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Abstract 

Cardiovascular diseases (CVD) currently have a high influence on the world's population 

and this trend is expected to increase over the coming years, so it is of particular interest 

to developing new methods to enable an optimal assessment of the cardiovascular profile. 

Since the irruption of metabolomics, new approaches based on advanced analytical 

technologies such as nuclear magnetic resonance (NMR) have been applied to predict 

standard lipids, which are strongly related to cardiovascular risk. The current study shows 

the development and evaluation of 1H-NMR-based partial least squares regression (PLS) 

models to predict sphingomyelin (SM), polyunsaturated fatty acids, phosphatidylcholine, 

and total phospholipids in human serum samples. First, the regions with the highest 

correlation with the concentrations of each lipid variable were selected. Then, after an 

outlier cleaning process, 70% of the samples involved (n=139) were used to train the 

models, while the remaining 30% served to validate them. In addition, a z-score 

standardisation was performed to decrease biological variability between samples, which 

led to the best estimation models giving correlation coefficients of predicted versus 

biochemical variables above 0.88 and cross-validation errors (RMSECVs) lower than 0.7. 

However, the selected model for SM gave an r=0.82, which is consistent with the low 

correlation of the regions of its NMR spectrum with its concentration. To conclude, based 

on the optimal performance of the PLS models in this study, it can be stated that NMR 

allows a robust prediction of lipids in serum matrixes, which could be used to better assess 

the cardiovascular risk. 
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Abbreviations  

AA: Arachidonic acid 

ALA: Alpha-linoleic acid 

BUME: Butanol: methanol 

CE: Cholesteryl ester  

CVD: Cardiovascular disease  

DHA: Docosahexaenoic acid 

DOSY: Diffusion-ordered 1H NMR spectroscopy 

EPA: Eicosapentaenoic acid 

FIDs: Free induction decays 

HDL: High-density lipoprotein 

HTGL: Hepatic triglyceride lipase 

IDL: Intermediate-density lipoprotein 

LA: Linoleic acid 

LCAT: Lecithin-cholesterol acyltransferase  

LDL: Low-density lipoprotein 

LPC: Lyshophosphatidylcholine 

LPL: Lipoprotein lipase 

LV: Latent Variables 

MS: Mass spectroscopy  

NA: Non-acquired  

NIH: National Institutes of Health 

NMR: Nuclear magnetic resonance 

PC: Phosphatidylcholine 
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PL: Phospholipids  

PLS: Partial least squares regression 

PUFA’s: Polyunsaturated fatty acids  

RMSECV: Root Mean Square Error of Cross-Validation 

SM: Sphingomyelin 

SMase: Sphingomyelinase 

STOCSY: Statistical total correlation spectroscopy 

TG: Triglycerides 

TMAO: Trimethylamine N-oxide 

TMS: Tetramethylsilane 

VLDL: Very low-density lipoprotein 

WHO: World Health Organization 
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1. Introduction  

1.1. Lipid importance in CVD 

1.1.1.  Incidence of Cardiovascular disease (CVD)  

Cardiovascular disease encompasses heart and blood vessels disorders, such as ischemic 

heart disease and stroke (manifestations of atherosclerosis). They are the major cause of 

mortality, assuming 85% of cardiovascular deaths (World Health Organization 2021).   

In accordance with health organizations like the World Health Organization (WHO) and 

the National Institutes of Health (NIH), cardiovascular disease (CVD) is the leading cause 

of mortality and morbidity worldwide. Latest studies released by WHO show that 17.9 

million people died in 2019, representing 32% of global deaths. In Europe, CVDs are 

responsible for over 4 million deaths per year (Townsend et al. 2015). Due to the large 

number of risk factors associated with the disease, this trend is expected to continue, and 

the annual mortality will grow to almost 24 million by 2030 (Mozaffarian et al. 2016). 

Some of the behavioural risk factors are cigarette smoking, hypertension, obesity, 

physical inactivity, and modified lipid metabolism (Sabzmakan et al. 2014). 

1.1.2.  Lipid classification and metabolism 

Lipids play a key role in many essential processes in the body, such as acting like 

structural components (membrane), energy storage sources, signalling, and protein 

trafficking (Fahy et al. 2011). Considering that there are two groups from which lipids 

are formed: ketoacyl and isoprene groups, lipids can be divided into eight categories. 

These are: (1) fatty acyls, (2) glycerolipids, (3) glycerophospholipids, (4) sphingolipids,             

(5) saccharolipids, (6) polyketides, (7) sterol lipids, and  (8)  prenol lipids (Fahy et al. 

2011) (Table 1).  

Fatty Acyls FA Arachidonic acid 

Glycerolipids GL 1-hexadecanoyl-sn-glycerol 

Glycerophospholipids GP Phosphatidyl serine 

Sphingolipids SP Sphingosine 

Sterol Lipids ST Cholesterol 

Prenol Lipids PR Retinol 

Saccharolipids SL Kdo2-lipid A 

Polyketides PK Epothilone D 

 

Table 1. Lipids categories and examples. [Adapted from Fahy et al. 2011] 
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On the other hand, lipoproteins are a complex consisting of a non-polar lipid core          -

mostly cholesterol esters (CE) and triglycerides (TG)- surrounded by an hydrophilic 

membrane. This membrane consists of phospholipids (PL), free cholesterol, and 

apolipoproteins, which enables tissues to recognize and take up the lipoprotein particle 

(Engelking 2015). The later, together with the size and lipid composition are the premises 

that distinguish lipoproteins into 6 main classes (Table 2) (Feingold and Grunfeld 2021). 

The function of these lipoproteins is to transport lipids from the liver to surrounding 

tissues and vice versa. Lipids are transported in the hydrophobic core of the complex, the 

surface of which is polar. Therefore, they can be transported in the bloodstream (Feingold 

and Grunfeld 2021).  

 

 

Lipid metabolism divides into two main pathways: exogenous and endogenous. In the 

first one, lipids derive from the diet and are packaged as chylomicrons in the small 

intestine, carried as TG. Also, lipids provide from endogenous synthesis by the liver 

(Feingold and Grunfeld 2021). Lipoprotein (a) and VLDL are the first synthesized 

particles and their interaction with lipoprotein lipase (LPL) and hepatic triglyceride lipase 

(HTGL) form IDL and LDL particles, consecutively. The later transports cholesterol to 

peripheral tissues as it has high concentrations of both free and esterified forms (Ouimet, 

Barrett, and Fisher 2019). On the contrary, HDL particles transport cholesterol from 

peripheral tissues to the liver -reverse cholesterol transport, shown in Figure 1-.  

Table 2. Lipoprotein classes. [Obtained from Feingold and Grunfeld 2021]  
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Lipids and lipoproteins are heavily involved in inflammation as well as in other 

pathological processes, altering the function of leukocytes, vascular and cardiac cells, 

contributing to the development of several dysfunctions like obesity and insulin resistance 

(Frostegård 2013). Furthermore, these dysfunctions are associated with atherosclerosis, a 

chronic build-up of lipids deposits -mainly cholesterol-, and fibrous elements in large 

arteries (Frostegård 2013). Figure 2 shows the steps of atherosclerosis progression.  

Many studies have shown that LDL-C and its oxidized modification (oxLDL) drive the 

initiation and progression of atherosclerosis and arterial thrombosis through diverse ways, 

like the accumulation of oxLDL in macrophages, triggering pro-inflammatory responses 

and endothelial activation  (Leiva et al. 2015; Poznyak et al. 2021). Likewise, the different 

subclasses of LDL particles influence cardiovascular risk. Small dense LDL has a higher 

capacity to infiltrate into the vessel wall; therefore, it is considered more influential on 

cardiovascular risk than larger particles (Ivanova et al. 2017). HDL-C has been associated 

with cardioprotective, anti-oxidative, and anti-inflammatory effects as it reduces LDL 

oxidation as well as LDL/oxLDL accumulation in macrophages (Assmann and Gotto 

Figure 1. Exogenous and endogenous lipoprotein metabolism and reverse cholesterol transport.             

A) Exogenous pathway: Digested lipids enter the intestinal enterocytes to be assembled into 

chylomicron particles. With LPL hydrolysis, FFAs from the TG core are released for mitochondrial 

energy sustaining in muscle or for the storage in adipose tissue. B) Endogenous pathway: VLDL 

is formed in the liver from TG and CE and are hydrolysed by LPL to form IDL or VLDL. With 

HL, LDL particles are formed and internalized by hepatic and nonhepatic tissues and it also can 

be taken up by macrophages which can lead to plaque formation. C) Reverse cholesterol transport: 

Reverse cholesterol transport is a mechanism by which the body removes excess cholesterol from 

peripheral tissues and delivers them to the liver, where it will be redistributed to other tissues or 

removed from the body by the gallbladder. The main lipoprotein involved in this process is the 

HDL-c. [Obtained from Stemmer et al. 2020] 
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2004). Consequently, lipids metabolism stands out for its influence on the cardiovascular 

risk and, not least, on other pathologies currently present. 

 

 

1.1.3.  Lipids’ role in CVD 

As said before, many lipid families play a key role in CVD. To start with, polyunsaturated 

fatty acids (PUFAs) are a class of lipids composed of a hydrocarbon skeleton with a 

carboxyl group at one end. They have more than one double bond per molecule, being 

classified as ω–3, ω –6, ω –7, or ω –9 depending on the location of the first double bond 

from the methyl end of the molecule. The first two types must be obtained from the diet, 

as humans are unable to synthesise them themselves. ω –9, on the other side, are not 

considered essential, as our body can produce them through an unsaturation in this 

position (Allayee, Roth, and Hodis 2009). Linoleic acid (18:2ω6, LA) and alpha-linoleic 

acid (18:3ω3, ALA) are the main PUFAs in the diet. Delta-6,5 desaturases can convert 

them into longer-chained PUFAs, such as arachidonic acid (20:4ω6, AA), 

eicosapentaenoic acid (20:5ω3, EPA) and docosahexaenoic acid (22:6ω3, DHA).  

Figure 2. Atherosclerosis stages. I: LDL particles accumulate in the subendotelial cell layer and are 

oxidized (oxLDL) by cell-derieved reactive oxygen species. II: Growth factors stimulate monocytes 

differentiation into macrophages and the transmigration across the endotelial cell layer. III: 

Macrophages engulf the oxLDL, leading to foam cell formation, which also leads to the production 

of mediators that undergo apoptosis or necrosis. A necrotic core is formed. IV: The advanced plaque 

becomes unstable and prone to rupture, resulting in a thrombus or cardiovascular event. [Obtained 

from Tymchuk et al. 2006] 
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According to several studies, the ω–3 fatty acids EPA and DHA are the most relevant in 

humans as they confer cardioprotective properties with their implications on various 

mechanisms shown in Table 3 (Allayee, Roth, and Hodis 2009; Richard et al. 2009; Endo 

and Arita 2016). 

 

Both compete with AA to produce eicosanoids, known to have a huge variety of anti-

inflammatory and immune-modulating actions. Even though eicosanoids from AA are 

thought to be considered proinflammatory and prothrombotic, a study (Marklund et al. 

2019) has supported the potential benefits of the main dietary ω–6 fatty acids -i.e., linoleic 

acid- for CVD prevention in various populations. It also has shown that AA is not 

associated with cardiovascular mortality. In summary, higher in vivo circulating, and 

tissue levels of LA, and possibly AA were associated with a lower risk of cardiovascular 

events (Marklund et al. 2019). 

Also, one clinical trial demonstrated that elevated intakes of PUFAs decrease LDL and 

increase HDL levels (Ding and Rexrode 2020). Based on these insights, inflammation 

can be asserted as a link between PUFAs and cardiovascular disease, and, in general 

terms, both ω–3 and ω –6 fatty acids confer cardioprotective properties which reduce 

cardiovascular risk.  

Sphingolipids and cholines have also a relevant role in CVD. Firstly, sphingomyelin (SM) 

is a type of sphingolipid composed of two building blocks -long chained bases, usually 

sphingosine, and fatty acids- using a glycerol-based backbone to attach acyl chains 

(Kikas, Chalikias, and Tziakas 2018).  

Effect Proposed mechanism 

Lowered serum 

triglycerides 

reduction in hepatic triglyceride production and lipoprotein 

assembly 

Anti-arrhythmic modulation of electrophysiological properties of cardiac myocytes 

Lowered blood pressure 
improved endothelial cell function, vascular relaxation, and arterial 

compliance 

Decreased platelet 

aggregation 
reduction in prothrombotic prostanoids through competition with 

AA 

Decreased inflammation 
reduction in 4-series leukotriene production and signaling through 

competition with AA and leukotriene receptor antagonism, 

respectively 

Table 3. Cardioprotective properties of EPA/DHA. [Adapted from Endo and Arita 2016] 
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Although further studies are needed to understand the molecular pathways by which 

sphingolipids species are associated with some pathologies, dysregulation of 

sphingomyelin synthesis and transport is associated with CVD, diabetes, and valvular 

disease (Kikas, Chalikias, and Tziakas 2018).  

Furthermore, lipoprotein aggregation in the vessel wall -one of the precursor steps to 

atherosclerosis- may be dependent on LDL enzymatic modification induced by the local 

sphingomyelinase (SMase). More specifically, the SM carried into the arterial wall on 

atherogenic lipoproteins is transformed into ceramide by the SMase, leading to 

lipoprotein aggregation (Posio et al. 2005). Ceramides, particularly glucosylceramide and 

lactosylceramide, accumulate in atherosclerotic plaques and accelerate the development 

of the anomaly (Figure 3).  

 

In addition, (Subbaiah et al. 2012) demonstrated that SM inhibits LCAT activity, 

triggering lower HDL-C levels and a more saturated cholesteryl ester (CE) profile, which 

has been shown to be a risk factor for atherosclerosis and CVD in humans and animals. 

In contrast to plasma phosphatidylcholine (PC), SM is not degraded by plasma enzymes 

like lipases or LCAT, but its degradation is dependent on hepatic clearance mechanisms, 

such as LDL receptor-related protein or proteoglycan pathways (Jiang et al. 2000). 

Figure 3. Involvement of SMase in the development of atherosclerosis. The inhibition of nSmase2 

strongly decreases the development of atherosclerotic lesions by reducing inflammatory responses 

through a mechanism involving the Nrf2 patwhay. This enzyme converts SM into ceramide, which 

promotes endothelium inflammation and macrophages accumulation.                                                    

[Obtained from Lallemand et al. 2018] 



 
12 

Finally, SM becomes enriched in triglyceride-rich lipoprotein residues, considered 

proatherogenic. These remnants can be measured by RMN, allowing plasma SM levels 

to be considered as a marker of atherogenic remnant accumulation (Jiang et al. 2000). 

PCs are characterised by having two fatty acids attached to a glycerol backbone with a 

phosphate group and choline head group like the SMs. Also, they are the main component 

of mammalian membranes and lipoproteins. A large variety of studies support a link 

between choline metabolism and major cardiovascular disease (Guasch-Ferré et al. 2017, 

among others). Dietary PC (meat, egg yolks, etc.) is the primary source of choline, and 

its catabolism by intestinal microbes leads to trimethylamine N-oxide (TMAO) 

production, which stands out for being associated with atherosclerosis and thrombosis 

(Lee et al. 2021). This metabolite can inhibit reverse cholesterol transport and affect 

platelet activation (Zhu et al. 2016). 

Moreover, lysophosphatidylcholine (LPC) is derived from polar surface PC of 

lipoproteins or cell membrane-derived PC thanks to the reaction catalysed by 

phospholipase A2. In plasma, high levels of LPC are formed by endothelial lipase and 

LCAT (Schmitz and Ruebsaamen 2010).  This molecule is a component of oxLDL and 

contributes significantly to its atherogenic activity (Law et al. 2019), discussed in section 

1.1.2.  Thus, PC is relevant as a biomarker of cardiovascular risk, by being a precursor of 

metabolites that possess proatherogenic and proinflammatory properties.  

In view of the above, it can be stated that lipid metabolism is clearly involved in the 

development of cardiovascular diseases. Therefore, advances in metabolomics are 

important to correctly understand this relationship and to be able to detect cardiovascular 

risk earlier.  

1.2. Metabolomics 

1.2.1.  Introduction to metabolomics 

It is known that biological processes operate through complex interactions between genes, 

RNA, proteins, and metabolites. This interaction network is defined as the interactome 

(Figure 4), which is modified by environmental factors and, consequently, disease 

processes are also modified. 

Firstly, advances in genomics made it possible to carry out genome sequencing and led 

to other fields like transcriptomics and proteomics, which consist of the study of all RNA 
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molecules in a cell and the quantification of the overall protein present content of a cell 

or tissue, respectively. Metabolomics is the study of endogenous and exogenous 

metabolites in biological systems, and it aims to provide information on metabolite 

abundances in a specific moment (Tan et al. 2016). 

 

Metabolites are usually measured in diverse biological matrixes, such as urine, faeces, or 

blood. In many cases, metabolites have been described as proximal reporters of disease 

due to their connection with the pathogenic mechanism. Therefore, to prevent the risk of 

cardiovascular diseases, a premature arrest of the lipid profile is of great importance. As 

a branch of metabolomics, lipidomics studies lipid species and their biological roles 

concerning health and diseases, discovering new pathologic markers (Li et al. 2014). 

Regarding lipidomics, chromatography techniques and mass spectrometry (MS) are the 

most widespread analytical tools because they provide a great characterization of all lipid 

species, based on their different physicochemical properties (Khoury et al. 2018). 

Although it is not as sensitive as those mentioned above, proton nuclear magnetic 

resonance spectroscopy (1H NMR) has some unique features which make this technique 

interesting for the quantification of the main lipid families in biological matrices. Firstly, 

the 1H NMR lipid spectrum from most biological matrices offers a fast overview of their 

major lipid classes (Barrilero et al. 2018). Also, the spectral area is equivalent to the 

molecular abundance, so it is a quantitative technique and does not require extra steps for 

sample preparation, like separation or derivatization (Emwas 2015). Moreover, NMR is 

fast, reproducible, automatable, high-throughput, robust, and non-destructive, so intact 

Figure 4. Interactome. Interaction between environment and the different biological fields of 

study. [Obtained from Tan et al. 2016] 
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samples can be stored for further analysis. In summary, metabolomics offers insights into 

the study of CVD by discovering new pathologic markers (Emwas 2015). 

1.2.2.  NMR spectroscopy  

Nuclear magnetic resonance (NMR) is based on the interaction of the nuclei of those 

atoms presenting an odd number of protons or neutrons (H, F, P, C, etc.) with a magnetic 

field. During this interaction, the atom has the property of spin under the influence of an 

external magnetic field B0. The nuclear spins can adopt two different orientations: one 

corresponds to the lowest energy level of the nucleus aligned to the magnetic field (-1/2), 

and the other is associated with the highest energy level of the aligned against one (+1/2).   

When the nuclei are irradiated with a radiofrequency pulse (RF) -perpendicular to the 

magnetic field-, there are transitions between energy levels, which lead to changes in the 

orientation of the nuclear spins. When the radiofrequency irradiation ends, the nuclei 

return to their natural state. This change in frequency is collected as Free Induction Decay 

(FID) signal. Finally, the Fourier Transformation is applied to move from the time domain 

to the frequency domain and results in a frequency vs intensity spectrum (Figure 5). The 

intensity is proportional to the number of atoms and, therefore, to the molecules 

contributing to it.  

 

 

1.2.3. Liposcale 

Liposcale® test is a novel advanced lipoprotein test based on 2D diffusion-ordered 1H 

NMR spectroscopy (DOSY). This new approach allows measuring the diffusion 

coefficients, which are each associated with the different subclasses of lipoproteins, and 

directly calculating their sizes through the Stokes-Einstein equation (Mallol et al. 2015). 

Figure 5. RF excitation, capturing and Fourier transform proton signals. [Obtained from 

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/mri.html, 2022] 
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In addition, this technique not only estimates the particle number of the main classes 

(VLDL, IDL, LDL, and HDL) but also quantifies the concentration of cholesterol and 

triglycerides of the latter.  

As said before, some techniques that allow lipoprotein quantification have some 

disadvantages compared to 1H NMR. For example, lipoproteins cannot be measured by 

MS and ultracentrifugation is not only tedious and time-consuming but the highly labile 

lipoproteins can be altered by high salt concentrations and centrifugal forces (Mora et al. 

2009). However, to obtain the concentration of the main lipid families, a lipid extraction 

process is required as well as another 1H-NMR measurement step applying a pre-

saturation (ZGPR) pulse.  

2. Hypothesis and objectives 

If the profiling of some lipid variables such as PUFAs, SM, or PC could be obtained from 

the same 1H NMR spectrum used for the lipoprotein profile obtention, more complete and 

accurate information could be known about the patient’s cardiovascular status, as well as 

the patient’s cardiovascular risk.  

Then, the main objective of this study was to design generalizable regression models to 

predict PC, SM, PUFAs, and total PL from the LED resonance spectrum (1H NMR) of 

human serum samples. Consequently, from the same NMR spectrum, both lipoprotein 

profiling and the concentrations of PUFAs and PL, which are strongly related to 

cardiovascular risk, could be obtained. 

3. Materials and methods 

3.1. Samples and 1H NMR measurements 

3.1.1.  Samples sets 

An initial number of 538 serum-derivated samples were selected from 8 sets belonging 

to the Biosfer Teslab database. After a process of cleaning outliers, as well as an analysis 

of which sets were comparable to each other, 139 samples were chosen to be used to 

calibrate, validate, and optimally evaluate the regression models. In section 3.2.1, the 

process of creating the database is discussed in more detail, as well as the cleaning of the 

latter.   
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3.1.2.  Sample processing for lipoprotein analysis  

Sample preparation. 200 µl of plasma sample were diluted with 300 µl of 50 Mm 

(pH=7.4) and 50 µl of deuterated water (D2O) were added. All the process was carried 

out with the liquid handler Gilson robot, which also triggers a mixing process to 

homogenise the sample optimally. 

1H-NMR measurement. 1H-NMR spectra were recorded on a Bruker Avance III 600 

spectrometer, with a proton frequency of 600.20 MHz (14.1 T), at 305,95 K and applying 

a longitudinal eddy current delay (LED) pulse.  

Liposcale Test®. Lipoprotein analysis was made by using Liposcale® Test, a novel 

advanced lipoprotein test based on 2D diffusion-ordered 1H-NMR spectroscopy (Mallol 

et al. 2015). The methyl signal was deconvoluted by using 9 lorentzian functions to 

determine the lipid concentration of the large, medium, and small subclasses of the main 

lipoprotein classes (VLDL, LDL, and HDL), and their size associated diffusion 

coefficients. Then, the lipid concentration was combined with their associated particle 

volume to quantify the number of particles required to transport the measured lipid 

concentration of each lipoprotein subclass. Finally, weighted average VLDL, LDL, and 

HDL particle sizes were calculated from various subclass concentrations by summing the 

known diameter of each subclass multiplied by its relative percentage of subclass particle 

number. The variation coefficients for particle number were between 2% and 4%, and for 

the particle sizes were lower than 0.3%. 

3.1.3. Lipid extraction for 1H NMR analysis  

Sample retrieval. Once the lipoprotein analysis was performed, the diluted serum was 

lyophilized for 24 hours. The lyophilized samples were then resuspended in 100 µl PBS 

(50mM and pH=7.4) in glass tubes. This avoids the obtaining of NMR spectra with 

overlapping peaks, due to the corrosion of the plastic by the organic solvents which were 

subsequently used.  

BUME method optimised with diisopropyl ether (DIPE). The lipid extraction process with 

the BUME method (Löfgren, Forsberg, and Ståhlman 2016) was performed with the 

liquid handler robot -“Agilent Bravo Automated Liquid Handling Platform”-. The first 

step was to add to each sample tube 300 µl butanol:methanol 3:1 (v/v), 300 µl DIPE:ethyl 

acetate 3:1 (v/v), and 300 µl deionised water. The samples were then centrifuged at 4ºC 

for 5 minutes to achieve phase separation, with the organic phase at the top and the 
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aqueous phase at the bottom, both separated by an interface. This process was repeated 

twice by adding 300 µl DIPE:EtAc and centrifuging under the same conditions and, 

finally, the same robot recovered the organic phase in an automated way. 

The tubes with the organic phase and the organic solvents were frozen. The later were 

dried with the SpeedVac for 4 hours to avoid lipid overlap in the spectrum. Manually, the 

samples were resuspended with 700 µl of deuterated chloroform, methanol, and water 

solution in a 16:7:1 (v/v/v) ratio. This solution also contained tetramethylsilane (TMS), 

which serves as a reference for the NMR spectrum. 

The 1H-NMR spectra were recorded on a Bruker Avance III 600 spectrometer, with a 

proton frequency of 600.20 MHz (14.1 T), at 286 K and applying a pre-saturation (ZGPR) 

pulse. From this spectrum, concentrations of the main lipid families in serum samples are 

obtained using a software developed in-house by Biosfer Teslab. These include the 

concentrations of PC, PUFAs, SM, and PL, which will be used to train PLS models.   

3.2. Statistical analysis 

3.2.1. Database development and outliers’ analysis  

Database development. The database was created in Excel® (ver. 2202) and then 

imported into MATLAB version 7.10.0.499 R2010a (MathWorks), where the statistical 

analysis was performed, as well as the creation of the PLS models. The database was 

composed of 2 sections. Firstly, one containing the points that make up the LED spectrum, 

for each sample collected from the 1H-NMR analysis. The second one contained the 

concentrations of the target variables -PC, SM, PUFAs, and PL- calculated using the in-

house-developed lipid profiling software discussed previously.  

Outlier analysis. As stated above, this essay initially started with 538 samples. The first 

step was to remove the samples in which SM and PC were not present/detected and those 

whose spectra had a pre-processing error. Furthermore, various distribution plots were 

drawn up on the concentrations of the variables to be predicted, to see which sets could 

be compared with each other.  

3.2.2. Selection of interest regions (inputs) 

Statistical total correlation spectroscopy (STOCSY). This technique consists of 

correlating the variable of interest -concentration of lipids to be predicted- with all the 

coordinates of the spectrum (Cloarec et al. 2005). Therefore, it was performed to 



 
18 

determine which regions of the spectrum showed the strongest association with the 

variables to be predicted. The selection of these regions was complemented with 

bibliography to observe the moieties for the lipids of interest and the correspondence 

between moieties and their NMR spectra signals (Figure 6).  

 

 

3.2.3.  Partial least square regression models  

Partial least square regression (PLS). With the selected regions for each variable as an 

input, a training set (n=97) including 70 % of the samples was generated randomly, and 

the remaining 30 % was used to generate the test set (n=42). The first was used to train, 

strengthen, and teach more diversity to various PLS regression models, so that they could 

later be validated with the test set. In order to test the effect of the most commonly used 

pre-processing methods in linear regressions, both autoscaling and mean-centering pre-

processing were applied before building the models. In addition, to compare and evaluate 

the performance of the prediction models, Pearson´s correlation coefficient (r), 

cumulative variance captured in predictors (X), and Root Mean Square Error of Cross-

Validation (RMSECV) were considered. Multivariate analysis was performed with 

PLS_Toolbox version 5.8.3 (Eigenvector Research Inc.). 

Z-score. To reduce the biological variability of the samples so that they can all have the 

same weight in the models, a standard score (z-score) was carried out for both the points 

Figure 6. A) Moieties for principal lipids found in lipoproteins and B) Correspondence between moieties and 

their NMR spectra signals. [Obtained from Mallol, R. (2014). Development and evaluation of a novel advanced 

lipoprotein test based on 2d diffusion-ordered 1H NMR spectroscopy. Universitat Rovira i Virgili] 

A) B) 



 
19 

of the spectrum and the concentrations of the variables per each set. This technique allows 

us to uniformly transform data of different magnitudes into the same magnitude, called 

z-score to ensure comparability of the data.  

 

𝑍 =  
𝑥− 𝜇

𝜎
   

(x: data; µ: mean per set; σ: standard deviation per set) 

 

  

Finally, a STOCSY was performed on the normalized data for each variable to confirm 

an improvement in correlation.   

4. Results  

4.1. Database development and outliers’ analysis  

A series of distribution plots concerning the concentrations for each variable per set were 

performed. This analysis was useful to check which samples were comparable to each 

other, as it was an important factor to train the model optimally and achieve a correct 

prediction. As can be seen in Figure 7, higher concentrations of both PC, SM, and total 

PL were observed in sets 5 and 8. These differing results are most likely due to minor 

modifications of the different protocols used for lipid extraction. Going into more detail, 

while the remaining sets were extracted following the protocol described in section 3.1.3., 

the samples belonging to these two sets were not lyophilised, so 100 µl of intact plasma 

was used for the quantification of lipid variables. It appears that lyophilisation may 

influence lipid quantification, causing an increase in serum phospholipid concentrations. 

This could be because it is an aggressive method that breaks down lipoproteins and 

releases phospholipids into the serum medium. Regarding PUFAs, lyophilisation does 

not have a huge impact on the concentration of the lipidic variable. However, some 

samples belonging to the sets in question that were outside the concentration range can 

be seen. Consequently, the samples belonging to sets 5 and 8 were eliminated as they are 

not comparable with the others, avoiding possible failures in the prediction of the models 

by training them with concentrations in the same range. 

Ecuation 1. Z-score calculation. 
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Figure 7. Distribution plot for target lipidic variables (PC, PL, PUFAs and SM). The x-axis shows the sample 

number while the y-axis shows the concentration (mmol/L). In the legend on the middle, we find the colours to 

identify each set.  
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4.2. Selection of interest regions (inputs) 

Correlation heat maps STOCSY were created as part of the variable selection procedure 

before the building of the prediction models. As already mentioned, STOCSY provides 

graphical information on the correlation between the regions of the NMR spectrum and 

the variables to be predicted. Their interpretation was therefore key to selecting the points 

in the spectrum that delineate the regions with the strongest correlation and thus using 

these regions as predictors for more accurate results. The correlation ranges from 1 to -1, 

where the reddest areas show the highest correlation with lipids, while the bluest areas 

show a negative correlation. 

Taking as a reference the bibliography consulted -shown in Figure 6-, it can be stated 

that, in general terms, the regions with the highest correlation agreed with the moieties of 

the target lipids. However, some signals showed a very strong correlation but were not 

associated with protons belonging to the characteristic groups of the different lipids. As 

an example, despite being a region associated with the signal of the protons forming the 

HC=CH double bond of PUFAs (5.25 ppm), it showed a very strong correlation in the 

STOCSY of PC and PL. For this reason, to develop the different models, the regions with 

the highest correlation were selected rather than only those associated with characteristic 

groups. As for the protons associated with the most highly correlated signals, we find the 

following: 1) (CH2)n; 1.31 ppm  (2) CH3; 0.8 ppm  (3) (CH2)n-CH2-CH=; 2.05 ppm  (4) 

CH2-CH2-COOC; 2.2 ppm  (5) HC=CH; 5.25 ppm. 

Looking at the STOCSY of PC, it was initially thought that it would be the variable for 

which the strongest prediction could be achieved, as it showed the highest correlation 

intensity. On the contrary, SM was the variable that showed the worst correlation between 

the points of the spectrum and the concentration. The left of Figure 8 shows a STOCSY 

for the target lipid concentration, performed on the data before the z-score was carried 

out. On the right, we have the STOCSY after normalization, which confirms the improved 

correlation based on the standardised data for all target lipid variables. Despite being an 

increase in which a very large correlation is not achieved, the improvement can be 

appreciated. Consequently, once the z-score was performed, PLS models with a better 

predictive ability were obtained, as will be shown later in the next section.   
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Figure 8. STOCSY for all lipidic variables. Before z-score (left) and after z-score (right). The X-axis shows the chemical 

shift while the Y-axis shows the intensity of the peaks. On the right, the intensity is shown as a colour gradient. 
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4.3. Partial least square regression models  

Both for the creation of the predictive models with normal data and the models with 

standardised data, a total of 70% of samples were used for calibration and the other 30% 

for validation. Statistically, LV are variables that cannot be observed directly and try to 

project data from a higher dimensional space to a lower dimensional space, forming a 

condensed representation of the data. In this case, the LV were a linear combination of 

the original variables -the points that make up the spectrum-, achieving a reduction of 

dimensions. The models were selected considering the maximum variance captured in X, 

the best regression coefficient for each of them and always trying to minimise the number 

of LV as much as possible.  

The validation performance of the PLS model was assessed by cross-validation splitting 

the data 10 times, which selects subsets of the training set data to estimate several similar 

submodels to test the validity of the overall model and to obtain the RMSECV values. 

RMSECV values should be the lower the better, as it means that the splitting of the data 

was done correctly, giving a good estimate of how the model built on the data set in 

question behaves for the unknown cases. As more information is fed to the model, the 

more likely it is that an effect called overfitting will occur. It is a concept that occurs when 

a statistical model fits exactly against its training data. When the model is trained with 

very complex data or a large amount of information, it may start to learn irrelevant 

information within the dataset, which in turn means that it cannot generalise new data 

well (validation set). This leads to an inaccurate performance of the algorithm against 

unseen data, thus defeating its predictive purpose. 

 

4.3.1.  PLS pre-standardization 

Table 4 shows all relevant statistical parameters belonging to the PLS models with the 

best prediction for the lipid variables. These include the number of LVs, Pearson´s 

correlation coefficient (R), % of variance captured in X, the regions selected, and the 

RMSECV for each case. Pearson’s correlation coefficients between the reference 

concentrations measured by the protocol described in 3.1.3. and the predicted 

concentrations were 0.85 and 0.925 for PC, 0.94 for PUFAs, 0.55 for SM, and 0.86 for 

PL. All these plots are shown in Figure 9.  
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Table  4. All models selected for each target lipidic variable. The top row shows the statistical parameters 

that were considered for the selection. Include is the name by which each different PLS model was 

designated. 

 

  

VARIABLES INCLUDE LV 
SELECTED 

REGIONS 

% CUM 

VAR 
RMSECV R 

PC 

Include 5 3 1: (N-(CH3)3) 90 0.28 0.850 

Include 33 4 

7: with highest 

correlation in 

STOCSY 

95 0.215 0.925 

PUFAs Include 30 4 

7: in 

correspondence 

with moieties 

95 1.2 0.94 

SM Include 31 4 

4: with highest 

correlation in 

STOCSY 

92 0.07 0.55 

PL Include 37 4 

7: with highest 

correlation in 

STOCSY 

94 0.25 0.862 

Figure 9. Correlation plot of predicted versus experimental values for PC. The dashed line marks the regression 

line where Y=T, i.e., when the experimental concentration matches the predicted concentration. 
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Figure 9 (continuation). Correlation plot of predicted versus experimental values for PUFAs, SM, and 

PL. The dashed line marks the regression line where Y=T, i.e., when the experimental concentration 

matches the predicted concentration. 

 

4.3.2. PLS post-standardization 

Table 5 shows the same statistical parameters as in the previous section. In the case of 

SM there was a very low correlation in the STOCSY, so a z-score was performed to 

improve it. Apparently, it was assumed that the low correlation was due to the high 

biological diversity between sets, as in some cases these were young individuals, adults 

with diabetes, and other adults with cancer, among others.  

The same regions were chosen as inputs for the improved PLS models because they 

performed well in the originals. However, in general terms, an improvement of the 

regression coefficients was obtained despite reducing in some cases the number of LV, 

which is also an improvement, as better results are achieved by adding less information 

to the models. While it is true that we find an increase in the RMSECV and a slight 



 
26 

reduction in the variance captured in X, an improvement in the regression coefficients of 

all models can be seen as well as a reduction in the LV. Consequently, ensemble scaling 

by z-score allowed for more robust models, satisfying the two main requirements. 

Pearson’s correlation coefficients between the reference concentrations and the predicted 

ones were 0.89 and 0.90 for PC, 0.91 and 0.953 for PUFAs, 0.82 for SM, and 0.91 for 

PL. All these plots are shown in Figure 10.  

 

Table  5. All models selected for each target lipidic variable after performing an improvement by a z-score 

scaling. The top row shows the statistical parameters that were considered for the selection.  Include is the 

name by which each different PLS model was designated. 

 

 

 

 

 

 

VARIABLES INCLUDE LV 
SELECTED 

REGIONS 

% CUM 

VAR 
RMSECV R 

PC 

Include 5 3 1: (N-(CH3)3) 90 0.3 0.89 

Include 33 3 

7: with highest 

correlation in 

STOCSY 

94 0.2 0.9 

PUFAs 

Include 30 2 

7: in 

correspondence 

with moieties 

88 0.7 0.88 

Include 30 4 

7: in 

correspondence 

with moieties 

95 0.4 0.953 

SM Include 31 3 

4: with highest 

correlation in 

STOCSY 

92 0.7 0.82 

PL Include 37 2 

7: with highest 

correlation in 

STOCSY 

85 0.5 0.91 
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Figure 10. Correlation plot of predicted versus experimental values for PUFAs, SM and PL. The dashed line 

marks the regression line where Y=T, i.e., when the experimental concentration matches the predicted 

concentration. 
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5. Discussion 

Previous studies have already shown that multivariate statistical methods can be very 

effective for the prediction of lipids in biological matrices such as serum or plasma (V. 

Mihaleva et al. 2014; Bathen et al. 2000; Sandra M. et al 2017). The results reported 

herein confirm the potential of PLS analysis to develop models with sufficient fortress to 

be applied, despite working with a reduced number of samples after the database cleaning 

process. 

Through trial-and-error testing, many Includes were generated from which the results 

presented were selected based on the statistical parameters present in Tables 4 and 5. One 

of the main objectives was to achieve robust models, but with the minimum number of 

LV. As has been said, LV are a linear combination of the original variables, in this case, 

the points that make up the NMR spectra, so it was in the interest of achieving an optimal 

result with a reduced number of LV, to avoid a model saturation.  

Another point to bear in mind is that it has been demonstrated that standardisation by z-

score has served to optimally improve the initial models, making them fortress by 

reducing the biological variability of the research sets with different biological conditions. 

In agreement with (Petersen M. et al. 2005), two of the main criteria for the selection of 

the best predictive models were the regression coefficient and the RMSECV error. As can 

be seen in the PLS models post-standardisation, we ticked all the boxes obtaining a LV 

reduction, an improvement in the regression coefficients by adding less information and, 

finally, low RMSECV errors indicating that the data has been split correctly and the 

model has fitted the unknown information well to validate it.  In addition, a considerable 

improvement in the results for the SM variable can be seen, so we can state that the high 

biological difference between the samples was causing the low correlation between the 

NMR spectral points and the SM concentration. 

Furthermore, STOCSY can be said to agree with the results as SM showed the worst 

correlation compared to the other target variables, a factor that was reflected in the low 

regression coefficient shown in its Include 31 model (r=0.55 pre-standardisation and 

r=0.82 post-standardisation). On the contrary, PUFAs, PC, and PL showed areas with a 

very strong correlation, and the selection of these regions as inputs was key to building 

models with an outstanding regression coefficient (r > 0.90). Despite the latter, a 
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reduction of the regression coefficient after standardisation from R=0.925 to R=0.90 is 

observed in the case of PC. 

Finally, this study shows that prediction models of PC, PUFAs, SM, and PL perform well 

despite being trained on with samples from biologically diverse sets. Furthermore, the 

models prove to be robust with the participation of few samples, so training with more 

samples, as well as validation with more clinical cases could confirm that it is a 

generalisable method for the quantification of the target variables of this trial, following 

the same process that was performed for the evaluation of PLS prediction models for TG 

and other lipid variables in this study (Barrilero et al. 2015). 

Considering the limitations of the study, which are the small number of samples used for 

the validation of the models and the lack of a factor that allows us to express the results 

in a range of concentrations, there are two proposals for further validation of PLS models. 

Firstly, despite having achieved models with great predictive capacity with few samples, 

models should be validated with a larger number of samples to train and validate them. 

The other proposal would be to select a general denormalization factor to be scalable to 

any sample. Finally, as the models have been shown to perform well for PC, PUFAS, SM, 

and PL, the development of models to predict other variables of pathological interest, 

such as LPC or MUFA should be tested. 

6. Conclusion 

This study has evaluated the performance of PLS prediction models based on 1H-NMR 

spectroscopy. As demonstrated in this trial, RMN allows a robust and optimal prediction 

of lipids, being a technique that offers a few advantages over other quantification 

techniques already mentioned. Because of the above, it is of great importance to predict 

lipids to save time in the lipid quantification process and thus be able to provide a more 

comprehensive lipid profile in less time. This in turn allows a great improvement in 

preventing cardiovascular risk, because the link between lipids and cardiovascular disease 

has been demonstrated in several studies.  

In summary, PLS regression models could be used as a general tool for quantifying the 

lipid profile in metabolomic studies in serum or plasma matrixes, which in turn could be 

used to better assess the cardiovascular risk.  
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