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Abstract
Background: Statistical process control (SPC) is a powerful statistical tool for
process monitoring that has been highly recommended in healthcare applica-
tions, including radiation therapy quality assurance (QA). The AAPM TG-218
report described the clinical implementation of SPC for Volumetric Modulated
Arc Therapy (VMAT) pre-treatment verifications, pointing out the need to adjust
tolerance limits based on plan complexity. However, the quantification of plan
complexity and its integration into SPC remains an unresolved challenge.
Purpose: The primary aim of this study is to investigate the incorporation
of plan complexity into the SPC framework for VMAT pre-treatment verifica-
tions.The study explores and evaluates various strategies for this incorporation,
discussing their merits and limitations, and provides recommendations for
clinical application.
Methods: A retrospective analysis was conducted on 309 VMAT plans from
diverse anatomical sites using the PTW OCTAVIUS 4D device for QA mea-
surements. Gamma Passing Rates (GPR) were obtained, and lower control
limits were computed using both the conventional Shewhart method and three
heuristic methods (scaled weighted variance, weighted standard deviations,
and skewness correction) to accommodate non-normal data distributions. The
‘Identify-Eliminate-Recalculate’method was employed for robust analysis.Eight
complexity metrics were analyzed and two distinct strategies for incorporating
plan complexity into SPC were assessed. The first strategy focused on estab-
lishing control limits for different treatment sites, while the second was based
on the determination of control limits as a function of individual plan com-
plexity. The study extensively examines the correlation between control limits
and plan complexity and assesses the impact of complexity metrics on the
control process.
Results: The control limits established using SPC were strongly influenced by
the complexity of treatment plans. In the first strategy, a clear correlation was
found between control limits and average plan complexity for each site.The sec-
ond approach derived control limits based on individual plan complexity metrics,
enabling tailored tolerance limits. In both strategies, tolerance limits inversely
correlated with plan complexity, resulting in all highly complex plans being
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3962 INCORPORATING PLAN COMPLEXITY INTO SPC

classified as in control. In contrast, when plans were collectively analyzed
without considering complexity, all the out-of -control plans were highly complex.
Conclusions: Incorporating plan complexity into SPC for VMAT verifications
requires meticulous and comprehensive analysis. To ensure overall process
control, we advocate for stringent control and minimization of plan complex-
ity during treatment planning, especially when control limits are adjusted based
on plan complexity.

KEYWORDS
pre-treatment verifications, PSQA, statistical process control

1 INTRODUCTION

Statistical process control (SPC), developed by Walter
A. Shewhart, is a powerful tool for monitoring production
processes. Its strength lies in establishing stability and
reducing variability using statistical techniques. Appli-
cable in various fields where output measurement is
essential, SPC is particularly effective in maintaining
process control over time.1 It identifies random versus
systematic errors in time-ordered data,prompting timely
corrective actions to elevate quality and drive continu-
ous improvement. Notably, SPC has gained widespread
application in healthcare,2–4 including quality assurance
(QA) processes in radiation therapy.1,5–7

In radiation therapy, pre-treatment plan-specific qual-
ity assurance (PSQA) is essential for validating
intensity-modulated radiation therapy (IMRT) and vol-
umetric modulated arc therapy (VMAT) plans, as well
as for monitoring their performance stability over time.8

Pre-treatment verifications typically involve compar-
ing calculated and delivered doses via gamma index
comparisons.9 Plan acceptability is determined based
on these PSQA results against established toler-
ance limits. The American Association of Physicists in
Medicine (AAPM) recommends using SPC to set these
limits specifically for each center’s PSQA results,10 with
the goal of not only meeting clinical specifications but
also refining processes, minimizing variability, and pro-
moting continuous improvement.1,11 The TG-218 report
details the application of SPC in VMAT and IMRT
pre-treatment QA,10 highlighting that results within the
control limits indicate that the process is under con-
trol, while deviations call for investigation and corrective
actions. These control limits, however, are not univer-
sal and should be locally determined, considering each
institution’s specific equipment and procedures.

The agreement between planned and actual dose dis-
tributions is influenced by both calculation and delivery
accuracy. Plan complexity is closely related to these
accuracies, emerging as an important factor in this
agreement.12–17 Consequently, tolerance limits should
consider plan complexity, as highly complex plans tend
to show greater variability in PSQA results.Various met-
rics have been proposed to quantify these complexities,

with different treatment sites requiring varying degrees
of plan complexity for clinically acceptable dose distri-
butions due to differences in target characteristics and
proximity to critical structures.18,19

Acknowledging this, the AAPM has pointed out the
importance of quantifying plan modulation20 and adapt-
ing tolerance limits according to plan complexity.10

However, the best methods to quantify plan modulation
remain subject of discussion and it is not clear how
plan complexity should be incorporated into SPC for
pre-treatment verifications.

The purpose of this study is to investigate how to
incorporate plan complexity into VMAT pre-treatment
verifications using SPC. It includes a thorough SPC
analysis, computation of multiple complexity metrics,
and evaluation of their predictive power in anticipating
PSQA failures. The study assesses different strategies
for incorporating plan complexity metrics into SPC,eval-
uating their advantages and limitations, and concludes
with recommendations for their clinical implementation.

2 METHODS

In this study we retrospectively analyzed the PSQA
results of 309 VMAT plans treated between 2019 and
2023. All plans were optimized for photon beams with
nominal energy 6 or 10 MV, with flattening filter, using
the Monaco 5.11 treatment planning system (TPS) with
radiobiological cost functions and a Monte Carlo dose
calculation algorithm. The voxel size was set to 3 × 3 ×

2.5 mm3 and the statistical uncertainty for plan dose was
1%.Treatments were delivered using an Elekta Synergy
linear accelerator (Elekta, Crawley, UK) equipped with
an Agility multileaf collimator (MLC).

The plan sample encompassed various anatomical
sites: Head-and-Neck (HN) (60 plans), lung (62), breast
(26), brain (53), prostate (46), and pelvis (62). Additional
details on the number of PTVs, dose prescriptions, and
other plan characteristics are given in the Supporting
Material (Table S1).

QA measurements of VMAT plans were performed
using the true composite method with the PTW
Octavius1500 detector array inserted in the PTW
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INCORPORATING PLAN COMPLEXITY INTO SPC 3963

Octavius4D phantom.21 This system recorded 2D array
measurements as a function of gantry angle at differ-
ent time intervals, facilitating the reconstruction of a 3D
dose volume in the cylindrical phantom.22,23

Following the recommendations from AAPM,10 mea-
surements were compared with calculated doses via
3D absolute 𝛾-analysis using the 3%/2 mm criteria
with global normalization (90% of maximum dose) and
a dose threshold of 10%. PTW VeriSoft software 6.1
was used and both Gamma Passing Rate (GPR) and
average gamma index values were collected.

2.1 SPC method

The I-chart plot was used to monitor PSQA results and
control the process behavior. This chart visually repre-
sents time-ordered data and upper and lower control
limits (LCL) were computed from the obtained results
and the differences between consecutive points.

In this study we followed the definitions of control lim-
its and action limits as given by Miften et al.10 The control
limit was defined as a boundary where the process oper-
ates with non-random error and is synonymous to the
tolerance limit. As the maximum value of the GPR is
bounded to 100%, the only tolerance limit for PSQA
results was the LCL. The action limit was defined as
the limit value where a negative clinical impact for the
patient could occur; in this study the universal 90% value
for the action limit recommended in the TG-218 report
was used.

Initially, we applied the conventional Shewhart
method10,24–26 for the determination of the LCL values.
However, this method was developed under the normal-
ity assumption, and several studies have demonstrated
that the distributions of GPR values are highly skewed
and not normally distributed.27–29 To address this chal-
lenge, we explored the Johnson transformation30 and
the Box–Cox power transformation methods31 in an
effort to normalize the data, thereby rendering the She-
whart method applicable. The normality of the original
and transformed datasets were evaluated using the
Anderson-Darling test and visually inspected through
Quantile-Quantile (Q-Q) plots.

Additionally, we incorporated three different heuristic
methods for computing the LCL: the scaled weighted
variance (SWV) method,32 the weighted standard devi-
ations (WSD) method,33 and the skewness correction
(SC) method,34 beneficial for their independence from
specific data distribution assumptions. These methods
have been proven effective in determining LCL val-
ues for non-normal GPR distributions.35,36 To improve
the robustness of the methodology when retrospec-
tively applying it to unknown processes, the ‘Identify-
Eliminate-Recalculate’method36 was used.This method
involved initial LCL determination with all data points,
followed by iterative elimination of out-of -control points
and recalculation until all points were in control. A

detailed description on how to apply these heuris-
tic methods and the ‘Identify-Eliminate-Recalculate’
method can be found in the publication from Xiao et al.36

2.2 Plan complexity analysis

Plans were exported from the TPS in DICOM format
and evaluated using the PlanAnalyzer software, coded
in MATLAB,which computes multiple complexity metrics
and plan parameters.37 Numerous complexity metrics
have been identified in the literature,18,19 with several
metrics targeting analogous aspects of treatment plans
and showing strong correlations.37 To ensure a com-
prehensive analysis, we chose a variety of complexity
metrics that span a broad spectrum of plan character-
istics, including the aperture size, aperture irregularity,
leaf dynamics, and variations in both dose rate and
gantry speed. The following eight complexity metrics
were assessed:

1. Plan Irregularity (PI), indicating deviation of the beam
aperture shapes from a circle. Its minimum value is 1,
which would correspond to a perfect circle.38

2. Modulation Complexity Score (MCS), evaluating the
MLC aperture variability in both shape and area.12,13

The lower the MCS value, the higher the plan
complexity, which ranges from 1 to 0.

3. Modulation index total (MItotal),quantifying variations
in MLC speed and acceleration, gantry speed, and
dose rate.14

4. Edge Metric (EM), calculating beam aperture com-
plexity based on the ratio of the MLC side length and
the aperture area.39

5. Leaf travel divided by the arc length (LT/AL), quanti-
fying the average distance travelled by moving leaves
divided by the total arc length.13,37

6. Mean MLC Gap (meanGap), calculating the aver-
age opening of the leaf pairs defining the beam
aperture.40

7. First quartile of the distribution of leaf pair open-
ings (Q1Gap), providing the 25th percentile of leaf
pair openings. This is similar to meanGap but might
be more indicative of small gap sizes as it is less
affected by the presence of larger gaps.

8. Mean tongue-and-groove index (TGi), determined as
the ratio of the average distance between adjacent
leaves and the mean MLC gap and indicating the
MLC aperture irregularity.40

We analyzed the variation and distribution of these
metrics and their correlation with GPR values using
Spearman’s correlation coefficient. Receiver Operating
Characteristic (ROC) curves were computed to assess
each complexity metric’s ability to predict plan accept-
ability. ROC curves are graphical plots that provide
the true positive rate TPR (correct predictions of real
failures) as a function of the false positive rate FPR
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3964 INCORPORATING PLAN COMPLEXITY INTO SPC

(wrong predictions of failures). In this study, they indi-
cate the capability of each complexity metric to act as a
binary classifier for plan acceptability as its discrimina-
tion threshold is varied. For each ROC curve, its area
under the curve (AUC) was computed to quantify the
performance of each metric as a binary classifier (the
ideal value being 1). Further information on the appli-
cation of ROC curves to the optimization of PSQA
verifications can be found in the literature.41

2.3 SPC analysis strategies

Two distinct strategies were implemented to integrate
plan complexity into SPC analysis:

2.3.1 Strategy 1: Analysis per treatment
site

This strategy focused on differences between var-
ious treatment sites. Separate SPC analyses were
conducted for each site, such as HN, lung, breast,
brain, prostate, and pelvis. To investigate whether these
differences could be attributed to variations in plan com-
plexity, the relationship between the site-specific LCLs
and the average complexity for each site was evaluated.

2.3.2 Strategy 2: Analysis based on plan
complexity

The second strategy focused on how plan complex-
ity affects control limits in the PSQA process. Rather
than categorizing plans by treatment site, they were
grouped based on their complexity metrics. A sliding
range method was used to form groups of plans cen-
tered at specific complexity levels. First, the 60 plans
with the lowest complexity were grouped and their LCL
was computed. Next, this group of plans was progres-
sively shifted by intervals of 20 plans to include plans
with gradually increasing complexity and the LCL was
computed for each new group, thus allowing for an
assessment of the impact of plan complexity on the
SPC control limits. This approach generated overlaps
between adjacent groups, which was useful to qualita-
tively estimate the uncertainties due to the finite number
of plans and the sample size used.

3 RESULTS

3.1 SPC analysis and predictive power
of complexity metrics

The distribution of measured GPRs did not adhere to the
normal distribution; the Anderson-Darling test yielded a
value of 0.777 at a 5% significance level, thus rejecting

F IGURE 1 LCL values obtained using the three heuristic and the
Shewhart procedures. Each symbol denotes an iteration of the
‘Identify-Eliminate-Recalculate’ method, which progressively
eliminated out-of -control points until all data points were in control.
LCL, lower control limit; SC, skewness correction method; SWV,
scaled weighted variance method; WSD, weighted standard
deviations method.

the hypothesis of normal distribution.This non-normality
persisted after applying Johnson and Box–Cox power
transformations, with statistics remaining at 2.0. Q-Q
plots further evidencing this non-normality are provided
in Figure S1 of the Supporting Material.

The LCL values determined through heuristic meth-
ods (SC, SWV, WSD), showed close similarity, rang-
ing between 91.7% and 92.1% depending on the
method applied (see Figure 1). The ‘Identify-Eliminate-
Recalculate’ strategy consistently removed the same
five out-of -control data points across all heuristic meth-
ods, yielding LCL values derived solely from in-control
cases. The number of iterations for convergence var-
ied by method: SC required four, SWV three, and WSD
two iterations. In contrast, the Shewhart procedure,
based on the assumption of normal data distribution,
needed more iterations to converge and resulted in a
LCL = 94.2%, approximately 2% higher than those from
the heuristic methods.

Due to the similarity of results from the heuristic
methods, subsequent results will focus on the WSD
method,chosen for its alignment with SWV results (both
in between those from the SC and the Shewhart meth-
ods) and its faster convergence compared to other
methods.

The control chart for PSQA process data, depicted
in Figure 2, identified five plans as out-of -control (i.e.,
below the LCL). These plans comprised three pelvic
and two breast cases, constituting 1.6% of the 309
plans evaluated. The Shewart procedure, assuming a
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INCORPORATING PLAN COMPLEXITY INTO SPC 3965

F IGURE 2 I-chart for the pre-treatment verification process, with symbols representing time-ordered results. Black symbols indicate
in-control results, while red symbols show out-of -control data points. GPR, gamma passing rate; LCL, lower control limit.

F IGURE 3 Relationship between GPR and evaluated plan complexity metrics with their corresponding Spearman’s correlation coefficient r.
Arrows indicate the direction of increasing plan complexity for each metric. Note that plan complexity increases with the score for PI, MI, EM,
LT/AL, and TGi, while for MCS, meanGap, and Q1Gap plan complexity decreases with the metric’s value. EM, edge metric; GPR, gamma passing
rates; LT/AL, leaf travel divided by the arc length; MI, modulation index; meanGAP, mean MLC gap; PI, plan irregularity; TGi, tongue-and-groove
index.

normal distribution, would flag a much higher number
of out-of -control plans (27 cases in Figure 2 with GPR
below 94.2%). All GPR results were above the lower
action limit of 90%, indicating the need for investigation
but not for immediate action.

A strong correlation (Spearman’s 𝜌 = −0.87) was
found between GPR and average gamma values, as
detailed in Figure S2 of the Supporting Material. Hence,
GPR was chosen as the sole criterion for plan accept-
ability in subsequent SPC analyses.

The analysis of complexity metrics across all treat-
ment plans revealed a broad spectrum of values. The
ranges for each metric were 1.5–10.3 for PI, 0.07–0.44
for MCS, 0.77–1.60 for MI total, 0.03–0.12 for EM,

0.4–5.7 for LT/AL, 0.08–0.34 for TGi, 18.3–46.7 mm for
meanGap, and 13.1–34.7 mm for Q1Gap.

Figure 3 illustrates the relationship between plan
complexity metrics and GPR. Generally, as plan com-
plexity increased, average GPRs tended to decrease,
indicating a higher likelihood of PSQA failure in more
complex plans. The five out-of -control cases, all with
GPRs below 92.1%, demonstrated high plan com-
plexity, particularly as indicated by the metrics PI,
MCS, TGi, meanGap, and Q1Gap. However, the cor-
relations between GPRs and complexity metrics were
relatively weak, with the highest Spearman’s corre-
lation coefficients at 0.55 for Q1Gap and 0.53 for
MCS.
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3966 INCORPORATING PLAN COMPLEXITY INTO SPC

F IGURE 4 ROC curves for each evaluated metric, including their corresponding AUC for each curve. AUC, area under the curve; FPR, false
positive rates; ROC, receiver operating characteristic; TPR, true positive rates.

ROC curve analysis, shown in Figure 4, assessed
the predictive capability of different complexity metrics
in identifying GPR results below the LCL of 92.1% as
failures (“positives”). The best-performing metric was
PI (AUC = 0.893), followed by MCS (AUC = 0.869),
Q1Gap (AUC = 0.856), and TGi (AUC = 0.843). Con-
sequently, these four metrics were the ones selected in
subsequent analyses.

3.2 Introducing plan complexity into
the SPC analysis

3.2.1 Strategy 1: Analysis per treatment
site

In this strategy plans were grouped by treatment site
and separate analyses were conducted to compute
site-specific LCL values from the corresponding GPRs
(given in Figure S3 of the Supporting Material). The
LCLs obtained for each treatment site were 98.2% for
prostate, 93.2% for brain, 92.0% for lung, 91.1% for HN,
88.8% for pelvis, and 88.8% for breast. Complex sites
such as HN and pelvis showed lower LCL values com-
pared to simpler sites like prostate. Figure 5 illustrates
the correlation between site-specific LCLs and average
complexity metrics for each site, focusing on the four
metrics with the highest AUC from earlier analysis. A
clear correlation is evident, with LCL values inversely
related to plan complexity.

Using these site-specific control limits reduced the
number of out-of -control plans from five to four. Interest-
ingly, the four out-of -control plans were prostate plans
with high GPRs ranging between 96.8% and 98%,
only slightly lower than the 98.2% LCL for prostate.

In contrast, plans from more complex sites were all
classified as in control. This outcome highlights that
site-specific LCLs are more forgiving for highly com-
plex sites but stricter for simpler sites, possibly resulting
in out-of -control classifications despite high measured
GPRs.

3.2.2 Strategy 2: Analysis based on plan
complexity

The analysis of the complexity of individual plans within
each treatment site, shown in Figure 6, highlighted that
individual plans within the same site exhibit significant
variability in complexity. Furthermore, overlaps in com-
plexity metrics across different sites show that some
plans may exhibit higher complexity than others from
sites with lower average complexity, and vice versa.

To further explore the relationship between SPC limits
and plan complexity, in strategy #2 plans were grouped
by their individual complexity degree, regardless of their
treatment site, and the shifting range method was used
to compute LCLs through the full spectrum of com-
plexities. Figure 7 summarizes the results of applying
this method to the four best-performing metrics from
the earlier ROC analysis, showing LCLs decreasing
with increasing plan complexity. Clear differences were
observed across metrics. For PI, LCLs ranged from
GPR = 88% to 95%, with all data points in control. For
other metrics,higher LCLs were found (e.g., up to 98.2%
for TGi), leading to some data points being flagged
as out-of -control. The number of out-of -control points
varied depending on the metric used, with five for MCS,
two for Q1 Gap, and four for TGi, considering the linear
fits in Figure 7. Notably, most out-of -control data points

 24734209, 2024, 6, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17081 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [01/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INCORPORATING PLAN COMPLEXITY INTO SPC 3967

F IGURE 5 Relationship between LCL values and average complexity metrics for each treatment site, including a linear fit with its
correlation coefficient r2. Arrows indicate the direction of increasing plan complexity for each metric. LCL, lower control limit.

F IGURE 6 Complexity metrics as a function of the treatment site.

F IGURE 7 GPR results and LCL values relative to plan complexity. Circles represent GPR results. Red crosses indicate LCLs for similar
complexity plans, positioned at each group’s median complexity, with the dashed line indicating the linear fit. GPR, gamma passing rate; LCL,
lower control limit.

corresponded to plans with low complexity and high
GPRs (even higher than 98% for MCS), a result of the
stricter LCLs for lower complexity plans, while all highly
complex plans were consistently classified as in control.

4 DISCUSSION

We applied the SPC methodology to determine LCLs
for measurement-based pre-treatment verifications and

explored the incorporation of plan complexity into
SPC analysis. In line with previous studies,27–29 we
confirmed the non-normal distribution of measured
GPRs, which persisted even after attempting to nor-
malize the data through statistical transformations.
The heuristic methods (SC, SWV, WSD), combined
with the iterative ‘Identify-Eliminate-Recalculate’ pro-
cedure, proved effective and robust for SPC analysis
of retrospective GPRs, corroborating findings by Xiao
et al.36
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3968 INCORPORATING PLAN COMPLEXITY INTO SPC

The LCL value of 92.1% for all VMAT plans, irre-
spective of treatment site or plan complexity, was lower
than the 95% universal value proposed in the TG-218
report.10 This variance can be attributed to the equip-
ment and procedures specific to each institution, the
distribution of anatomical sites treated,and the method-
ology employed for calculating the LCL. For instance,
employing the Shewhart procedure in our analysis
yielded a LCL of 94.2%. Moreover, our LCL of 92.1%
aligns well with findings from similar studies25,35 and is
slightly higher than the example values TG-218 provided
for VMAT plans.

We also want to highlight that, despite weak corre-
lations between complexity metrics and PSQA results,
several individual complexity metrics notably succeeded
in classifying plan acceptability. PI emerged as the
most predictive metric (AUC = 0.893), followed by MCS,
Q1Gap, and TGi. PI’s simplicity in computation, com-
pared to other metrics such as MCS and MItotal, made
it a practical choice, though the four metrics with the
highest AUC were included in the subsequent analyses
for completeness.

In this study,we selected eight complexity metrics cov-
ering a broad spectrum of complexity aspects and plan
characteristics,aiming to identify the most critical factors
influencing plan acceptability. The metrics demonstrat-
ing the highest predictive power were those associated
with MLC aperture characteristics, such as aperture
irregularity (PI and TGi), aperture size (Q1Gap), and the
variability in aperture shapes and sizes (MCS). These
findings are in line with those of the wider community,
highlighting the significance of MLC aperture-related
factors in determining plan acceptability.42 However, it is
important to note that the relevance of these metrics
might vary depending on local equipment and proce-
dures. Therefore, we recommend conducting a local
evaluation to ascertain the predictive power of dif-
ferent complexity metrics, rather than applying these
findings universally.

The two strategies evaluated for incorporating plan
complexity into SPC analysis used a different approach.
The first strategy, focusing on LCLs per treatment
site, revealed large differences across sites, in agree-
ment with the findings by Xiao et al.36 Interestingly,
this strategy yielded strong correlations between LCLs
and the average plan complexity at each site (see
Figure 5). Hence, this site-specific approach serves as
an indirect way to account for plan complexity in the
management of pre-treatment verifications. However,
this strategy also altered the outcome of the SPC anal-
ysis radically, identifying a completely different set of
out-of -control plans and classifying all highly complex
plans as in control.

Note that the ‘per-treatment site’ strategy does not
require computing complexity metrics. Although we
computed several metrics to explore the relationship
between control limits and average plan complexity for

each site, this strategy can be applied by determin-
ing control limits for each anatomical site independently
of complexity metrics. Nonetheless, we believe that
assessing complexity for individual plans is useful to
control plan complexity, thus keeping it within a safe
range and minimizing the associated uncertainties. Tai-
loring this range to each treatment site is crucial, as
it facilitates the identification of plans with excessive
complexity that might benefit from being replanned.
While commercial TPSs offer various tools to manage
and reduce plan complexity, such as limiting the num-
ber of monitor units (MUs) or other specific features,43

these tools vary across different TPS platforms. This
approach aligns with class solution concepts, where
plan parameters are controlled to maximize consistency
and quality.44,45 Ideally, complexity metrics should be
computed and handled directly into the TPS for better
management during the planning stage.16–19

The second strategy, focusing on LCLs based on
individual plan complexity, enabled the tailoring of
LCLs for each plan. This strategy was justified by
the large variability in plan complexity within each
treatment site, which is in line with the difficulty to
differentiate between treatment sites using complexity
metrics.46 Like the site-specific approach, strategy #2
effectively classified most high-complexity plans as in
control, with most out-of -control plans exhibiting low
complexity. The number of out-of -control plans var-
ied depending on the complexity metric used, and
this approach required complexity quantification for
all plans, a challenging task with current commercial
TPSs.47

Both strategies pose risks. Excessively low LCLs for
complex plans may compromise treatment accuracy;
in such instances, the lower action limit must be con-
sidered, and clinical acceptability should be carefully
evaluated. Conversely, high LCLs for low-complexity
plans can be overly sensitive to minor uncertainties
that hold little clinical relevance. To mitigate this, an
upper threshold for the LCL could be set, for instance
around GPR = 97% -98%. Finally, measurement-based
pre-treatment verifications are often carried out with
the purpose of controlling plan complexity and the
impact of its associated uncertainties.17 However, this
goal could be undermined if control limits are adjusted
based on the degree of plan complexity. While the
clinical impact of adjusting SPC limits based on plan
complexity is expected to be small, managing PSQA
failures can be resource-intensive and potentially lead
to treatment delays. By refining these limits to take
into account plan complexity, we can assign lower LCL
values to plans where higher complexity is needed,
which can be useful in reducing the incidence of PSQA
failures and can contribute to optimizing the clinical
workflow.

In our opinion, complexity metrics should ideally be
available at the TPS to facilitate the minimization of
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plan complexity during treatment planning and reduce
uncertainties in dose calculation and delivery. Control
limits can then be adjusted based on the individual
plan complexity (strategy #2), which can be useful to
prevent out-of -control instances in challenging clinical
cases in which highly complex plans are needed. For
this approach, the complexity metric with the highest
predictive power for each center should be used. In
situations where tools for computing complexity met-
rics are unavailable,categorizing plans by treatment site
(strategy #1) remains a valid alternative. Regardless of
the chosen strategy, manual adjustments to clinically
used tolerance limits may be necessary to keep them
within an appropriate range. Furthermore, action lim-
its for plan acceptability should be based on clinical
criteria.

A limitation of our study is the reliance on GPR
as the metric for determining plan acceptability. It has
been observed that GPR may not be highly sensitive
to discrepancies between calculated and delivered dose
distributions, nor does it necessarily correlate well with
their clinical impact.48 Despite these shortcomings, we
chose GPR for its endorsement by current guidelines10

and its widespread use in clinical settings. Importantly,
the methodologies and strategies we have introduced
are adaptable and can be applied irrespective of the
specific metrics utilized to assess plan acceptability.41

While our research concentrated on measurement-
based verifications, the approach to adjusting SPC limits
that we propose can also be extended to secondary
dose calculations or other software-based verification
methods.49–51

Another limitation is that it was conducted within a
single institution. As indicated in the TG218 report,10

tolerance limits for PSQA are influenced by local equip-
ment, processes, case types, and physicist’s expertise.
Therefore,our results should not be directly extrapolated
to other institutions. However, we believe that our strate-
gies and findings will assist centers to incorporate plan
complexity into their handling of pre-treatment verifica-
tions.

Finally, to simplify the SPC analysis and interpreta-
tion we focused on single complexity metrics. AI models
utilizing multiple plan parameters and complexity met-
rics show promise as more effective classifiers for plan
acceptability52–54 and it is reasonable to believe that
such AI models could outperform single-metric clas-
sifiers and further improve the approach’s efficiency.
Future research is needed to investigate how these AI
models can be incorporated into the management of
pre-treatment verifications and SPC methodologies.

5 CONCLUSIONS

SPC proves effective in reducing variability in VMAT
pre-treatment verifications. Our investigation of two dis-

tinct strategies for integrating plan complexity into SPC
has revealed a strong dependency of control limits
on the complexity of treatment plans. The first strat-
egy, focusing on different treatment sites, showed a
direct correlation between control limits and the aver-
age plan complexity at each site. The second strategy,
taking a more individualized approach, derived control
limits directly from the complexity of each treatment
plan. In both strategies, tolerance limits decreased as
plan complexity increased, leading to higher complex-
ity plans consistently meeting control standards, while
some less complex plans with high GPRs did not. This
outcome contrasts markedly with scenarios where plan
complexity was not considered, where all plans deemed
out-of -control were of high complexity.The incorporation
of plan complexity into SPC requires meticulous analy-
sis and possibly manual adjustments to tolerance limits.
Our recommendation is to control and minimize plan
complexity during treatment planning for reducing the
uncertainties in clinical plans and for maintaining control
throughout the entire process, especially when control
limits are tailored to plan complexity.
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