors that other studies could not, such as patient geometry, this process also introduces other forms of vari-
ance, which can arise from the multitude of beam models used to calculate the dose distributions. Additionally, 
because the phantom is an end-to-end assessment of the treatment delivery process, it is possible that some of the 
plan errors observed here do not have a causal link with treatment delivery, but rather other external factors, such 
as phantom setup. Fortunately, based on IROC experience, incorrect setup does not contribute near as much to 
phantom errors as do systematic dosimetric inaccuracies (Carson et al 2016). There may also exist cases for which 
our methods are not sufficiently sensitive to characterize dose errors caused by excessively complexity plans, yet 

Figure 3. Scatter plots of average TLD error versus complexity metrics for poor performing phantom irradiations: (a) MCS,  
(b) total MU.
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these would not be of clinical concern, as the measurement uncertainty for each double-loaded TLD is approxi-
mately 1.6% (Kirby et al 1992). Lastly, another factor that was not examined, but would pose a valid concern for 
patient treatment, is the potential effect of motion. Longer treatment times, as is common with high complexity 
treatments, may increase the sensitivity of dose accuracy to patient/target motion, but this could not be tested 
with a static phantom.

Though limiting the complexity of a plan may be good practice to limit some planning and delivery uncer-
tainties, other factors may contribute to the degradation of plan accuracy. First and foremost of possibilities is 
the TPS calculation, which includes the beam modeling and inputs for beam characterization. The use of MLC-
shaped beam segments, as is standard in IMRT, requires accurate modeling of several factors, including the leaf 
end, leaf transmission, and inter-leaf leakage (Ezzell et al 2009). If modeled improperly, the dose distributions 
delivered through MLC-defined apertures will have introduced error; systematic dosimetric errors have been 
documented for small fields (Followill et al 2012). Second, errors could be related to phantom or QA device posi-
tioning, which is user-dependent. Third, errors could be caused by inaccurate machine delivery characteristics, 
especially concerning the MLC positioning and dose rate accuracies. Because complexity measurement cannot 
encompass all potential failure modes, it is essential that these and other treatment delivery factors also be con-
sidered when assessing the potential for poor plan performance.

5. Conclusions

This study evaluated IMRT treatment plan complexity metrics with the purpose of identifying those which 
best predicted irradiation errors. Surprisingly, existing complexity metrics were universally not predictive of 
dosimetric errors in the IROC H&N phantom irradiations. That is, all metrics evaluated in this study failed 
to show a statistically significant relationship between phantom performance and the degree of complexity 
of the treatment plan, regardless of delivery technique, machine model, or TPS. This is interesting, because 
unlike previous experiments evaluating complexity metrics, the irradiated geometry is constant and without 
the heterogeneities or uncertainties found in real patient cases. These findings indicate that variations in beam 
complexity could not explain the disparities in phantom plan performance and that other factors affecting 
treatment delivery, such as beam modeling inaccuracies, dictate the accuracy of phantom treatment plans.
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