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Abstract

Disease diagnosis and personalized medicine based on metabolomics using changes
in metabolite concentrations, are attracting the attention of more and more researchers.
Nevertheless, compound identification remains a problem in most metabolomics studies based
on mass spectrometry (MS), as the percentage of known MS molecular spectra is very low.
Software tools for metabolite annotation and identification can solve this problem by predicting
the mass spectra of molecules through Deep Learning.

We have proposed different methodologies to obtain the best prediction of the tandem
mass spectra of molecules from their molecular formula, comparing different types of Neural
Networks. Also, we have obtained a very good prediction ability, achieving better results than
the best in silico tool for the prediction of MS/MS spectra up to date.

Keywords: machine learning; neural networks; metabolomics; mass spectrometry.
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1 Introduction

Currently, medicine is undergoing numerous changes as a consequence of the advances
in technology and the interest of society in health, which has recently increased as a result of
the global pandemic of COVID-19. Areas of medicine such as personalized medicine are gaining
widespread interest, due to people’s concern for improving their quality of life. Personalized
medicine (PM), also known as Precision medicine, consist in therapies taylored to the individual
needs of patients. PM takes into account genetics, biomarkers, phenotypes, or psychosocial
characteristics that distinguish one patient from another with similar clinical manifestations
[1]. In this way, PM is now becoming an integral personalization strategy in healthcare, which
will evolve to ultimately provide patients with better monitoring of their health, together with
individualized prevention, early and proactive diagnosis, and personalized treatment [2].

In this way, thanks to improvements, evolutions, and joint work in sectors such as
genetics, informatics, image processing, cell sorting, proteomics, and metabolomics, the scope
of Precisionin personalized medicine is widening, giving rise to important applications in the
prognosis and treatment of diseases [1]. The onset and progression of a disease can lead to
alterations in the internal balance of the biological system, its components, and the interactions
between them. To study such alterations from a systemic approach, omics sciences such as
genomics, transcriptomics, proteomics, and metabolomics are crucial [3].

Metabolomics is an emerging field that aims to exhaustively measure metabolites
concentrates and low molecular weight molecules in a given organism or biological sample
[4], [5]. Disease diagnosis and personalized medicine based on metabolomics using changes
in metabolite concentrations are attracting the attention of many researchers.

One of the most common examples is the use of metabolomics to diagnose cancer
states directly in body fluids, thus facilitating rapid screening for this type of disease, or to
classify histological samples of different tumours by extraction of metabolites followed by mass
spectrometric analysis [6]. In a study by Chan et al. [7], metabolites from biopsied colorectal
tumours and from normal mucosa obtained from 31 patients with colorectal cancer (CRC) were
analysed. Using discriminant analysis it was possible to discern between benign and malignant
mucosa, and to identify 31 biomarkers associated with metabolomic perturbations expected
in CRC disease (elevated tissue hypoxia, glycolysis, nucleotide biosynthesis, lipid metabolism,
inflammation and steroid metabolism) [7]. Thus, this area of study and metabolomic profiling
can be used in a variety of ways, however, two approaches can be established depending on
whether it is based on all the measured concentrations or on a selection of biomarkers [6].

On the one hand, it is possible to base a diagnostic method purely on metabolic
fingerprinting by applying pattern recognition techniques to determine whether a suspected
patient has a certain disease [6]. This unique fingerprint is the composition of the metabolome,
which represents all relevant primary and secondary metabolites, typically with molecular
masses of less than 1.5-2 kDa, in a given organism. This fingerprint changes dynamically
in response to external effects and may show an evolution in the phenotype of the organism
[8]. So, this strategy can potentially be useful for rapid screening of large patient populations
if a sufficiently specific method is developed. On the other hand, the second approach is to
develop metabolomics strategies to find a single biomarker that is specific enough to reliably
detect a specific disease. Nevertheless, often more than one metabolite is needed for diagnosis
and the optimal approach is somewhere between the two methodologies, depending on the
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objectives sought [6].

In recent years, the simultaneous measurement of a large number of metabolites in a
single biological sample has been improved by the development of high-performance analytical
techniques such as nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry
(MS) [6]. NMR and MS are the two main analytical approaches for metabolomic studies,
which complement each other. While MS-based approaches have a higher sensitivity, NMR
spectrometry is highly reproducible and requires minimal sample preparation [9]. Moreover,
optical spectrometric techniques such as Raman spectroscopy and infrared (IR) spectroscopy
are also used [6]. In this work, we will focus on mass spectrometry, whose main advantages
are specificity, sensitivity, and the ability to analyze complex samples [10].

Mass spectrometry is an analytical technique that accurately measures the molecular
masses of compounds and individual atoms by converting them into charged ions. This
requires a mass spectrometer consisting of an ion source, a mass analyser, a detector, a data
system, a vacuum system, and electronic control units. The data is represented as a mass
spectrum, where the x-axis is the M/Z-values and the y-axis the respective intensities. By
means of this graph, the mass of the analyzed speciality and its structure can be determined
[10].

As mentioned above, the first step is ionisation, which converts the analyte molecules or
atoms into ionic species in the gas phase by the removal or addition of an electron or proton.
This is followed by separation and mass analysis of the molecular ions and their charged
fragments based on their M/Z ratios. Finally, the ion current due to these mass separated ions
is measured, amplified, and displayed in the form of a mass spectrum [10].

The simplest and most common method of ion formation in mass spectrometry is to
bombard the gas-phase sample molecules with a beam of electrons. During this process,
an electron is removed from the most occupied molecular orbital of the sample molecule to
form a positively charged molecular ion. The data output in mass spectral format is usually
characterized by a molecular ion region, where the molecular ion signals plus associated heavy
isotope satellite ions are located, and a fragment ion region is related to the sample molecule.
The general practice is to designate the most abundant ion in the spectrum as the base peak
with an arbitrarily assigned relative height of 100. Otherwise, all other ions are presented as
percent abundances relative to this base peak [10].

For non-targeted MS-based metabolomics, high-performance or ultra-high performance
liquid chromatography (HPLC or UHPLC) is used to separate the compounds from the sample,
and then electrospray ionization (ESI) mass spectrometry (MS and MS/MS) is used to collect the
mass spectra of each chromatographic peak [11]. The combination of liquid chromatography
and mass spectrometry (LC-MS), based metabolic fingerprinting is proven to be a powerful
tool to identify significant diferentiating compounds and related metabolic changes [8]. The
efficient physical separation of chemical substances dissolved in a mobile phase, performed
by liquid chromatography, is combined with the mass spectrometer being able to sort and
identify the components (gaseous ions) in electric and magnetic fields according to their
mass-to-charge ratios [12]. To identify individual compounds, the resulting MS/MS spectra,
together with the chromatographic retention time and masses of the parent ions of the
compound of interest, are compared with the MS/MS spectra and retention time of authentic
standards to confirm the identity of the compound. Putative identification (MSI level 2) is
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Figure 1. Basic concept of mass spectrometry analysis. Adapted from [10].

achieved by comparing the MS/MS spectra with reference spectra collected experimentally
from various MS/MS spectral databases [11].

In contrast to the genome or the proteome, the composition of the human metabolome
is not fully defined. Few public databases, such as the Human Metabolome Database – HMDB
[13], METLIN [14], or KEGG [15], provide information on the metabolites present in human
fluids [3].

As a result, the percentage of MS spectral features that can be confidently assigned to
known compounds is usually less than 2%. Thus, the compound identification step remains
a central bottleneck in almost all MS-based metabolomics studies [11]. To overcome this
difficulty, researchers have developed software tools for the annotation and identification of
metabolites, ranging from simple accurate mass searches using library comparisons to in silico
tools based on the MS spectrum of the experimentally acquired compound [11], [16], [17].

One way to tackle this problem, therefore, is to use Machine Learning, since the
relationship between sequence and fragment abundance can be learned based on a large
training dataset without explicit knowledge of the physical mechanisms behind it. However,
there may also be predictive models that are not only black boxes but identify the most
significant sequence features and properties to make the prediction [18].

Despite the fact that mass spectral prediction has been attempted in the past, its success
has been limited. Currently, the best method for predicting EI-MS and ESI-MS/MS spectra
of a given compound is the machine learning-based fragmentation modeling method, called
CFM-ID. The CFM-ID method first generates all theoretically possible fragments of a molecular
structure in a combinatorial way, structuring a fragmentation graph. Each node of the graph
represents a theoretically possible ionic fragment, and each edge between nodes encodes the
possibility of one ionic fragment directly producing another through a single fragmentation
event. CFM-ID then estimates the probabilities of each transition using parameters obtained
from training data of known molecules and their respective MS spectra. Finally, CFM-ID
constructs the MS spectrum of the introduced molecule from the fragmentation plot and the
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associated probability estimates [17].

At present, CFM-ID version 4.0 can predict ESI-MS/MS spectra of a large number of
chemical compounds with higher accuracy, performing better than any in silico tool published
to date [17].

1.1 Aims of the project

The main objective of this project is to predict the MS/MS spectra of molecules from their
molecular formula, using Deep Learning models.

In order to develop a predictive model, we have specified a series of objectives to be
met, which are the following:

• Obtain suitable mathematical representations for each molecule, in order to use them as
input in our models.

• Implement Artificial Neural Networks (ANN) models that allow us to predict the existence
of a peak for each position of the mass spectrum.

• Implement Graph Neural Networks (GNN) models that allow us to predict the existence
of a peak for each position in the mass spectrum.

• Compare the predictive performance between the two Deep Learning models (ANN and
GNN).

• Compare the results obtained with the results of the best performing in silico tools for
the prediction of MS/MS spectra to date.

Bachelor’s degree of Biomedical Engineering, Rovira i Virgili University 4
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Figure 2. Made-up example of the milestones to be followed to meet the objectives using the

ANNs models. Created with BioRender.com.

Figure 3. Made-up example of the milestones to be followed to meet the objectives using the

GNNs models. Created with BioRender.com.
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2 Data

2.1 Data Origin

We used data obtained from MassBank [19], an ecosystem of databases and tools for
mass spectrometry reference spectra, provided as an open-source. MassBank is supported
by the German Network for Bioinformatics Infrastructure [20], and it is developed in different
research groups at the Leibniz Institute of Plant Biochemistry [21], the Helmholtz Centre for
Environmental Research [22] and the University of Luxembourg [23]. The data comprised
37500 unique molecules, for which we had their molecular formula in SMILES format, their
identifier, and the values of their tandem mass spectra for the [M+H]+ adduct.

Figure 4. Example of the electron ionization mass spectrum of acetophenone. Adapted from

[10].

• Ionization: This process is needed to help the separation and detection of ionic species,
by applying an electric field and magnetic forces to control their energy and velocity.
For the ionization of the samples used, most of them were carried out by Electrospray
Ionisation (ESI), a technique applicable to a wide range of liquid phase samples. The
ESI process produces highly charged droplets under the influence of an intense electric
field. Evaporation of the solvent converts these charged droplets into gas-phase ions.
Nevertheless, a smaller number of samples were ionized by Electron Ionization (EI). In
this process, the vaporized sample molecules are bombarded with an energetic electron
beam at low pressure, where an electron of the target molecule is ejected during this
collision process to convert the molecule into a positive ion with an odd number of
electrons [10]. It should be noted that more adducts than [M+H]+ can be produced,
although this is the most common. On the other hand, the instrument mostly used to
detect the mass spectrum was a Quadrupole-Time-Of-Flight (QTOF-MS). This instrument
is characterized by its good specificity and high resolution due to the mass Accuracy
provided by the Time Of Flight (TOF) detectors, combined with the structural information
obtained in the MS/MS mode [24]. A TOF detector measures the time difference from
when a particle starts from the initial position until it hits the detector. Such an instrument
can provide particle identification by measuring the time-of-flight of particles with known
momenta and determining the coincidence of multiple particles detected from a single
interaction [25].

• Spectrum type: Tandem mass spectrometry (MS/MS) refers to the coupling of two
mass analysis steps, either in time or space. Of all ionisation techniques, only electron
ionisation (EI) provides a wealth of structural information. To obtain additional structure
information by other ionisation techniques, MS/MS is required. Thus, in the first step
(MS-1) a desired ion is selected (e.g. [M+H]+) from a stream of ions produced in the
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ion source. This mass-selected undergoes a unimolecular fragmentation or chemical
intermediate reaction. The second step (MS-2) then performs mass analysis of the
product ions formed in the intermediate step [10].

2.2 Data Structure

As mentioned above, obtained data from MassBank consisted of a set of molecules, for
which we had their SMILES, their identifier and the peaks of their MS/MS:

Figure 5. Original dataset example. Each row corresponds to a molecule, and the columns

refer to the attributes explained below.

• SMILES (smiles): SMILES (Simplified Input Entry Line Entry System) is a chemical
notation system designed for chemical information processing. This system allows the
molecular structure to be rigorously specified by means of a linear string of symbols,
similar to natural language. As a result, it allows for increased speed and improved
computer performance in chemical information processing methods [26].

SMILES denotes a molecular structure as a graph that is essentially the two-dimensional
valence-oriented picture chemists draw to describe a molecule. SMILES notation is a
series of characters ending with a space, where atoms are represented by the letters of
their atomic symbols. In addition, hydrogen atoms may be omitted or included.

Each non-hydrogen atom is specified by its atomic symbol in square brackets. The second
letter of two-character symbols must be entered in lower case. Organic subset elements
(B, C, N, O, P, S, F, Cl, Br or I) may be written without brackets if the number of attached
hydrogens conforms to the lowest normal valence consistent with explicit bonds. Finally,
aromatic ring atoms are written in lower case and branching is specified by enclosures
in parentheses [26].

• Identifier (id): The molecule identifier, given by MassBank.

• Spectrum values (peaks): List containing the result of the mass spectrum for each
molecule. This solution is presented in the form of a list, which itself presents two tuples
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where the first refers to the x-axis of the spectrum, that is, the M/Z values of the ions
arriving at the detector, and the y-axis their respective abundances [10]. This is the
column used to compare our predicted results.

2.3 Data Pre-processing

First, we checked that we had all the information (smiles, id and peaks) for all the
molecules. We found 237 out of 37500 that did not contain a SMILES chain.

Then, from each SMILES string, we obtained a Mol object belonging to the RDKit module
that contains the functionality to work with molecular formats [27]. This allowed us to
introduce it into our Neural Network. Each Mol object corresponding to each SMILE was
stored in a new mol column, which we added to our original dataframe.

We discarded three molecules for which Mol object could not be obtained. Thus, we
were left with a final dataset of 37260 molecules (Fig. 6).

Figure 6. Final dataset example. Each row corresponds to a molecule, and the columns refer

to the attributes explained.

Lastly, in order to run our models, we must say that we were interested in predicting
the location of the peaks that refer to the molecular masses of compounds, so the intensity
was secondary. Thus, from the spectrum obtained for each molecule in the database, which
indicated the M/Z position where there was a peak and its respective intensity, we used this
information to create a binary vector simulating the original spectrum, having ones at the
positions where there was a peak.

First, we calculated the highest M/Z position of all molecules. In this way, we created a
vector of zeros from zero to the maximum M/Z value. Then, for each molecule, we calculated
the M/Z positions where there was intensity and placed a one at that position in the vector
created. Note, however, that each vector was discretised so that each position of the vector
included bins of size one.
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2.4 Data Splitting

To carry out the predictions of the spectra, we divided the data into training, validation
and test set. The training dataset was used to fit the model, the validation set was used to
provide an unbiased evaluation of the model as the hyperparameters of the model were being
tuned, and the test set was finally used to provide an unbiased evaluation of the performance
of the final model. In our case, we split the original dataset in a test set of 30.000 molecules,
a validation set of 5.000 and a test set of 2.600. Therefore, we trained our models with the
same dataset in two different ways: firstly, by inputting the data in the same order as they
were in the original dataset, and secondly, in a randomised way but keeping the same order
for the two Neural Network cases (ANN and GNN).

Bachelor’s degree of Biomedical Engineering, Rovira i Virgili University 9
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3 Machine Learning algorithms to predict Mass Spectra

As we discussed, predicting a mass spectrum of a molecule is a complex task that can
be tackled by Machine Learning (ML). Our hypothesis, therefore, was that Machine Learning
could learn the relationships between formulas and fragment abundances from large datasets
of training examples, without explicit knowledge of the physical and chemical mechanisms
behind them.

Thus, in the following section, we theoretically define the Machine Learning methods
that we implemented to predict the spectrum of molecules. Likewise, we focus on a specific
type called Deep Learning (DL), explaining the algorithms that we finally carried out to achieve
the goals of our project.

3.1 General concepts of Machine Learning and Deep Learning

Machine Learning is a branch of computer algorithms designed to simulate human
intelligence by learning from the surrounding environment. Based on existing data, ML
algorithms can be used to create models for classification, pattern recognition, and predictions
[28]. Machine Learning works by solving questions to which it was never explicitly
programmed. In this sense, it uses a previously identified mathematical function to calculate
the output from a given input. In order to calculate this function, the model needs to be trained
with a large example dataset, achieving a mathematical relationship between the input data
and the output data.

This branch of artificial intelligence is divided into two areas: supervised and
unsupervised learning. In both cases, the input is a data matrix that hopefully represents the
relevant part of the data that the model will learn on. Supervised learning algorithms also need
a matrix with the desired outcome for each input element. In this case, the algorithm learns the
best way to relate the inputs to outputs. One successful example of supervised learning was
to use gene expression data to classify patients into different clinical groups and identify new
disease clusters. On the other hand, if only the input matrix is available, unsupervised learning
takes place. A well-known unsupervised example was the use of genetic coding to predict the
secondary structure of proteins. These algorithms mostly work with statistical methods capable
of identifying the areas within the input data with the highest density, returning clusters made
from these. In other words, unsupervised learning tries to guess the possible hidden structure
of the data [29], [30].

Deep learning, or the Deep Neural Network, can learn complex non-linear functions that
relate the input x to its prediction y, by adding multiple hidden layers between x and y. In a
sense, Deep Learning is conceptually no different from traditional Machine Learning, but the
distinction is in the layers [31].

A Neural Network is a network of computational units that is intended to simulate the
functioning of the human brain. These computational units or artificial neurons are organised
in homogeneous layers, which are connected to each other in such a way that information
flows from layer to layer, always in the form of real numbers. This connection is intended to
mimic the behaviour of synapses in the human brain [29]. However, not all Neural Networks
are equal, so the same results cannot be obtained with all of them. For this reason, in our
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project we considered two types of Neural Networks, Artificial Neural Networks and Graph
Neural Networks, in order to find out which one worked better for the prediction of mass
spectra.

3.2 Artificial Neural Network

3.2.1 Input data

First, before specifying the design of the ANN, we discuss the input data that we
introduced in our models. Our input data were vector representations of molecules. In
other words, for each molecule, which we had in SMILES format, we obtained a vector that
represented it. To do this, we used Mol2vec.

Mol2vec produces representations of molecular substructures by using information about
their proximity in molecular graphs to compute lower dimensional vectors. It is based on a
popular current approach in the field of text mining, called Word2vec. This assumes that each
word has several meanings depending on its context, so it considers molecular substructures
as ”words” in the context of neighbouring fragments [32].

Mol2vec is an unsupervised method inspired by natural language processing, which
considers compound substructures derived from Morgan’s algorithm. By applying this
algorithm to a corpus of compounds, high-dimensional embeddings of the substructures are
obtained, where the vectors of the chemically related substructures occupy the same part of
the vector space [33].

Morgan’s algorithm is an iterative process that assigns numerical identifiers to each atom,
initially using a rule that encodes the invariant numerical information of the atom into a unicial
atom identifier, and subsequently using the identifiers from the previous iteration [34]. In this
way, Morgan fingerprints monitor the presence or absence of circular fragments that include
all atoms within a given radius, expressed in number of bonds, around a central atom. When
the radius is set to one, Morgan’s algorithm considers all fragments with atoms that have at
most one bond from the central atom.

In general, Morgan’s fingerprints are converted into a bit string, in order to facilitate a
quick similarity score between bits, for which a vector length is set [32]. The iteration process
continues until each identifier for each atom is unique. Ultimately, intermediate results are
discarded and the initial identifiers provide a canonical numbering scheme for the atoms [34].

Depending on the intended application, Mol2vec can be trained using one of the two
Word2vec approaches: if the task is to predict a word (a molecule in our case) from the
words in the context, Continuous bag of words (CBOW) is used, or Skip-gram if the context is
predicted from a word. In CBOW, the order of the words is not important due to the overlapping
bag-of-words, whereas in Skip-gram adjacent words are assigned higher weights. In addition,
there are two parameters window size, number of words that the model considers before and
after the target word, and dimensional embeddings, length of the output vector, to find the
best settings for Mol2vec. Finally, the vector for each molecule is obtained by summing all the
vectors of the Morgan substructures of the molecule [33].
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3.2.2 Output data

As previously specified in the project objectives, we wanted to predict whether our query
molecule had a peak or not at a certain value of M/Z. To that end, we trained 171 models
corresponding to the 171 M/Z positions in the spectrum where the molecules in the training
set most often presented peaks. In this way, for each molecule in the test set, each model gave
as an output a value between 0 and 1, which represented the probability that according to the
model the input molecule had a peak in that value of M/Z. We used these values to establish
a threshold from which to decide whether or not a molecule had a peak at the position for
which the model was trained.

We built the predicted spectrum of a molecule by joining the results obtained with each
model (for a specific M/Z value) for that molecule. We used the same output format for all the
machine models we used in the study.

3.2.3 Architecture and Functioning

Artificial Neural Networks have been developed as generalizations of mathematical
models of biological nervous systems. In a simplified mathematical model of the neuron,
the effects of the synapses are represented by connection weights that modulate the effect
of the associated input signals and the non-linear characteristic of the neurons by a transfer
function. The neuron’s impulse is then calculated as the weighted sum of the input signals,
transformed by the transfer function. In such a way, the learning capacity of an artificial
neuron is achieved by adjusting the weights according to the chosen learning algorithm [35].

The learning rule that artificial Neural Networks use is called the Perceptron rule. The
perceptron is a single-layer Neural Network that has the goal of producing a target vector from
an input vector. Each neuron weights input values differently to produce an element of the
output vector (after some nonlinear transformation). The weights are trained to maximise the
similarity between target vectors and outputs for each input vector. Perceptrons are particularly
suitable for simple pattern classification problems. Suppose we have a set of learning samples
consisting of an input vector x and a desired output d(k). For a classification task, d(k) is
usually +1 or -1 [35]. The perceptron learning rule can be expressed as follows:

1. Start with random weights for the connections.

2. An input vector x is selected from the samples in the training set.

3. If the perceptron gives an incorrect answer, i.e. the output is yk 6=d(k), all connection
weights wi are modified by an maount δwi according to:

δwi = η(dk − yk)xi ; (η= learning rate) (1)

4. Return to step 2.

However, the simple perceptron is only capable of handling linear separation or linearly
independent problems. If the interest is to learn non-linear functions, the Multi-Layer
Perceptron (MLP) should be considered, which contains one or more hidden layers apart from
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the input and output ones. By taking the partial derivative of the network error with respect to
each weight, the direction in which the network error is moving can be learned. This is where
the Backpropagation algorithm comes into play, where the partial derivatives are taken and
then applied to each one of the weights, starting from the output layer to the hidden layer,
and from the hidden layer to the input layer weights. This is necessary to have several layers
of neurons (as in Deep Learning) since changing this set of weights requires knowledge of the
partial derivatives calculated in the back layer [35].

Two different methods can be used for such training: Online mode and Batch mode.
In the first method, the weight updates of the online method are calculated for each input
data sample, and the weights are coded after each sample. In the second one, it is possible
to calculate the update weights for each input sample but store these values for one pass
through the training set, which is called epoch. At the end of the epoch, all contributions are
suppressed, and only then the weights are updated with the composite value. This method
adapts the weights with an update of the weights, so it will follow the gradient more closely.
In short, batch training consists of feeding the training samples as input vectors through a
Neural Network, calculating the error of the output layer, and then adjusting the weights of
the network to minimise the error [35].

Back to the functioning of the perceptron, it accepts inputs, moderates them with certain
weight values, and then applies the transformation function to obtain the result. To address
this, first and foremost a Sum function (2) multiplies all the inputs of x by the weights w and
then sums them [36]. The activation function then transforms the summed weighted input of
the node into the node’s activation or output of that input.

f(x) =
∑m

i=1
wixi; (m = number of inputs to the Perceptron) (2)

One of the activation functions that we considered is the Rectified Linear Activation
Function or ReLU (3), which is a piece-wise linear function that will generate the input directly
if it is positive, otherwise it will yield zero [37]. This function allows to eliminate negative units
in an ANN [36].

f(x) = max(0, x) (3)

Thereafter, in the Sigmoid Function or Logistic Function (4) the input to the function
will be transformed into a value between 0.0 and 1.0 [37]. In other words, it will lead to a
probability of the value between 0 and 1 [36]. The form of the function for all possible inputs
is an ”S” [37].

f(x) =
1

1 + e−x
(4)

It should be noted that there are other types of activation functions that can be used, although
we chose the ones mentioned above.
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3.3 Graph Neural Network

3.3.1 Input data

We also considered a type of Neural Network in which neurons in different layers are not
connected all-to-all but instead using the connections of a known graph. A graph represents
the relationships (edges) between a collection of entities (nodes). To describe each node,
edge, or the entire graph in more detail, we can store information in each of these parts of the
graph. Graphs are convenient mathematical objects to represent molecules since their atoms
can act as nodes and bonds as edges [38].

A Graph Neural Network (GNN) is an optimisable transformation in all graph attributes
that preserves the symmetry of the graph. The simplest GNN architecture allows learning new
embeddings for all graph attributes. This GNN uses a separate multilayer perceptron (MLP) on
each component of a graph. For each node vector, a MLP can be applied to obtain a learned
node vector. The same thing can be done for each edge, learning one embedding per edge,
and also for the global context vector, learning a single embedding for the whole graph [38].

In our case, to obtain for each molecule the embedded vector that referred to the edges
of the molecule, we created a function where we stored the information of all the bonds of
the molecule in a single vector. Likewise, for each edge, we obtained the indices of the atoms
found on both sides of the bond and the type of bond: whether it was aromatic, single, double,
or triple.

To acquire the node embedding, we also created a function that stored information for
each atom of a molecule in a single vector. In this way, for each atom, we got the sequence of
its neighbouring atoms, the total number of hydrogens implicit in it, its formal charge, whether
the atom was in a ring, and whether it was aromatic, as well as its mass.

3.3.2 Output data

The output obtained in this Neural Network was exactly the same as in the ANN, that
is, for each model referring to an M/Z position in the spectrum, we obtained a value between
0 and 1 that later was used to establish whether there was a peak or not, depending on the
threshold used.

As in the previous case, we trained 171 models corresponding to 171 peaks, in order to
reconstruct the mass spectrum of each molecule.

3.3.3 Architecture and Functioning

Graph Neural Networks (GNNs) are a family of Neural Networks that unlike other models
such as ANNs, which consider individual entities in isolation, can extract and utilise features of
the underlying graph, making more informed predictions about the entities in these interactions
[39].

In GNNs may want to be made predictions at the node level, at the edge level or even
predict a global property, having only features at the level of one of those components. The
way to do this is to build a GNN model that allows for binary predictions by routing information
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between different parts of the graph. This clustering technique serves as a building block for
constructing more sophisticated GNN models.

To make the learned embeddings aware of the connectivity of the graphs, this can
be done using Message passing. In this technique, neighbouring nodes or edges exchange
information and influence each other’s updated embeddings. Message passing works in three
steps:

1. For each node in the graph, all the embeddings (or messages) from neighbouring nodes
are gathered.

2. All messages are pooled through an aggregate function. In our case we used three: a
summation function, a function that obtains the maximum values and a function that
calculates the average. In addition, we combined the results of these three functions to
create an embedding with more information.

3. All the pooled messages are passed through an update function, usually a learned Neural
Network.

It is worth noting that just as clustering can be applied to nodes or edges, message passing
can occur between nodes or edges. In turn, these steps are key to exploiting the connectivity
of graphs, so they can be used to create GNN models with increasing expressiveness and
power [38]. As can be seen, message passing forms the backbone of many GNN architectures
today. In this project, we used the Graph Attention Networks (GAT) architecture introduced
by Petar Veličković in 2017 [40], which is one of the most popular types of graph Neural
Networks because unlike Graph Convolutional Networks (GCN), all neighbours are not of equal
importance as they set a weighting factor to each connection, called Attention scores.

To calculate attention scores (aij ), a three-step process is used:

1. First, to calculate the importance of each connection, pairs of hidden vectors created by
concatenating vectors of two nodes are needed. Then, a linear transformation is carried
out using a weight matrix,

aij = Watt[Wxi ‖ Wxj] . (5)

WhereW is a weight matrix applied to the nodes embedding, andWatt is a weight matrix
applied to the concatenation of nodes i and j.

2. Next, an activation function needs to be included. In our case, we used the function
LeakyReLU Function (6), which is based on a ReLU, but it has a small slope for negative
values instead of a value of zero. In consequence, the gradient does not disappear for
negative values, but the affected weights can still be adjusted and used for the backwards
propagation.

a
′

ij = max(α aij, aij); (α= slope). (6)

3. To compare scores, the same scale can be applied by using the Softmax Function (7).
So, in the following formula the term on the bottom is the normalization term which
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ensures that all the output values of the function will sum to 1, thus constituting a valid
probability distribution [41],

a
′′

ij =
ea

′
ij∑m

k=1 e
a
′
ik

; (m = number of neighbour nodes of node i). (7)

However, to improve the performance of self-attention, multiheaded attention can be used.
This consists of replicating the same steps above several times to average or concatenate the
results. In this way, we will obtain a hidden vector for each attention head [42].

3.4 Metric

Once the models were available, we could predict for each molecule whether or not it
had a peak at the M/Z position for which the model was constructed, and its MS/MS spectrum
by reconstructing the values obtained by each model. These predictions, both with the models
independently and for the entire spectrum reconstruction, underwent a validation process to
check the performance of each network used. There were different metrics to do so, but we
considered Precision, Recall, Accuracy, F1, and Cosine similarity [43].

To define some of them, we use the following nomenclature: True Negative (TN), True
Positive (TP), False Positive (FP) and False Negative (FN). Where the model is Positive if its
prediction is 1, and Negative if it is 0. In addition, it is True if the prediction is correct, or False
if it is wrong.

• Precision: measures the quality of the model in classification tasks.

Precision =
TP

TP + FP
(8)

• Recall: reports the amount that the model is able to identify.

Recall =
TP

TP + FN
(9)

• F1: combines the Precision and Recall measures into a single value.

F1 = 2 · Precision ·Recall

Precision+Recall
(10)

• Accuracy: measures the percentage of cases that the model has been correct.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

• Cosine Similarity: measures the similarity between two vectors of an inner product
space, determining by the cosine of the angle between them if they point in approximately
the same direction [44].
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4 Implementation of the algorithms and results

In this part of the project, we combined the implementation of the algorithms mentioned
in the previous section with the results collected during the process. As explained above, we
first focused on the methods based on Artificial Neural Networks models (Fig. 7), and then on
those based on Graph Neural Networks models (Fig. 8). As a result, we obtained 8 different
spectrum prediction methods, depending on the type of models used, the input data in the
training set and the different parameters established for the prediction.

Figure 7. Made-up example of the 4 different spectrum prediction methods obtained with the

ANN models. Created with BioRender.com.

It should be noted that we worked with Python to programme all these algorithms (see
Appendix 1).
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Figure 8. Made-up example of the 4 different spectrum prediction methods obtained with the

GNN models. Created with BioRender.com.

4.1 Artificial Neural Network

Before we begin, we should outline the steps we followed using ANN models to obtain
predictions of the MS/MS spectra of the molecules:

1. Obtain the mathematical representations of the molecules using the Mol2vec method.

2. Train a model for each of the 171 most common positions, i.e. where the molecules most
frequently present a peak, of the MS/MS spectra.

3. To merge the independent performance of the models in order to reconstruct and predict
171 positions of the MS/MS spectra of molecules. Furthermore, evaluate these results
with the results that would be expected from comparing our predictions at random.

4. Evaluate the results of the predictions with those of the CFM-ID.

In the following, we explain in more detail how we carried out the implementation of the above
steps.
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4.1.1 Mol2vec vectors

First, we obtained the vectors that refer to the molecules in the dataset, using a Mol2vec
model. To do this, we trained two types of models: the Skip-Gram and the CBOW, using all the
molecules in the dataset. For both of them, we declared the output vector of measurement
300 and a window of 15, i.e. the model considers 15 ”words” before and after the target word.
Therefore, we got molecules represented in a vector of dimension 300.

To ensure that these vectors obtained from the molecules made sense and could be
sufficiently representative, we checked the Cosine similarity between the predictions carried
out by the Mol2vec model with the Cosine similarity of the same molecules from the given
input spectra. As a result, we obtained the following graphs (Fig. 9 and Fig. 10), which
are quite similar for both the Skip-Gram and CBOW models. Observing the charts, there was
a relationship between the similarity of the molecules compared by the real values of their
spectra and by their vectorial representation obtained by Mol2vec. Furthermore, we could
confirm this relationship as both pvalue values were highly significant, they were less than
0.01.

Figure 9. Comparison of the similarity between the representations of the molecules obtained

with the Mol2vec Skip-Gram model and their original spectra. In blue are the points for

each similarity comparison. In orange, we show the mean value of the similarities that

were found by making bins of 0.05 on the spectrum similarity axis. In green the same

occurs, but with bins of 0.01. In order to be able to compare the level of similarity, we

obtained a rho value of 0.070, and a pvalue of 0.0, using Spearman’s correlation for

the unbinarised values. For the similarities using a bin of 0.05 we obtained a rho value

of 0.995, and a pvalue of 3.565e-21, and for a bin of 0.01 we obtained a rho value of

0.993, and a pvalue of 6.005e-90.
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Figure 10. Comparison of the similarity between the representations of the molecules obtained

with the Mol2vec CBOW model and their original spectra. In blue are the points for

each similarity comparison. In orange, we show the mean value of the similarities that

were found by making bins of 0.05 on the spectrum similarity axis. In green the same

occurs, but with bins of 0.01. In order to be able to compare the level of similarity, we

obtained a rho value of 0.071, and a pvalue of 0.0, using Spearman’s correlation for

the unbinarised values. For the similarities using a bin of 0.05 we obtained a rho value

of 0.983, and a pvalue of 1.774e-15, and for a bin of 0.01 we obtained a rho value of

0.943, and a pvalue of 8.192e-47.

As the following steps involved large computational calculations, we decided to use from
this point the representations of the molecules obtained using the Skip-Grammodel as it scored
lower pvalues when comparing its representations with the original spectra.
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4.1.2 Peak Models

As we already specified in previous sections, we trained 171 models corresponding to the
positions of the spectrum most frequented by the fragments of the molecules in the training
data set. However, as in one case we used the dataset with the order of the molecules as it
was originally, and in another, we randomised it, the molecules in the training, validation and
test set changed in each case. Nevertheless, the most frequented positions of the spectrum
and, consequently, the trained models practically coincided for both cases.

Thus, to train the ANN models we used the aforementioned Batch mode method with a
batch size of 16 and a learning rate of 0.1. Furthermore, in the training, we defined a minimum
of 400 epochs and a maximum of 10.000. For each case, we gave the models as trained when
there started to be overfitting, that was when the model started to generalise the knowledge
we wanted it to acquire, and we kept the trained model that obtained a smaller loss in the
validation dataset.

Once we had the models trained, we obtained a score for each molecule in the test
set and model (peak). The score we got was a value between 0 and 1 for each position.
For example, for the ANN model 130 (M/Z=130) with the randomised data, we obtained for
molecule ID #4 a score of 0.699478. We then had to decide whether this score corresponded
to a 1 or a 0 in our predictions. We used two types of thresholds to transform scores into binary
variables:

• Threshold 1 - TH1: For the first type, we defined a threshold that corresponded to
the fraction between the number of times a peak appeared at the given position for
the molecules in the training set, and the total number of molecules in the training set
(30.000). Going back to our example, for position 130 we obtained a fraction of molecules
in the training set that had a peak in this position equal to 0.174, so that TH1 = 0.174.
As the score we got for molecule ID #4 was higher than the TH1 (0.174 < 0.699478),
our prediction was that molecule ID #4 had peak at position 130.

• Threshold 2 - TH2: In this case, we considered a threshold such that test and training
sets were ’calibrated’ and we predicted a fraction of peaks in the test that was equal to
the fraction of peaks we observed in the training for a specific position. For instance,
on our example, for position 130, we predicted a number of peaks that was equal to
the fraction of molecules in the training set with a peak in that position 0.174 times the
number of molecules in the test set (2.260), so that we predicted 393,239, which we
rounded up to 394. Thus, for the 394 molecules with the highest score obtained by the
ANN random model at position 130, we predicted a peak in position 130.

In order to first evaluate the results in this first part, we compared, using the metrics described
previously (Section 3.4), the predictions obtained by our models considering the two types of
thresholds, with the value of the spectrum solutions obtained in the original data.

Looking at the graphs (Fig. 11, 12, 13 and 14), we could see that there was a certain
tendency towards learning as more models were trained, since the Accuracy value increased.
On the other hand, the values of Recall, Precision and F1 were higher in the models with
randomised input data. It should be added that in the predictions in which the second threshold
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was used, these three metrics were also very similar due to the calibration of the results with
respect to the test set.

Figure 11. Prediction performance metrics for each ANN type model, with non-randomised

input data and the first threshold (TH1). Each point represents the result of the metrics

obtained by each model, trained with a test set of 2.600 molecules. On the x-axis, the

171 trained models were arranged from highest to lowest peak frequency, so that the

model with Model Index 0 corresponded to the model that considered the position in the

spectrum where the molecules in the training set most commonly presented a peak.
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Figure 12. Results of the metrics for each ANN type model, with non-randomised input data

and the second threshold (TH2). Each point represents the result of the metrics obtained

by each model, trained with a test set of 2.600 molecules. On the x-axis, the 171 trained

models were arranged from highest to lowest peak frequency, so that the model with

Model Index 0 corresponded to the model that considered the position in the spectrum

where the molecules in the training set most commonly presented a peak.

Figure 13. Results of the metrics for each ANN type model, with randomised input data and the

first threshold (TH1 Random). Each point represents the result of the metrics obtained

by each model, trained with a test set of 2.600 molecules. On the x-axis, the 171 trained

models were arranged from highest to lowest peak frequency, so that the model with

Model Index 0 corresponded to the model that considered the position in the spectrum

where the molecules in the training set most commonly presented a peak.
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Figure 14. Results of the metrics for each ANN type model, with randomised input data and

the second threshold (TH2 Random). Each point represents the result of the metrics

obtained by each model, trained with a test set of 2.600 molecules. On the x-axis, the

171 trained models were arranged from highest to lowest peak frequency, so that the

model with Model Index 0 corresponded to the model that considered the position in the

spectrum where the molecules in the training set most commonly presented a peak.
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4.1.3 Reconstruction of Spectra

To predict the spectra of the molecules, we started from the predictions calculated above,
where for each molecule we got the possibility of having or not having a peak at the M/Z
positions for which we trained models.

In this way, molecule by molecule we reconstructed their spectra by joining the peak
predictions obtained at their respective positions. This process was carried out considering
the two types of thresholds, for each ANN model exemplary, one with randomised data entry
and the other without.

Figure 15. Reconstruction of the spectrum of molecule ID #786, using the ANN method with

the second threshold and randomised input data (TH2 Random). Orange shows the

peaks that we predicted, green shows the real peaks and blue shows the positions for

which we had a model.

To evaluate the results, we first compared the spectra obtained by summing our models
with the original spectrum of each molecule (but only considering the positions for which we
had a model (Fig. 15)). Then, we calculated the model metrics for these two spectra. However,
to see if our reconstruction really made sense, we decided to also compare reconstructed
spectra of molecules with the true spectral value of other molecules. The purpose of this
random comparison was to find out if our model really had knowledge or if its performance
was similar to randomly comparing two different molecules (Fig. 16, 17, 18 and 19).
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Figure 16. Distribution of the Precision obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision of comparing our

predictions with real random spectra.

Figure 17. Distribution of the Recall obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Recall of comparing our

predictions with real random spectra.

Figure 18. Distribution of the Accuracy obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy of comparing our

predictions with real random spectra.
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Figure 19. Distribution of the Cosine similarity obtained by the ANN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

of comparing our predictions with real random spectra.

4.1.4 CFM-ID Spectra Reconstruction

On the other hand, we wanted to see how our predictions performed in comparison with
the predictions carried out by the CFM-ID Spectra Predicition, a website that predicts QToF
MS/MS spectra for multiple collision energies for an input small molecule [45]. The spectra are
calculated for low (10 eV), medium (20 eV) and high (40 eV) collision energy levels and are
represented by a list of ”mass intensity” pairs, each corresponding to a peak in the spectrum.

In this way, we first downloaded the CFM-ID predictions of the molecules that we had in
each of our test sets (one with the molecules as in the same order as they were in the original
database, and another with the ones that resulted in the test set after randomisation). Then,
as we did not introduce the type of collision energies as a parameter in our model, we decided
that in order to generalise the predictions of the platform as well, we considered for each
molecule all the peaks in its spectrum obtained as a result of all the collision energies. Once
we collected all the peaks of the molecules, obtained using all available collision energies, we
discretised and binarised them in the same way as we did for the solution of the original spectra
of the molecules. Then, to compare the CFM-ID prediction with ours, we only considered peaks
that were at the M/Z positions for which we had a trained model. Afterwards, we carried out
a comparison between the CFM-ID spectra and the true spectra of the molecules (Fig. 20),
both binarised and discretised.
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Figure 20. Reconstruction of the spectrum of the molecule ID #786 using the CFM-ID. Orange

shows the peaks that CFM-ID predicted, green shows the real peaks and blue shows the

positions for which we had a model.

Finally, we compared the model metrics obtained for each molecule spectrum between
our predictions and those of the CFM-ID (Fig. 21, 22, 23 and 24). In doing so, we aimed to
observe quantitatively which prediction algorithm performed better.

Figure 21. Distribution of the Precision obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision obtained by the

CFM-ID.
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Figure 22. Distribution of the Recall obtained by the ANN models with the second threshold type

and randomised input data (TH2 Random), versus the Recall obtained by the CFM-ID.

Figure 23. Distribution of the Accuracy obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy obtained by the

CFM-ID.

Figure 24. Distribution of the Cosine similarity obtained by the ANN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

obtained by the CFM-ID.
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4.1.5 Summary and interpretation

To finish with the Artificial Neural Network and to be able to quantitatively compare the
results obtained, we carried out dispersion plots of the Precision, Recall, Accuracy and Cosine
similarity obtained for the predictions of each molecule of the CFM-ID, compared to those
obtained from the prediction of our model (figures in Appendix 2). We then noted the number
of molecules that obtained the best results for each type of metric for each algorithm, and the
number of molecules that obtained the same results for both algorithms. In this way, it was
much easier to know quantitatively who performed better. These numerical values are shown
in the bar graph and noted in the table below.

In view of the results, the ANN model with the data without randomisation and
considering the first type of threshold (TH1), stood out for obtaining a higher Recall and
Cosine similarity compared to the CFM-ID (Fig. 25). This implies that our model predicted a
higher number of peaks per molecule, and that the similarity between the real spectrum and
our predicted spectrum was better than that of the CFM-ID. However, the CFM-ID’s higher
number of molecules in the Precision implied that the quality of its model was better with
respect to the classification task.

For the model with the data without randomisation but with the second type of threshold
(TH2), it can be seen in the results that our model obtained better scores for all types of metrics
compared to those of the CFM-ID (Fig. 26). However, the difference between the number of
molecules that obtained a better Recall with our model and with the CFM-ID was lower than
that obtained in the previous case (TH1).

Regarding the case with randomised data with the first type of threshold (TH1 Random),
our model obtained better scores for Precision, Recall and Cosine similarity, of which the high
score and difference with respect to the CFM-ID for Recall and Cosine similarity stood out (Fig.
27).

For the last case, with randomised data and the second type of threshold (TH2 Random),
our results were better for all four metrics and although the values were also very high (Fig.
28), the difference between the Recall of our model and the CFM-ID was higher in the previous
case (TH1 Random) than in this one (TH2 Random).

Figure 25. Count of the number of molecules for which a better metric was obtained between

the ANN method with non-random data input and the first threshold (TH1), versus the

CFM-ID.
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Figure 26. Count of the number of molecules for which a better metric was obtained between

the ANN method with non-random data input and the second threshold (TH2), versus

the CFM-ID.

Figure 27. Count of the number of molecules for which a better metric was obtained between

the ANN method with random data input and the first threshold (TH1 Random), versus

the CFM-ID.

Figure 28. Count of the number of molecules for which a better metric was obtained between

the ANNmethod with random data input and the second threshold (TH2 Random), versus

the CFM-ID.

To sum up the first part, we can say that overall our prediction algorithms could
reconstruct spectra better than CFM-ID, since for all the models we trained the Recall and
Cosine similarity were higher. This means that our algorithms identify a larger number of
peaks for each tandem mass spectra of the molecules and that the spectra they predict are
more similar to the original ones than those of the CFM-ID. Add that we do not give as much
importance to the metric Accuracy since it measures the percentage of cases where the model
has been correct, whether or not to predict a peak, so it includes the number of predicted
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Table 1. Summary of the number of molecules predicted better by ANN.

Model Metric CFM Model Equals

TH1

Precision 1336 674 56
Recall 256 1441 369
Accuracy 1644 387 35
Cosine Similarity 272 1774 61

TH2

Precision 816 1137 113
Recall 648 1007 411
Accuracy 818 116 82
Cosine Similarity 711 1260 95

TH1 Random

Precision 844 1222 41
Recall 65 1824 218
Accuracy 1051 998 58
Cosine Similarity 316 1763 28

TH2 Random

Precision 372 1659 76
Recall 334 1440 333
Accuracy 382 1672 53
Cosine Similarity 272 1774 61

zeros. Thus, a high value of this metric will not be as significant, since it will be more general
and not as discriminative as one that considers only the prediction of peaks. On the other
hand, better results were obtained by algorithms that have randomised data as input. This
means that the data in the database from which we obtained them were ordered by some
factor, so that if we divide the data set without mixing the rows into three values, in each data
set the characteristics of the data are more homogeneous. For this reason, by randomising
the data, they and their features are interleaved, allowing the Neural Networks to learn from
a more heterogeneous data set with more information.

Finally, from this first part we highlight the performance of the algorithm with the
randomised data but with the second type of threshold (TH2 Random), as it obtained very
good scores for all metrics, including a good Precision value, which implies a high quality in
the classification task of the models.
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4.2 Graph Neural Network

In the same way as with ANN-based methods, we outline the steps we followed using
GNN models to obtain predictions of the MS/MS spectra of the molecules:

1. Obtain the mathematical representations of the molecules using functions based on graph
functions, where the nodes are the atoms of the molecules, and the edges are the bonds.

2. Train a model for each of the 171 most common positions.

3. To merge the independent performance of the models in order to reconstruct and predict
171 positions of the MS/MS spectra of molecules, and evaluate these results with the
ones expected at random.

4. Evaluate the results of the predictions with those of the CFM-ID.

Subsequently, we explain in more detail how we carried out the implementation of the above
steps.

4.2.1 Edge and nodes embeddings

In this case, we directly introduced the molecules in our Neural Network, and within it,
we called the functions described in Section 3.3.1, which were responsible of obtaining vectors
for each molecule, from its edges and nodes.

4.2.2 Peak Models

Afterwards, to obtain the predictive models for the 171 most frequent positions in the
spectrum, we followed the same methodology as for the ANN. This means that we calculated
two types of models, depending on the molecules of the input dataset, i.e. considering the
randomised dataset and the non-randomised one. In addition, to train the models we used
the Batch mode method, with the same batch size as before, but with a learning rate of 0.01.
Regarding the criteria for training our models, it was exactly the same, defining a range of
epochs from 400 to 10.000, and keeping in each case the model that obtained the lowest
losses for the validation dataset.

Once we obtained the peak predictions for each molecule, as in the other Neural Network
model, we considered the same two types of thresholds (Threshold 1 and Threshold 2) to
define whether a prediction indicated a peak or not. We also plotted the metrics of the models,
by comparing the results obtained with the actual peaks present in the molecules.

Looking at the figures (Fig. 29, 30, 31 and 32), as in the previous case (ANN), we saw
that Accuracy tend to increase as the number of trained models increased. The values of
Precision, Recall and F1 were higher when the data inputs were randomised, as well as being
very similar when the second threshold was used.
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Figure 29. Results of the metrics for each GNN type model, with non-randomised input data

and the first threshold (TH1). Each point represents the result of the metrics obtained

by each model, trained with a test set of 2.600 molecules. On the x-axis, the 171 trained

models were arranged from highest to lowest peak frequency, so that the model with

Model Index 0 corresponded to the model that considered the position in the spectrum

where the molecules in the training set most commonly presented a peak.

Figure 30. Results of the metrics for each GNN type model, with non-randomised input data

and the second threshold (TH2). Each point represents the result of the metrics obtained

by each model, trained with a test set of 2.600 molecules. On the x-axis, the 171 trained

models were arranged from highest to lowest peak frequency, so that the model with

Model Index 0 corresponded to the model that considered the position in the spectrum

where the molecules in the training set most commonly presented a peak.
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Figure 31. Results of the metrics for each GNN type model, with randomised input data and the

first threshold (TH1 Random). Each point represents the result of the metrics obtained

by each model, trained with a test set of 2.600 molecules. On the x-axis, the 171 trained

models were arranged from highest to lowest peak frequency, so that the model with

Model Index 0 corresponded to the model that considered the position in the spectrum

where the molecules in the training set most commonly presented a peak.

Figure 32. Results of the metrics for each GNN type model, with randomised input data and

the second threshold (TH2 Random). Each point represents the result of the metrics

obtained by each model, trained with a test set of 2.600 molecules. On the x-axis, the

171 trained models were arranged from highest to lowest peak frequency, so that the

model with Model Index 0 corresponded to the model that considered the position in the

spectrum where the molecules in the training set most commonly presented a peak.
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4.2.3 Spectra Reconstruction

To reconstruct the spectra from the results obtained by the models for the different
M/Z positions of the molecules, we performed the same procedure described in Section 4.1.3.
Below, we show an example of a reconstruction of the spectrum compared to its real spectrum
(Fig. 33). As in the previous case, and to see that the predictions obtained really showed

Figure 33. Reconstruction of the spectrum of molecule ID #786, using the GNN method with

the second threshold and randomised input data (TH2 Random). Orange shows the

peaks that we predicted, green shows the real peaks and blue shows the positions for

which we had a model.

knowledge and did not work as if they were a random case, we calculated the model metrics
between our results with their solutions, and our results with the spectra of other molecules
(Fig. 34, 35, 36 and 37).

Figure 34. Distribution of the Precision obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision of comparing our

predictions with real random spectra.
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Figure 35. Distribution of the Recall obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Recall of comparing our

predictions with real random spectra.

Figure 36. Distribution of the Accuracy obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy of comparing our

predictions with real random spectra.

Figure 37. Distribution of the Cosine similarity obtained by the GNN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

of comparing our predictions with real random spectra.
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4.2.4 CFM-ID Spectra Reconstruction

Finally, just as in the ANN we compared the results of our reconstructed spectra with
those predicted by the CFM-ID Spectra Prediction, we did the same for the GNN. In this case,
these were the results obtained for the method with randomly ordered data at the input, and
the second threshold (Fig. 38, 39, 40 and 41).

Figure 38. Distribution of the Precision obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision obtained by the

CFM-ID.

Figure 39. Distribution of the Recall obtained by the GNN models with the second threshold type

and randomised input data (TH2 Random), versus the Recall obtained by the CFM-ID.
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Figure 40. Distribution of the Accuracy obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy obtained by the

CFM-ID.

Figure 41. Distribution of the Cosine similarity obtained by the GNN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

obtained by the CFM-ID.

4.2.5 Summary and interpretation

To finish with the comparison between the results obtained using Graph Neural Networks,
we followed the same steps as for the ANNs. That is, we first performed scatter plots to
compare the Precision, Recall, Accuracy and Cosine similarity results of our algorithms with
those of the CFM-ID (figures in Appendix 2), from which we noted the number of molecules
that obtained better scores for each type, or if they obtained the same result for both cases.
Ultimately, we put these results together in a bar chart and recorded the quantitative values
in the table below.

First, for the algorithm with the non-randomised data with the first threshold type (TH1),
the only score that was higher for our algorithm was the Recall score, since the number of
predicted peaks per molecule was superior (Fig. 42). Nonetheless, the Precision, Accuracy
and Cosine similarity scores were better for the CFM-ID algorithm.

For the method without the randomised data but with the second threshold (TH2), the
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Figure 42. Count of the number of molecules for which a better metric was obtained between

the GNN method with non-random data input and the first threshold (TH1), versus the

CFM-ID.

Figure 43. Count of the number of molecules for which a better metric was obtained between

the GNN method with non-random data input and the second threshold (TH2), versus

the CFM-ID.

prediction by the CFM-ID was better as it performed better on all model metrics (Fig. 43).

In the case of the randomised data and with the first threshold (TH1 Random), the values
of our model for Recall and Cosine similarity were better than those of the CFM-ID, so that the
similarity between the real spectrum of the molecules and the one predicted in our case was
closer than the one predicted by the CFM-ID. Although, as our Precision result was worse, the
CFM-ID model obtained a better quality in the classification tasks (Fig. 44).

In the last case, where the data were randomised and the second threshold (TH2
Random) was used, the results for all four types of metrics were performed better by our
predictions (Fig. 45). Moreover, the difference between our Recall versus CFM-ID score
difference was lower than the one obtained in the previous case (TH1 Random). However, in
this case (TH2 Random) the results obtained for Precision were much better.

To conclude this part, we note that in this case there was a significant difference in
the prediction of the molecule spectra depending on whether the order of the input data
was randomised or not. In the first two types, the only better score obtained by our model
compared to the CFM-ID was the Recall (for the TH1 case), when with the mixed input data,
for the TH1 Random case the Recall and the Cosine similarity were better and for the TH2
Random case all the metrics were better for our model. For this reason, the predictions of the
spectra carried out with the randomised data and with the second type of threshold stood out
from the other types of algorithms.
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Figure 44. Count of the number of molecules for which a better metric was obtained between

the GNN method with random data input and the first threshold (TH1 Random), versus

the CFM-ID.

Figure 45. Count of the number of molecules for which a better metric was obtained between

the GNNmethod with random data input and the second threshold (TH2 Random), versus

the CFM-ID.

Table 2. Summary of the number of molecules predicted better by GNN.

Model Metric CFM Model Equals

TH1

Precision 1738 282 46
Recall 511 1198 357
Accuracy 1967 89 10
Cosine Similarity 1263 765 38

TH2

Precision 1425 526 115
Recall 1184 516 366
Accuracy 1251 740 75
Cosine Similarity 1388 584 94

TH1 Random

Precision 1371 699 37
Recall 108 1712 287
Accuracy 1647 426 34
Cosine Similarity 636 1444 27

TH2 Random

Precision 675 1328 104
Recall 555 1161 391
Accuracy 654 1354 99
Cosine Similarity 594 1425 88
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5 Discussion

In this section we put all the results together to discuss what we found most significant
in the experimental work and the most suitable model to solve the proposed problem.

Firstly, in order to carry out the predictions of the MS/MS spectra of the molecules, we
created suitable mathematical representations for each of them. In the case of the Artificial
Neural Network, we obtained the representations using the unsupervised Deep Learning
method Mol2vec. In this way, for each molecule we had an embedded vector of 300 dimensions
that related the substructures of the molecule using Morgan’s algorithm. On the other hand,
for the Graph Artificial Network we created two functions that calculated two embeddings for
each molecule, one corresponding to the type of atoms present in the molecule, and the other
to the bonds.

From the very beginning, as far as the Mol2vec representations were concerned, we could
already see that they were quite closely related to the original structure of the molecules
by obtaining a quite significant pvalue when relating these two vectors by means of the
Cosine similarity. On the other hand, we already knew that the input data for the GNNs
were representative of the molecules since our functions directly described their composition.

Subsequently, we trained 171 models for each type of Neural Network (ANN and GNN),
corresponding to the 171 M/Z positions most frequented by peaks in the MS/MS spectra of
the molecules in the training set. Likewise, for each type of Neural Network we trained one
type of models with the input data ordered in the same way as in the original dataset, and
others with the data randomised. In addition, for each case we predicted two different types
of results, based on two different thresholds. The first one considered the fraction between
the number of peaks appearing at the M/Z position of the model in question, and the total
number of molecules in the training set. The second threshold was calculated in the same way,
with the difference that it was calibrated according to the molecules in the test set. In other
words, we calculated a total of eight predictive approaches to MS/MS spectra, formed from
the reconstruction of the values obtained by each M/Z model. The eight types of predictions
were:

1. Predictions with ANN-type models with the data not randomised according to the first
threshold.

2. Predictions with ANN-type models with the data not randomised according to the second
threshold.

3. Predictions with ANN-type models with the data randomised according to the first
threshold.

4. Predictions with ANN-type models with the data randomised according to the second
threshold.

5. Predictions with GNN-type models with the data not randomised according to the first
threshold.

6. Predictions with GNN-type models with the data not randomised according to the second
threshold.
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7. Predictions with GNN-type models with the data randomised according to the first
threshold.

8. Predictions with GNN-type models with the data randomised according to the second
threshold.

For each of the above predictions, we calculated metrics to evaluate the classification of our
models, and consequently, the quality of the reconstructions of the molecule spectra. From
the outset, we could see that the predictions achieved by the Neural Networks made a certain
amount of sense since, when representing the predicted spectrum against the real binarised
spectrum, many peaks of example molecules coincided.

Therefore, in order to perform a quantitative comparison, we compared our results with
those of CFM-ID. Currently, CFM-ID is the best fragmentation modelling method for predicting
EI-MS and ESI-MS/MS spectra of a given compound based on Machine Learning. Its version
4.0 can predict a large number of chemical compounds more precisely, with better performance
than any in silico tool published to date [17]. Thus, we calculated the prediction using CFM-ID
for the same molecules for which we had results (both for those in the case with randomised
data and those without). We were then able to compare the Precision, Accuracy, Recall and
Cosine similarity for each MS/MS spectrum predicted by each of our methods and by CFM-ID.
Thus, we noted which obtained better results for each metric.

According to the results, the best method to carry out the predictions of the MS/MS
spectra of molecules was the one obtained by the ANNs trained with random data and
considering the second type of threshold. The results for this method showed better
performance for all types of metrics compared to the CFM-ID, which means that this method
has better quality in the classification tasks, identifies a higher number of peaks, obtains a
higher percentage of correct predictions and results in more similar spectra compared to the
real ones.

Consequently, in relation to the comparison between the two types of Neural Networks
we showed that for this case the Artificial Neural Network obtains better results. This means
that the embedded vector formed from the Mol2vec method is sufficiently characteristic for
each molecule, even though it is only a representation of the structure and not of specific
characteristics of the atoms and bonds of the molecules as in the GNN.

On the other hand, with regard to the comparison of our models with those of the
CFM-ID, we clearly observed a better performance on our side. However, it should be noted
that our models only predict whether there is a peak or not at certain positions in the binarised
spectrum. The CMF-ID algorithm represents the spectrum of the molecules by peaks with
varying intensities. But the intensity of the signal of the ions in a mass spectrum is not such
an identifying value of the molecules since it can be variable and depends on many factors.
The energy of the electron beam, the location of the sample with respect to the beam, the
vapour pressure of the sample, the temperature of the ion source, etc., give rise to significant
variations in the relative abundance of the ions for spectra obtained in different laboratories and
under different conditions. Thus, it is the x-axis in a spectrum that contains mass information,
since it represents a relationship between the mass of the ion and the number of elementary
charges carried by it [46].

Turning to the predictive capability of our models, we highlight two important aspects
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to consider. Firstly, all the methods we implemented to carry out the predictions are able to
predict whether or not there is a peak at a position in the spectrum which corresponds to a
1 M/Z bin. This means that in reality, within the 1 M/Z interval, a molecule can have several
peaks, which may or may not be related. This implies that the level of difficulty is higher since
molecules with very different structures may have peaks for the same M/Z interval, when in
reality they correspond to very different fragments. Secondly, our models do not need to know
the collision energy at which a molecule has fragmented, but directly predict all the possible
fragments into which it can be broken. In the case of CFM-ID, different MS/MS spectra are
obtained for different collision energies and the M/Z positions correspond to specific values
frequented by molecules fragments.
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6 Conclusions

The project’s main objective was to find the best model that could predict the tandem
mass spectra of any molecule, given its molecular formula as a SMILE format. We have followed
a workflow that has allowed us to build and compare different Deep Learning algorithms that
we thought to be potential for this purposed.

In doing so, we have been able to compare the performance of an Artificial Neural
Network and a Graph Neural Network, as well as to compare our results with the best in silico
tool for the prediction of the MS/MS spectrum of molecules to date. Accordingly, we have been
able to determine that between the models used in this project and the CFM-ID algorithm, the
best method for prediction is the one formed by ANN type models, with a randomly ordered
data input (according to our database used) and a calibrated threshold.

To achieve this, we have reached other objectives defined at the beginning of the work,
such as obtaining adequate mathematical representations of the molecules. In this way, both
for one Neural Network and for the other, their input data have been sufficiently representative
since the results have been shown to have a high predictive potential. In all but one case, i.e.
in seven of the eight cases, the Recall values were higher than those of the CFM-ID.

Finally, we can conclude that although our project has obtained excellent results, Neural
Networks and Deep Learning are the art of imagining a design, training it and adjusting it
according to its performance. So they can always be improved (by changing and adding
parameters and layers), refining the details to reach the final goal in the best possible way.
For this motivation, we think that the results would be even better if instead of dividing the
x-axis of the spectrum in bins of 1 M/Z, we focus directly on the positions where we know that
the molecule fragments are located in most cases. This could be done by obtaining from large
databases the exact positions for which the molecules have peaks. Furthermore, instead of
analysing the prediction results of ANNs and GNNs separately, we could combine these Neural
Networks by building one that includes the predictive power of both. With these possible
improvements and on the basis that our project has already obtained excellent results, we
believe that future research on this project could lead to a promising tool for the identification
of molecules in the field of metabolomics.
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Appendix 1. Programming code

Examples of the codes we have developed for the implementation of the Deep Learning
algorithms can be found in the following repository: https://github.com/MaribelPR/TFG_DL_
MSMSprediction.git. They are generally private, except if someone requests access to them.

Appendix 2. Additional figures

Dispersion plots of the Precision, Recall, Accuracy and Cosine similarity obtained for the
predictions of each molecule of the CFM-ID, compared to those obtained from the prediction
of our method using the ANN models with the second threshold type and randomised input
data (TH2 Random).

Figure 46. Dispersion of the Precision obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision obtained by the

CFM-ID.
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Figure 47. Dispersion of the Recall obtained by the ANN models with the second threshold type

and randomised input data (TH2 Random), versus the Recall obtained by the CFM-ID.
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Figure 48. Dispersion of the Accuracy obtained by the ANN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy obtained by the

CFM-ID.
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Figure 49. Dispersion of the Cosine similarity obtained by the ANN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

obtained by the CFM-ID.
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Dispersion plots of the Precision, Recall, Accuracy and Cosine similarity obtained for the
predictions of each molecule of the CFM-ID, compared to those obtained from the prediction
of our method using the GNN models with the second threshold type and randomised input
data (TH2 Random).

Figure 50. Dispersion of the Precision obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Precision obtained by the

CFM-ID.
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Figure 51. Dispersion of the Recall obtained by the GNN models with the second threshold type

and randomised input data (TH2 Random), versus the Recall obtained by the CFM-ID.
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Figure 52. Dispersion of the Accuracy obtained by the GNN models with the second threshold

type and randomised input data (TH2 Random), versus the Accuracy obtained by the

CFM-ID.
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Figure 53. Dispersion of the Cosine similarity obtained by the GNN models with the second

threshold type and randomised input data (TH2 Random), versus the Cosine similarity

obtained by the CFM-ID.
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