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ABSTRACT: Herein, we report the utilization of Ni-Ni 
species as a manifold for enabling a “ring-walking” event 
by a dynamic translocation of the metal center over the 
arene backbone. Experimental and computational studies 
support a translocation occurring via a 1,2-hydride shift. 
The synthetic applicability of the method is illustrated in 
a series of C–C bond formations that occur at distal 
C(sp2)–H sites of simple aryl pivalates.  

 
Prompted by the seminal stoichiometric work of Kleiman 
and Dubeck,1 the recent years have witnessed significant 
progress in Ni-catalyzed C(sp2)–H functionalization reac-
tions.2,3 Unlike other metals in the d10 series, the reactivity 
of nickel catalysts in C(sp2)–H functionalization remain 
predominantly confined to the utilization of proximal, yet 
strongly-coordinating, directing groups, with bond for-
mation occurring at the ortho position (Scheme 1, top).3 
Despite the advances realized, particularly in Catellani-
type reactions,4 the means to enable distal C(sp2)–H func-
tionalization aided by Ni species without recourse to di-
recting groups, acidic C(sp2)–H bonds or aryl halides5 
still remains an unexplored cartography, particularly with 
phenol C–O derivatives as traceless entities (path b).6  

Scheme 1. Ni-catalyzed C(sp2)–H Functionalization. 

 
Scheme 2. Ring-Walking from ArOPiv by Ni-Ni Complexes. 

 

Recently, our group described the involvement of unor-
thodox dinickel oxidative addition complexes I in the C–
O bond-cleavage of aryl pivalates (Scheme 2).7 The arene 
fragment interacts with the Ni–Ni core via both a s-bond 
and a h2-interaction, with a bridging pivalate between the 
two Ni centers.8,9 Given that NBO analysis of I showed a 
symmetrical distribution of charge at the Ni–Ni core,7 we 
wondered whether a dynamic motion between the Ni–Ni 
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core might enable a formal translocation of the Ni center 
at a proximal C(sp2) site by forming a new s-bond and a 
h2-interaction with the arene backbone. If successful, 
such a process might constitute a formal metal transloca-
tion over the arene backbone,10,11 thus setting the basis for 
establishing a new rationale for enabling Ni-catalyzed 
C(sp2)–H functionalization of C–O electrophiles via 

“ring-walking” in the absence of directing groups or met-
alation events.12 Prompted by our interest in Ni-catalyzed 
C–H functionalization,5,13 we report herein the successful 
realization of this goal. Experimental and DFT studies 
demonstrate the viability for enabling a “ring-walking” 
prior to C–C bond formation, with a mechanism likely 
arising from an abnormal 1,2-hydride shift. 

Scheme 3. Synthesis of Ni-Ni Species from p-Extended and non-p-Extended Aryl Pivalates. 

 
a Conditions: Aryl pivalate (1 equiv), Ni(cod)2 (2 equiv), PCy3 (6 equiv) in toluene (0.1 M), 50 ºC for 6 h. b 4 h. c Conditions: Aryl 
pivalate (1.1-1.6 equiv), [Ni(PCy3)2]2(N2) (1 equiv) in toluene (0.1 M), rt for 6 h. d Complex 4 was characterized in situ due to its 
instability. e Using m-tolyl pivalate at rt for 12 h, resulting in 6:7 (86:14 ratio). f Utilizing p-tolyl pivalate at rt for 19 h, resulting in 
6:7 (88:12 ratio).

Our study began by preparing a representative set of Ni-
Ni complexes by exposure of aryl pivalates to 
Ni(cod)2/PCy3 at 50 ºC or [Ni(PCy3)2]2N2 at rt in toluene 
(Scheme 3).14 The choice of 1-8 was not arbitrary; 1 and 
2 were designed to study the dynamics on p-extended 
systems – substrates particularly suited for Ni-catalyzed 
C–O functionalization6 – whereas 3-7 would provide an 
opportunity to extend the “ring-walking” event to non-p-
extended arenes. Moreover, 3 and 4 would allow to ra-
tionalize whether the nickel translocation might be af-
fected by proximal fluorine atoms on electronic grounds15 
whereas the study of 5-7 could offer an opportunity to ra-
tionalize the extension at which “ring-walking” might oc-
cur at remote C(sp2)–H sites. The preparation of 3-7 is 
particularly noteworthy, representing the first examples 
of isolation of dinuclear oxidative addition species from 
non-p-extended aryl pivalates.16 While these complexes 

could unambiguously be characterized by NMR spectros-
copy, x-ray crystallography of 1, 2, 3, 5, 6 and 8 univo-
cally confirmed the interaction of the arene with the Ni–
Ni core by both a s-bond and a h2-interaction.17 In line 
with these observations, 1-8 show a representative dp of 
22.5-27.5 ppm with a Ni–Ni bond ranging from 
2.3855(4)-2.433(3) Å.8 The dinuclear structure is com-
pleted by a bridging pivalate ligand having identical Ni–
O bond distances.18  

With a series of well-defined Ni-Ni complexes in hand, 
we turned our attention to study the viability for trigger-
ing a “ring-walking” throughout the arene backbone. We 
anticipated that the motion required for enabling a nickel 
translocation might be facilitated by a subtle temperature 
control or stereoelectronic effects. To this end, we moni-
tored the stability of 1 at 50 ºC by 31P{1H}NMR spectros-
copy (Scheme 4). A ratio of 1:2 (1:1.2 ratio) was observed 
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after 6 h, thus confirming the viability for nickel translo-
cation over a p-extended backbone. This ratio reached a 
thermodynamic equilibrium at 1:1.7 ratio of 1:2 that 
could not be improved regardless of the temperature uti-
lized due to the inherent instability of these complexes in 
solution. Notably, an otherwise identical 1:2 ratio was 
found by exposure of 2 after 6 h at 50 ºC. Intriguingly, an 
equimolar ratio of 3:4 was found when monitoring the 
isomerization of 3 at 50 ºC over 6 h, thus arguing against 
the positive impact that fluorine atoms might have for sta-
bilizing adjacent s C(sp2)–metal bonds.15 While isomeri-
zation of analytically-pure 5 at 50 ºC revealed rapid for-
mation of 5:6:7 in a 1:4.7:1.4 ratio after 4 h, nickel trans-
location could also be enabled at rt leading to an other-
wise identical ratio of 5:6:7 from pure 5 after 6 days or 
from 6:7 mixtures (86:14) after 24 h (Scheme 5). Notably, 
I was not detected in the crude mixtures. This observation 
could be interpreted on the basis of the computed energies 
for the complexes depicted in Scheme 5, corroborating 
that I was the less stable isomer in the Ni–Ni series.14     

Scheme 4. Ring-Walking of Ni-Ni species 1 & 3.a 

 
a An otherwise identical 1:2 ratio was reached independently on 
whether the study was conducted with analytically pure 1 or 2. 

Given that Ni-Ni species have shown to act as reservoirs 
of monovalent aryl-Ni(k2-OPiv)(PCy3) and Ni(0)(PCy3) 
species,7 we wondered whether the presence of additional 
PCy3 might destabilize the Ni–Ni core, either facilitating 
the formation of aryl-Ni(k1-OPiv)(PCy3)2 or “ring-walk-
ing” by binding Ni(0)(PCy3)2 to the arene backbone in a 
h2-manner. Unfortunately, this was not the case and 
nickel translocation of 1 in the presence of additional 
PCy3 resulted in a 1:1.4 ratio of 1:2 after 7 days at 50 ºC. 
Similarly, a deleterious effect was observed in the pres-
ence of external bases such as CsOPiv or Cs2CO3,14 thus 
arguing against the intervention of concerted metalation-
deprotonation pathways.19 Taken together, these observa-
tions reinforce the importance that the Ni-Ni dinuclear 
core might have in the “ring-walking” event.  

Scheme 5. Ni Translocation at Remote C(sp2)–H Sites.a 

 
a An identical ratio was observed when utilizing 6:7 mixtures 
regardless whether the translocation was effected at rt or 50 ºC. 

Next, we decided to gather indirect evidence about the 
ring-walking event by studying the behavior of 1-d2 
(Scheme 6). As expected, the label at C2 was transferred 
to the C1 site in 2-d2. Notably, no “ring-walking” was ob-
served with 8, hence reinforcing the notion that Ni trans-
location is likely driven by a 1,2-hydride shift. In addi-
tion, a primary kinetic isotope effect was observed when 
comparing the initial rates of 1 & 1-d2 from parallel ex-
periments (kH/kD = 2.2). This value was in agreement with 
our observed computed value (kH/kD = 3.1), thus suggest-
ing a rate-determining C(sp2)–H bond-cleavage. 

Scheme 6. Isotope-Labelling & DFT Studies.a 

 
a Free energy profile. Energies in kcal·mol-1, calculated at the 
M06/def2-tzvpp level with solvent (PhMe) correction.  

Aiming at understanding the “ring-walking” of 1 and 2 at 
the molecular level, we turned our attention to DFT cal-
culations [Gaussian 16, M06/def2-tzvpp//B3LYP/6-
31G(d,p) + SDD for Ni with toluene as solvent (IEF-
PCM)] (Scheme 6, bottom).14 Interestingly, dinuclear 
species 2 bearing a C–Ni s-bond at C2 of the naphthalene 
ring was slightly lower in energy (1.1 kcal/mol) than its 
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C1–Ni analogue 1. However, the energy difference be-
tween 1 and 2 was not significant enough to ensure exclu-
sive formation of the latter, thus reinforcing the results il-
lustrated in Scheme 4. DFT calculations revealed that 
“ring-walking” of 1 en route to 2 might occur via 1,2-hy-
dride shift via an energetically-favorable transition state 
TS1 (26.9 kcal·mol-1) in which C–H bond-cleavage is en-
abled by formation of a Ni–H bond in Int-1.20 Interest-
ingly, the shifting hydrogen atom is shared by the two Ni 
centers at unsymmetrical distances of 1.5 and 1.9 Å and 
by the C2 carbon atom (1.6 Å). It is worth noting that a 
Ni–Ni bond is observed through the process, maintaining 
an otherwise similar Ni–Ni linkage of 2.36 Å for 1 and 2, 
and 2.38 Å for Int-1, thus indirectly suggesting that the 
bridging hydride and pivalate fragment might not affect 
the identity of the dinuclear Ni–Ni core in Int-1. An oth-
erwise similar TS2 was located by starting with 2 as pre-
cursor instead with an activation barrier of 22.9 kcal·mol-

1. Putting these results into perspective, the 1,2-hydride 
shift might not occur directly from carbon to carbon, but 
rather in a two-step process via the intermediacy of Int-1 
possessing a µ-hydride bridge between the two Ni cen-
ters. Unfortunately, all our attempts at either isolating Int-
1 or detect the formation of the highly shielded bridging 
µ-hydride by NMR spectroscopy were unsuccessful, sug-
gesting that these species might not be particularly stable 
in solution. This notion gains credence by the kinetically 
instability found for Int-1, possessing a higher energy 
when compared to both 1 and 2 (>17.0 kcal·mol-1), thus 
precluding its isolation or detection by conventional ana-
lytical techniques.  

Scheme 7. Bond Formation at Distal C(sp2)–H Sites. 

 

a ipso-Functionalization: 1, 3 or 5 (0.01-0.03 mmol), PhMgBr 
(1 equiv) in C6D6 (0.06 M), rt, 1 h. GC yields using n-decane as 
internal standard (9, 11a) or 19F NMR yields using C6H5CF3 as 
internal standard (12a); distal-functionalization: 1, 3 or 5 (0.01-
0.03 mmol) in C6D6 (0.06 M), 50 ºC for the indicated time, then 
PhMgBr (1 equiv), rt, 1 h. GC yields using n-decane as an in-
ternal standard (10, 11a-c) or 19F NMR yields using C6H5CF3 as 
internal standard. b in C6H6 at rt for 1 h. 

The results compiled in Schemes 4 and 5 suggest that a 
nickel translocation throughout the arene backbone might 
hold promise to establish a new rationale for enabling C–
C bond formations of aryl pivalates at remote C(sp2)–H 
sites. Thus, we turned our attention to study the reactivity 
of Ni-Ni species with an appropriate nucleophilic coun-
terpart (Scheme 7). As anticipated, 1-phenylnaphthalene 
9 (61%) was exclusively obtained upon exposure of 1 to 
PhMgBr at rt after 1 h. Under the limits of detection, not 
even traces of 2-phenylnaphthalene 10 were detected in 
the crude mixtures. Interestingly, however, statistical 
mixtures of 9:10 were found by addition of PhMgBr after 
exposure of 1 to 50 ºC for 6 h,21 thus confirming that 
“ring-walking” might constitute a new vehicle for ena-
bling bond formation at distal C(sp2)–H bonds of aryl 
pivalates. An otherwise similar scenario was observed 
when conducting the Kumada-Corriu reaction of 3 and 5 
(Scheme 7). While these results require stoichiometric 
amounts of Ni, our data should be assessed against the 
challenge that is addressed. Indeed, our protocol repre-
sents the first time that distal C(sp2)–H functionalizations 
can be enabled by “ring-walking” aided by Ni complexes, 
thus paving the way for designing future Ni-catalyzed en-
deavors triggered by a dynamic translocation of the metal 
center throughout the arene backbone 

In summary, we have shown that Ni-Ni species can be 
utilized as a manifold for promoting a formal “ring-walk-
ing” events in aryl pivalates, thus establishing a new ra-
tionale for enabling C–C bond formation at distal C(sp2)–
H sites initiated via functionalization of strong C–O link-
ages.22 Our study demonstrates that the substituents on 
the arene backbone and the temperature might have a 
non-negligible influence on the nickel translocation. Pre-
liminary mechanistic studies suggest that a 1,2-hydride 
shift might come into play. Further studies into the exploi-
tation of “ring-walking” events are currently underway in 
our laboratories. 
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