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Resum.  

L'objectiu d'aquest treball ha estat desenvolupar una eina basada en 

Intel·ligència Artificial que aprengui a fer decisions en un joc de cartes tan 

complex com el Magic: The Gathering. El treball està centrat en una part del joc 

on s'ha de triar una carta entre un conjunt de màxim de 15 d'un set de 

aproximadament 300 cartes, tenint en compte les seleccions que s'hagin fet 

prèviament. S’han utilitzat mètodes d’aprenentatge automàtic basats en xarxes 

neuronals, aprofitant les dades de jugadors reals fent aquestes mateixes 

seleccions. S’ha dissenyat un model de representació de les dades del joc i s’ha 

implementat una xarxa neuronal usant el llenguatge de programació Python. 

En aquest projecte s’ha aconseguit entrenar una intel·ligència artificial en la 

tasca prèviament definida, aconseguint imitar la selecció de cartes escollides pels 

jugadors usant un conjunt de dades de testeig a partir de jugades conegudes. El 

sistema ha estat també avaluat per alguns jugadors, obtenint uns bons resultats 

qualitatius. 

 

Resumen.  

El objetivo de este trabajo ha sido desarrollar una herramienta basada en 

Inteligencia Artificial que aprendiese a tomar decisiones en un juego de cartas 

tan complejo como el Magic: The Gathering. El trabajo está centrado en una 

parte del juego donde se debe elegir una carta entre un conjunto de máximo de 

15 de un set de aproximadamente 300 cartas, teniendo en cuenta las selecciones 

que se hayan realizado previamente. Se han usado métodos de aprendizaje 

automático basados en redes neuronales, aprovechando los datos de jugadores 

reales haciendo estas mismas selecciones. Se ha diseñado un modelo de 

representación de los datos del juego y se ha implementado una red neuronal 

usando el lenguaje de programación Python. 

En este proyecto se ha conseguido entrenar una inteligencia artificial en la tarea 

previamente definida, consiguiendo imitar la selección de cartas elegidas por 

jugadores usando un conjunto de datos de testeo a partir de jugadas conocidas. 

El sistema también ha sido evaluado por algunos jugadores, obteniendo buenos 

resultados cualitativos. 

 

Abstract. 

The aim of this work has been to develop a tool based on Artificial Intelligence 

to learn how to make decisions in a card game as complex as Magic: The 

Gathering. The project is focused on a part of the game where a card must be 

chosen from a set of up to 15 cards from the global game set of about 300 cards, 

considering the selections that have been previously made. Machine learning 

methods based on neural networks have been used, taking advantage of data 

from real players making these same selections. A game data representation 

model has been designed and a neural network has been implemented using the 

Python programming language. 
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In this project we have managed to train an artificial intelligence in the 

previously defined task, managing to imitate the card selection made by players 

using a testing dataset from known plays. The system has also been evaluated by 

some players, obtaining good qualitative results. 
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1 Introduction 

Artificial Intelligence (AI) is a computer science field that recently has earned a lot of 

popularity with the recent boom of technologies using it. From chatbots that simulate human 

speech with vast knowledge about everything, to self-driving cars, AI is evolving and 

becoming a part of our daily lives. 

AI can be defined as the discipline that builds computer programs that perform tasks 

that would normally need human intelligence. In the early days of AI research, these systems 

were very limited, but with the advance in technology and data availability, new machine 

learning algorithms have evolved AI to a higher level.  

One task that requires deep knowledge and large training is the playing of certain card 

games. In this bachelor project, we have explored the possibilities of training an AI system 

for one of the most complex card games that exists nowadays: Magic: The Gathering. 

Magic: The Gathering (also called Magic or MTG) is a tabletop and digital collective 

card game created in 1993, where players build decks and use those decks to play versus 

each other. It is a multiplayer game that has been evolving through the years, with different 

formats and ways to play it, and with more than 25000 unique cards, it has become the most 

popular trading card game. 

There are multiple ways to play Magic: The Gathering (called, formats [1]). There are 

many formats, but they can be classified in 2 ways: Constructed and Limited. Constructed 

formats are the formats where players play with decks previously constructed (hence the 

name). The specific format changes the card pool allowed, but in any Constructed 

tournament, players build the deck in advance of the tournament. Limited formats, on the 

other hand, players need to build decks after opening a specific number of Magic product, 

usually unopened packs of cards, also called boosters, and then build a deck with that limited 

pool of cards. Limited formats bring an extra gameplay experience, as it is not just playing 

with a deck versus an opponent, there is also the card selection and deck building problem. 

The most popular limited format is the one called booster draft [2], or just draft. To 

play this format, players select cards from boosters to then build a deck to play with. These 

boosters are packs of 15 cards, and these cards are usually from the same set, and a set is the 

general name of the group of cards that are released as a new product. A set usually consists 

of 250-300 cards, that can be new or can be old cards that get reprinted as new versions. 

To be more specific, a player who wants to draft first joins a pod (a group of usually 8 

players that draft together. Then each player gets 3 booster packs, and starts the drafting loop 

[3]: 

1. Open a pack. 

2. Select a card from the pack and add it to your pool of cards. 

3. If there are no cards left, go to step 4, otherwise to step 5. 

4. If one of your 3 packs is still closed, go back to step 1, otherwise the draft has ended. 

5. Pass the cards to the player next to you. 

6. Get the cards passed to you from the other player next to you and go back to step 2. 

After finishing these steps, the player has a pool of cards that have to be used to build 

a deck to play versus the other players. And while these steps are quite easy to understand, 

they are more complex than it seems. Step n2 is the most crucial and complex here, the card 

selection process. A player must evaluate the cards in the pack, that are a subset of between 

1-15 cards of the set he is playing, and choose the best card based on his criteria, taking in 

consideration what the cards do, and how well they work with the cards previously selected 
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that are already in the pool. Learning good criteria and making the best decisions is hard, 

mostly because you never know the information of your next possible picks, plus the criteria 

can change between sets, and even more importantly, there is not always a best decision, 

sometimes there are multiple options that can be correct. Players usually study the set to 

evaluate how good each card is and follow basic strategies like B.R.E.A.D (Bombs, 

Removal, Evasion, Aggro, Dirt), common strategies developed as basic knowledge for draft 

players. But in the end, most players end up doing trial and error to see which cards are 

better, or which ones work best together, to tune their strategy for the current set. 

This project is focused on developing an Artificial Intelligence that will learn and will 

be used on the card selection process of a draft game. 

As a fellow Magic: The Gathering player, I know it is a hard game to learn from zero, 

therefore, creating a tool that could help new players in the card selection process would be 

very useful to increase their engagement and enjoyment during the play. 

 

1.1. Objectives 

From the idea of designing and constructing a program based on Artificial Intelligence 

to learn to play Magic: The Gathering, we decided to focus the work on one of the difficult 

tasks of this game: the draft card selection. Then, the objectives of this work are the 

following: 

1. Study the state of the art in AI-based methods for card selection in MTG. 

2. Design a training system with Machine Learning techniques that can learn from 

thousands of real selections made by people. 

3. Implement the system using state-of-the-art Machine Learning technologies for the 

management of large datasets. 

4. Evaluate the system, so that the model obtained must be accurate enough to help real 

players make better decisions about the game. 

 

1.2 Structure of this document 

The rest of the document is organized as follows.  

• Chapter 2 presents the main theoretical concepts about the techniques that will be 

used in this bachelor project, mainly about Machine Learning and Neural Networks. 

• Chapter 3 is devoted to presenting projects where artificial intelligence and Magic: 

The Gathering are related, mainly about similar projects to my objective. 

• Chapter 4 explains the data that will be used for this project. 

• Chapter 5 discusses about the model that is built for this bachelor project. 

• Chapter 6 presents the implementation of the project, and the final product. 

• Chapter 7 shows the tests and results gotten with this project 

• Chapter 8 talks about the conclusions reached with this project. 
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2 Terminology and definitions 

This chapter is devoted to explaining all the terminology, tools and concepts related to 

the project. 

2.1 Machine Learning 

Machine learning [4] is a subfield of Artificial Intelligence that focuses on the 

development of algorithms and models that enable computers to learn and make predictions 

or decisions without being explicitly programmed. It involves the use of statistical 

techniques to enable systems to automatically learn from data, identify patterns, and make 

informed predictions or decisions. Machine learning algorithms are used in a wide variety 

of applications such as in medicine, computer vision, email filtering, where it is difficult to 

develop conventional algorithms to perform the tasks. Machine learning focuses on 

prediction based on properties previously learned from data. 

There are three main approaches that correspond to the learning system used to train 

the computer programs, and those are supervised learning, unsupervised learning, and 

reinforcement learning. 

2.1.1 Unsupervised Learning 

Unsupervised learning is a type of machine learning where the algorithm is trained on 

an unlabeled dataset, meaning it is given input data without any corresponding output labels. 

The goal is for the algorithm to discover patterns or relationships within the data without any 

predefined notions of what it should find. 

Unsupervised learning algorithms aim to group similar data points together or find 

underlying structures or patterns in the data. Common techniques in unsupervised learning 

include clustering algorithms, such as k-means clustering, and dimensionality reduction 

techniques, such as principal component analysis (PCA). 

2.1.2 Reinforcement Learning 

Reinforcement leaning [4] is a type of machine learning where a computer program 

interacts with a dynamic environment with a specific goal in mind. And while performing 

the task it gets a reward based on the performance and tries to maximize this reward. 

The program learns based on this feedback in form of rewards or penalties, and the 

goal is to discover the optimal strategy that maximizes the reward score. A simple example 

of a use of reinforced learning is teaching an algorithm to learn to play the classic game 

snake, with rewards each time it grows and penalties each time it dies, with the objective of 

surviving until it fills the whole board, that wins the game. 

2.1.3 Supervised Learning 

Supervised learning is a type of machine learning where the algorithm is trained on a 

labeled dataset, meaning it is given input data with corresponding output data. The goal is to 

learn a set of “rules” that map inputs to outputs, to later apply it to unseen data. 

In supervised learning, the dataset is divided into two main parts: the training set and 

the test set. The training set is used to train the algorithm, and after being trained, the 

algorithm is evaluated using the test set. These are the three main steps needed to get a 

successful machine learning algorithm using supervised learning: training, testing and 

validation. 
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Training is the part where the training set is given to the algorithm, and it uses the 

inputs and outputs given to adjust its internal parameters to minimize the error between the 

predicted output and the actual output. 

Testing is the part where the testing set is given to the algorithm, and it uses the inputs 

to get a prediction on the output. 

Validation is the part where the model is evaluated on its performance. It uses the 

outputs of the testing and compares them to the real outputs of the testing set to give a score. 

Some of the most usual ways to evaluate are the following: 

• Accuracy: Accuracy measures the proportion of correct predictions made by a 

model out of the total number of predictions. It is a straightforward method and 

easy to understand and interpret, but it is not always the best decision, since 

the dataset could be imbalanced and the model could just predict 100% 

accuracy the main class while ignoring the minority, while still having a high 

accuracy. 

• Precision: Precision measures the proportion of true positive predictions out of 

all positive predictions. It focuses on the correctness of positive predictions and 

is calculated as true positives divided by the sum of true positives and false 

positives. Precision is useful when the cost of false positives is high. 

• Recall: Recall, also called Sensitivity or True Positive Rate, measures the 

proportion of true positive predictions out of all actual positive instances. It 

focuses on capturing all positive instances and is calculated as true positives 

divided by the sum of true positives and false negatives. Recall is important 

when the cost of false negatives is high. 

• F-score: This score is the harmonic mean of precision and recall. It provides a 

balance between precision and recall and is useful when both false positives 

and false negatives need to be minimized. 

 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) are computational models inspired by the structure 

and functioning of biological neural networks in the human brain. They are composed of 

interconnected artificial neurons, also called nodes or units, organized in layers. ANNs are 

designed to learn from data and make predictions or decisions by adjusting the strength of 

connections (weights) between neurons. 

Each neuron in an ANN receives input signals, applies a mathematical transformation 

to these inputs, and produces an output signal. The output of one neuron serves as input to 

the neurons in the subsequent layer until the final output is generated. During training, ANNs 

adjust the weights based on a learning algorithm, such as backpropagation, to minimize the 

difference between predicted and actual outputs. 

2.3 Multi-Layer Perceptron Classifier 

A perceptron is an artificial neuron, it is the basic unit of a neuronal net, and it can also 

be called node or neuron. The function of a perceptron is to do operations with the inputs to 

get an output that can be used to study characteristics. It usually does linear operations with 

the inputs, and it is used in multiples to build complex learning structures. 

A Multi-Layer Perceptron is a common type of artificial neural network. It consists of 

a net of multiple perceptrons or nodes that are classified in layers (Figure 1). A specific node 
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is connected to all the other nodes from the layers he has on both sides. It is a supervised 

learning algorithm that learns a function ƒ(·) ∶  𝑅𝑚 → 𝑅𝑜 where 𝑚 is the number of 

dimensions for input and 𝑜 is the number of dimensions for the output.  

 

Figure 1. One Hidden Layer MLP (from sklearn) 

The advantage of using a Multi-Layer Perceptron is the capability to learn non-linear 

models, and the capability to learn in real-time using partial_fit, useful for big databases 

A MLPClassifier is a type of Multi-Layer Perceptron with a discrete output, composed 

by a predefined set of classes, for example, it can be spam or not spam, selected or not 

selected, cat, fish or dog. This is the kind of multi-layer perceptron we will use in this project.  

2.3.1 Backpropagation 

Backpropagation is the algorithm that will be used to train the MLPClassifier. This 

algorithm works by first predicting the outputs based on the input data X and comparing the 

predicted output with the actual output Y that is given to the function to train. When 

comparing this error, you get an error, the difference between the predicted and the actual 

output, and then you send back this error to each neuron in a backward direction, and then 

the gradient of the error is calculated with respect of each weight of the neurons, modifying 

the weights for the next iteration (Figure 2). 
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Figure 2. Backpropagation (from analyticsvidhya.com) 

2.4 Deep Learning 

Deep Learning [5] is a subfield of machine learning that focuses on training artificial 

neural networks with multiple hidden layers. These networks, often referred to as Deep 

Neural Networks (DNNs), have the capability to learn complex representations and 

hierarchical features directly from raw input data, eliminating the need for manual feature 

engineering. 

Deep Learning has brought significant advancements to various domains, including 

computer vision, natural language processing, speech recognition, and more. Deep Neural 

Networks excel at extracting high-level and abstract features from vast amounts of data, 

leading to state-of-the-art performance in numerous tasks. 

One specific type of DNN is the multi-layer perceptron, which consists of multiple 

hidden layers. By incorporating multiple hidden layers, a Deep Neural Network has the 

capacity to discover intricate features and patterns in the input data, enabling it to capture 

more nuanced representations and enhance its learning capabilities. This depth allows DNNs 

to model highly complex relationships and achieve superior performance compared to 

shallow neural networks. 
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3 Related work 

There have been many projects that used AI for different tasks related to MTG. Most 

of these projects are related to creating new cards. An example would be Urza’s AI system 

[6], or MTG Hivemind project [7]. This kind of projects study different properties of the 

cards such as the text, cost, color… and then generate new cards creating the card text, then 

assigning colors and costs related to the text, plus name, art, and other characteristics of the 

cards. 

Outside these projects, there are not many that focus on the gameplay part of Magic: 

The Gathering. But there are two that provide different approaches to drafting. 

The first paper [8] presents 5 different software agents that learn to draft, using 

different techniques to then evaluate them and comparing them. This article is not focused 

on artificial intelligence, and while it uses it in 2 models, the other 3 agents use other 

heuristics as randomly selecting cards, selecting cards based on the card characteristic called 

rarity, or by selecting based on a score each card has that was given by a human. 

The second paper [9] uses AI and explains how it does. In this paper, 10 linear models 

are trained with data specific for each of the MTG archetypes, or color combinations played 

while drafting. With each model specified on a possible final deck, it can classify the cards 

on how good they are in each archetype. And with that it calculates a bias based on how 

much each card forces you to play a specific archetype and uses everything to select a card 

based on the picks the previous selected cards. 

This last paper provides an interesting approach to how to tackle the problem, some 

ideas that could be used, but also give some interesting highlights about specific problems 

of that their approach. An interesting problem that this article exposes is what is called bad 

human behavior. This happens when people take an enticing card just to have it for future 

uses and not for the draft, making it a sub-optimal choice or even a bad one. This can also 

happen with other picks, where players can pick good cards but maybe not the optimal ones 

for that spot or be in a spot where multiple options are correct. 

With these related works, we can see the current progress and uses of AI in Magic: 

The Gathering, plus some problems this project might face. This has helped in the design of 

the solution proposed in this project and in the evaluation. 
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4 Data 

In this chapter, the dataset used for constructing the drafting model is presented. As 

usual in AI systems, having a large set of data with examples of human behavior is required 

to train a system that mimics, in this case, the player behavior of drafting. A group of data 

analysts who love Magic: The Gathering have created a webpage to collect read drafting 

actions done by players.  It is explained below. 

4.1 17lands.com 

17lands.com [10] is a webpage specialized in collecting data from limited formats of 

MTG (including draft, the one we are interested), and in their own words “The mission of 

17Lands is to help the Magic: The Gathering community improve at limited. We aggregate 

and openly share data to help players understand their own performance, to generate insights 

that can only come from a larger communal pool of data, and to provide data-driven content.” 

17lands.com offers a tracker that gets data from the players who use it while playing 

in the app Magic: The Gathering Arena, the free official online platform to play. The tracker 

only works on computers, but gathers data of players drafts, game and replay data. This data 

is already analyzed to some extent in their webpage (Figure 3), but it is also free to download 

as datasets [11]. The datasets are already separated by expansion, format, and draft – game 

– replay. For training and testing reasons that will be explained later, we will use the data 

from Dominaria United Premier Draft. 

 

Figure 3. Screenshot of 17lands processed data 

4.2 Dominaria United 

Dominaria United is the 93rd MTG expansion, and the draft data of this set is being 

used to train the model. This is a normal MTG set comprised of 286 unique cards, being 101 

commons, 80 uncommons, 60 rares, 20 mythic rares, 20 basic lands and 5 extra promo cards. 

We are just interested in the first 261 cards that are the ones we can open during a 

draft. This draft booster packs are made of 1x Rare or Mythic rare card, 3 Uncommons, 10 



Data 

12 

commons, plus a basic land and a token/ad card. While drafting, players will only use the 

first 14 cards, so basically only the rare/mythic card, the 3 uncommons and the 10 commons 

are relevant when drafting (Figure 4). Being mythic rare, rare, uncommon or common just 

changes the ratio you will see the card while playing, and usually the rare and mythic rare 

cards are better cards and have this rarity, so they are seen less, and people do not have to 

worry as much while playing. 

 

Figure 4. Contents of a Dominaria United Draft Booster (from Wizards of the Coast) 

 

4.3 The Data Format 

The dataset that stores the draft information includes one row per draft pick, with 

information about what the previous picks were, as well as some extra information about 

how the matches for the specific draft went, and the user win-rate. The details of the fields 

available are given in Table 1. 

 

 expansion The 3-letter acronym that indicates the set. In our case it is 

DMU that represents Dominaria United. 

event_type The type of limited format this data is from. Can be 

PremierDraft, TradDraft, Sealed, QuickDraft. In our case 

it is PremierDraft. 

draft_id A hexadecimal number with 32 digits. A code representing 

the specific draft. 

draft_time The date and time of the draft. 

rank The rank of the player. This is a classification used in-

game. Winning games increases your rank, while losing 
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lowers it. In this spot we will see NaN (not ranked), or one 

of the ranks that ordered are: bronze, silver, gold, platinum, 

diamond, mythic 

event_match_wins 

event_match_losses 

The number of wins and losses of the draft after the player 

has played it. 

Both elements are related. There are 2 types of limited 

events, one where you play until you get 7 wins or 3 losses, 

and another kind where you play 3 matches without caring 

about wins and losses. The type of event is related to 

event_type. 

The numbers will follow these rules related to the event. 

pack_number 

pick_number 

These numbers are related to from what pack and what 

pick is the card you are getting now. Pack numbers go from 

1-3 and pick numbers from 1-15. 

Example: If you are picking the third card from the second 

pack, it is pack 2 pick 3, or also noted as P2P3 

pick_maindeck_rate The number of games the user played with the picked card 

in their maindeck, divided by the total number of games 

the user played (with that draft pool). 

Maindeck are the 40+ cards that are played from the pool 

pick_sideboard_in_rate The number of games the user played with the picked card 

in their sideboard, divided by the total number of games 

the user played (with that draft pool). 

Sideboard is made from the cards of the pool not played in 

maindeck 

user_game_win_rate_bucket The approximate user win-rate of the format with the 

expansion from expansion parameter, rounded to 2 

decimals. 

Win-rate is the number of victories divided by the total 

number of games 

user_n_games_bucket Number of games played by user in the format with the 

expansion from expansion parameter. 

Rounded to closest from following list: 

[1, 5, 10, 50, 100, 500, 1000, 5000] 

pack_card_NAME Grouped multiple entries, each one with a name of a card 

instead of NAME. 

Indicates with a 1 if the card NAME is present on the pack 

to pick it, or a 0 otherwise. 

pool_NAME Grouped multiple entries, each one with a name of a card 

instead of NAME. 
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Information about previous picks 

pick NAME of the card selected between the cards that were in 

the pack, the ones with a 1 in pack_card_NAME 

Table 1. Dataframe information 

From all these available information, in this work, wwe will use only the data in the 

variables pack_card_NAME and pool_NAME as input features of our model and pick 

variable as output. Our goal is to see if with small set of input data, we can train a sufficiently 

good model for predicting the selected card (pick). 

The rest of the data values could be used to add additional information or to filter or 

curate the dataset. Here I will name different ways we could exploit these additional 

variables to try to get better results, also mentioning some limitations to take into account: 

• use RANK to filter bad players. Players that play a lot and are good usually 

get high ranks, so we could use this to select data from experienced players. 

There is a downside that we can lose good data, since maybe there is a good 

player that has not played in a while and has lost rank this way, or if a good 

player has created a new account, and that one will have a low rank to start 

even though the player could really be in the highest rank. 

• EVENT_MATCH_WINS and EVENT_MATCH_LOSSES represent how 

good a player has played a specific draft. This can also be used to filter bad 

deck choices, but again it is not an optimal choice, since with the game 

variance, you can just get unlucky and face opponents with better decks than 

yours and loose because of that, just get unlucky and loose too, or the other 

way around, make horrible draft decisions and still get lucky and win. 

• PICK_MAINDECK_RATE tells if the deck is played in the draft or not. This 

can be used to filter important picks and non-important picks, since the most 

important cards are usually the ones played. This has the disadvantage of 

probably not helping enough for the last picks of a pack, where a player is 

usually forced to pick bad cards that will not be played. Another disadvantage 

is that sometimes players start building for a specific archetype but find 

another color open and decide to change strategies, building a different deck 

with more quality. This can happen and switching lanes as it is known is a 

good thing that you have to sometimes do, but if we filter with 

pick_maindeck_rate when this happens, the first picks that probably are 

correct for the draft would be ignored. 

• USER_GAME_WIN_RATE_BUCKET tells the percentage of games win by 

the player the draft data is from. This can be a good metric to filter the data, 

but again presents some problems. If a player has played a low number of 

games, this metric is not correctly balanced. In the extreme case that a player 

has only played a game and won the win-rate would be 100%, but that does 

not accurately show the skill. This can be complemented with 

USER_N_GAMES_BUCKET to make sure a player has played a decent 

number of games before evaluating the WR. 

An example with two sets of data is shown in table 2. Some rows related to pack cards 

and to pool cards that only had 0s have been omitted to reduce the size of the table. 
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index 0 1 

expansion DMU DMU 

event_type PremierDraft PremierDraft 

draft_id 562c07bcca0342d7936548
5503d153e4 

562c07bcca0342d793654
85503d153e4 

draft_time 2022-08-31 00:44:45 2022-08-31 00:44:45 

rank NaN NaN 

event_match_wins 0 0 

event_match_losses 3 3 

pack_number 0 0 

pick_number 0 1 

pick Ivy, Gleeful Spellthief Pixie Illusionist 

pick_maindeck_rate 1 1 

pick_sideboard_in_rate 0 0 

pack_card_Pixie Illusionist 0 1 

pack_card_Sunlit Marsh 1 0 

pack_card_Battlewing Mystic 0 1 

pack_card_Shore Up 1 0 

pack_card_Heroic Charge 1 0 

pack_card_Prayer of Binding 0 1 

pool_Ivy, Gleeful Spellthief 0 1 

pack_card_Battle-Rage Blessing 1 0 

pack_card_Sacred Peaks 0 1 

pack_card_Rulik Mons, Warren 
Chief 

0 1 

pack_card_Sunbathing Rootwalla 1 0 

pack_card_Gaea's Might 0 1 

pack_card_Idyllic Beachfront 1 0 

pack_card_Phyrexian Missionary 1 0 

pack_card_Mesa Cavalier 0 1 

pack_card_Ivy, Gleeful Spellthief 1 0 

pack_card_Soaring Drake 1 0 

pack_card_Coalition Skyknight 1 0 

pack_card_Tidepool Turtle 0 1 

pack_card_Jaya's Firenado 1 0 

pack_card_Take Up the Shield 0 1 

pack_card_Floriferous Vinewall 1 0 

pack_card_Meria's Outrider 0 1 

pack_card_Shadow Prophecy 0 1 

pack_card_Molten Tributary 0 1 

pack_card_Bog Badger 1 0 

pack_card_Coral Colony 1 0 

pack_card_Tangled Islet 0 1 

user_n_games_bucket 1 1 

user_game_win_rate_bucket 0 0 

Table 2. Extract of draft dataset 
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5 Model definition and design 

In this chapter, the model developed in this Bachelor thesis is presented. The design 

requirements for the construction of the card selection model and the decision made are 

explained and justified.  

5.1 Input and Output 

The inputs and outputs of an AI model are one of the most important parts of it. They 

determine what data must be used to make the automatic decision, and what kind of output 

the model gives. 

In our case, the input should be information related to the pack of cards, in order to 

know the available options to choose. We have considered two different data representation 

options: 

1. The first possibility is to introduce only the cards in the pack. However, this option 

presents the downside of having different inputs each time, since in each pack you 

pick from 15 to 1 card because each turn there is one less card in the pack. This 

approach would also need to code each card in a unique way so that our model 

recognizes each card and knows enough information about it to be able to choose. 

This notation may be overcomplicated for the machine learning methods. 

2. The second possibility is to have a fixed set of input Boolean values, each one 

representing the presence or absence of one of the possible cards in the set, so that 

we have a 1 if the corresponding card is in the current pack, or 0 if it is not. This data 

representation format is, in fact, similar to the actual codification of cards in the draft 

dataset we will use (Table 2). This way there is always the same number of inputs 

since we always pass all the cards, and there is no need to code each individual card 

since they are identified by having a starting node each. With this as input format, 

we can fix to have always N inputs where N is the number of cards, and the inputs 

would be the columns from the database named pack_card_NAME, where NAME is 

the specific name of each card. 

After considering the advantages and drawbacks of each of these two approaches, we 

have chosen the second one. 

Regarding the output, the main result required is that we want to know the selected 

card. We could code each card in a unique way so that only 1 node as output is enough, but 

as before this is extra work. If we use the same approach as with the inputs, we can have in 

the output layer a node for each card and have 1 in the node that represents the selected card 

and a 0 in each other card. This would be N outputs where N is the number of cards. Output 

may be also a probability of selecting that card for each card choice, instead of a binary 

value. 

Having N inputs and N outputs may be an appropriate format, but after a careful 

analysis of the game, it is maybe too simple. When a player drafts, the player not only 

chooses based on the cards in the pack, but also chooses knowing the cards he previously 

selected, trying to build a more synergistic deck. To add this information, we propose to 

follow the same approach as before and add another set of inputs, to give each card in the 

pool a node to indicate how many copies of that card are in the pool. This would mean again 

having N nodes where N is the number of cards, so each card has one input node and this 

input corresponds to pool_NAME that has a number between 0 (no cards) and x that is the 

max number of copies of a card you can get. 
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In summary, the proposal of this work is a model with 2N input nodes, one set of N 

for the possible cards in the pack, and another set of N for the possible cards in the pool, and 

an output of N nodes, one for each possible card that could be selected. 

 

Figure 5. Pack exemple (screenshot from MTG Arena) 

 In this example (Figure 5) we are shown the selection of pack 1 pick 4. With the 

proposed input, our model would get each card in the main screen (pack) with a 1 in the 

respective node, and a 0 in all the other pack_card_NAME, and the cards on the right (pool) 

would also be given with the corresponding number, and a 0 in all the other pool_NAME. 

And as output we would get an array of 0s for each card except in the node of the selected 

card (highlighted in orange). The input would look like this, with the inputs with 1 and the 

output marked: 

Input_card Input_pick Output 

pack_card_Academy Loremaster 0 pool_Academy Loremaster 0 Academy Loremaster 0 

pack_card_Academy Wall 0 pool_Academy Wall 0 Academy Wall 0 

pack_card_Adarkar Wastes 0 pool_Adarkar Wastes 0 Adarkar Wastes 0 

pack_card_Aether Channeler 0 pool_Aether Channeler 0 Aether Channeler 0 

pack_card_Aggressive Sabotage 0 pool_Aggressive Sabotage 0 Aggressive Sabotage 0 

pack_card_Ajani, Sleeper Agent 0 pool_Ajani, Sleeper Agent 0 Ajani, Sleeper Agent 0 

pack_card_Anointed Peacekeeper 0 pool_Anointed Peacekeeper 0 Anointed Peacekeeper 0 

pack_card_Archangel of Wrath 0 pool_Archangel of Wrath 0 Archangel of Wrath 0 

pack_card_Argivian Cavalier 0 pool_Argivian Cavalier 0 Argivian Cavalier 0 

pack_card_Argivian Phalanx 0 pool_Argivian Phalanx 0 Argivian Phalanx 0 

pack_card_Aron, Benalia's Ruin 0 pool_Aron, Benalia's Ruin 0 Aron, Benalia's Ruin 0 

pack_card_Artillery Blast 1 pool_Artillery Blast 0 Artillery Blast 0 

pack_card_Astor, Bearer of Blades 0 pool_Astor, Bearer of Blades 0 Astor, Bearer of Blades 0 

pack_card_Automatic Librarian 0 pool_Automatic Librarian 0 Automatic Librarian 0 

pack_card_Baird, Argivian Recruiter 0 pool_Baird, Argivian Recruiter 0 Baird, Argivian 

Recruiter 

0 

pack_card_Balduvian Atrocity 0 pool_Balduvian Atrocity 0 Balduvian Atrocity 0 
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pack_card_Balduvian Berserker 0 pool_Balduvian Berserker 0 Balduvian Berserker 0 

pack_card_Balmor, Battlemage Captain 0 pool_Balmor, Battlemage 

Captain 

0 Balmor, Battlemage 

Captain 

0 

pack_card_Barkweave Crusher 1 pool_Barkweave Crusher 0 Barkweave Crusher 0 

pack_card_Battle-Rage Blessing 0 pool_Battle-Rage Blessing 0 Battle-Rage Blessing 0 

pack_card_Battlefly Swarm 0 pool_Battlefly Swarm 0 Battlefly Swarm 0 

pack_card_Battlewing Mystic 0 pool_Battlewing Mystic 0 Battlewing Mystic 0 

pack_card_Benalish Faithbonder 0 pool_Benalish Faithbonder 0 Benalish Faithbonder 0 

pack_card_Benalish Sleeper 0 pool_Benalish Sleeper 0 Benalish Sleeper 0 

pack_card_Bite Down 0 pool_Bite Down 0 Bite Down 0 

pack_card_Blight Pile 0 pool_Blight Pile 0 Blight Pile 0 

pack_card_Bog Badger 0 pool_Bog Badger 0 Bog Badger 0 

pack_card_Bone Splinters 0 pool_Bone Splinters 0 Bone Splinters 0 

pack_card_Bortuk Bonerattle 0 pool_Bortuk Bonerattle 0 Bortuk Bonerattle 0 

pack_card_Braids's Frightful Return 0 pool_Braids's Frightful Return 0 Braids's Frightful 

Return 

0 

pack_card_Braids, Arisen Nightmare 0 pool_Braids, Arisen Nightmare 0 Braids, Arisen 

Nightmare 

0 

pack_card_Broken Wings 0 pool_Broken Wings 0 Broken Wings 0 

pack_card_Captain's Call 1 pool_Captain's Call 0 Captain's Call 0 

pack_card_Caves of Koilos 0 pool_Caves of Koilos 0 Caves of Koilos 0 

pack_card_Chaotic Transformation 0 pool_Chaotic Transformation 0 Chaotic Transformation 0 

pack_card_Charismatic Vanguard 1 pool_Charismatic Vanguard 0 Charismatic Vanguard 0 

pack_card_Choking Miasma 0 pool_Choking Miasma 0 Choking Miasma 0 

pack_card_Citizen's Arrest 0 pool_Citizen's Arrest 0 Citizen's Arrest 0 

pack_card_Cleaving Skyrider 0 pool_Cleaving Skyrider 0 Cleaving Skyrider 0 

pack_card_Clockwork Drawbridge 0 pool_Clockwork Drawbridge 0 Clockwork Drawbridge 0 

pack_card_Coalition Skyknight 0 pool_Coalition Skyknight 0 Coalition Skyknight 0 

pack_card_Coalition Warbrute 0 pool_Coalition Warbrute 0 Coalition Warbrute 0 

pack_card_Colossal Growth 0 pool_Colossal Growth 0 Colossal Growth 0 

pack_card_Combat Research 0 pool_Combat Research 0 Combat Research 0 

pack_card_Contaminated Aquifer 0 pool_Contaminated Aquifer 0 Contaminated Aquifer 0 

pack_card_Coral Colony 0 pool_Coral Colony 0 Coral Colony 0 

pack_card_Crystal Grotto 0 pool_Crystal Grotto 0 Crystal Grotto 0 

pack_card_Cult Conscript 0 pool_Cult Conscript 0 Cult Conscript 0 

pack_card_Cut Down 0 pool_Cut Down 0 Cut Down 0 

pack_card_Danitha, Benalia's Hope 0 pool_Danitha, Benalia's Hope 0 Danitha, Benalia's Hope 0 

pack_card_Deathbloom Gardener 0 pool_Deathbloom Gardener 0 Deathbloom Gardener 0 

pack_card_Defiler of Dreams 0 pool_Defiler of Dreams 1 Defiler of Dreams 0 

pack_card_Defiler of Faith 0 pool_Defiler of Faith 0 Defiler of Faith 0 

pack_card_Defiler of Flesh 0 pool_Defiler of Flesh 0 Defiler of Flesh 0 

pack_card_Defiler of Instinct 0 pool_Defiler of Instinct 0 Defiler of Instinct 0 

pack_card_Defiler of Vigor 0 pool_Defiler of Vigor 0 Defiler of Vigor 0 

pack_card_Destroy Evil 0 pool_Destroy Evil 0 Destroy Evil 0 

pack_card_Djinn of the Fountain 0 pool_Djinn of the Fountain 0 Djinn of the Fountain 0 

pack_card_Drag to the Bottom 0 pool_Drag to the Bottom 0 Drag to the Bottom 0 

pack_card_Dragon Whelp 0 pool_Dragon Whelp 0 Dragon Whelp 0 

pack_card_Eerie Soultender 0 pool_Eerie Soultender 0 Eerie Soultender 0 
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pack_card_Elas il-Kor, Sadistic Pilgrim 0 pool_Elas il-Kor, Sadistic 

Pilgrim 

0 Elas il-Kor, Sadistic 

Pilgrim 

0 

pack_card_Electrostatic Infantry 0 pool_Electrostatic Infantry 0 Electrostatic Infantry 0 

pack_card_Elfhame Wurm 0 pool_Elfhame Wurm 0 Elfhame Wurm 0 

pack_card_Elvish Hydromancer 0 pool_Elvish Hydromancer 0 Elvish Hydromancer 0 

pack_card_Ertai Resurrected 0 pool_Ertai Resurrected 0 Ertai Resurrected 0 

pack_card_Ertai's Scorn 0 pool_Ertai's Scorn 0 Ertai's Scorn 0 

pack_card_Essence Scatter 0 pool_Essence Scatter 0 Essence Scatter 0 

pack_card_Evolved Sleeper 0 pool_Evolved Sleeper 0 Evolved Sleeper 0 

pack_card_Extinguish the Light 1 pool_Extinguish the Light 0 Extinguish the Light 1 

pack_card_Fires of Victory 0 pool_Fires of Victory 0 Fires of Victory 0 

pack_card_Floriferous Vinewall 0 pool_Floriferous Vinewall 0 Floriferous Vinewall 0 

pack_card_Flowstone Infusion 0 pool_Flowstone Infusion 0 Flowstone Infusion 0 

pack_card_Flowstone Kavu 0 pool_Flowstone Kavu 0 Flowstone Kavu 0 

pack_card_Forest 0 pool_Forest 0 Forest 0 

pack_card_Founding the Third Path 0 pool_Founding the Third Path 0 Founding the Third 

Path 

0 

pack_card_Frostfist Strider 0 pool_Frostfist Strider 0 Frostfist Strider 0 

pack_card_Furious Bellow 0 pool_Furious Bellow 0 Furious Bellow 0 

pack_card_Gaea's Might 0 pool_Gaea's Might 0 Gaea's Might 0 

pack_card_Garna, Bloodfist of Keld 0 pool_Garna, Bloodfist of Keld 0 Garna, Bloodfist of 

Keld 

0 

pack_card_Geothermal Bog 0 pool_Geothermal Bog 0 Geothermal Bog 0 

pack_card_Ghitu Amplifier 0 pool_Ghitu Amplifier 0 Ghitu Amplifier 0 

pack_card_Gibbering Barricade 0 pool_Gibbering Barricade 0 Gibbering Barricade 0 

pack_card_Goblin Picker 0 pool_Goblin Picker 0 Goblin Picker 0 

pack_card_Golden Argosy 0 pool_Golden Argosy 0 Golden Argosy 0 

pack_card_Griffin Protector 0 pool_Griffin Protector 0 Griffin Protector 0 

pack_card_Guardian of New Benalia 0 pool_Guardian of New Benalia 0 Guardian of New 

Benalia 

0 

pack_card_Hammerhand 0 pool_Hammerhand 0 Hammerhand 0 

pack_card_Haughty Djinn 0 pool_Haughty Djinn 0 Haughty Djinn 0 

pack_card_Haunted Mire 0 pool_Haunted Mire 0 Haunted Mire 0 

pack_card_Haunting Figment 0 pool_Haunting Figment 0 Haunting Figment 0 

pack_card_Herd Migration 0 pool_Herd Migration 0 Herd Migration 0 

pack_card_Hero's Heirloom 0 pool_Hero's Heirloom 0 Hero's Heirloom 0 

pack_card_Heroic Charge 0 pool_Heroic Charge 0 Heroic Charge 0 

pack_card_Hexbane Tortoise 0 pool_Hexbane Tortoise 0 Hexbane Tortoise 0 

pack_card_Hurler Cyclops 0 pool_Hurler Cyclops 0 Hurler Cyclops 0 

pack_card_Hurloon Battle Hymn 0 pool_Hurloon Battle Hymn 0 Hurloon Battle Hymn 0 

pack_card_Idyllic Beachfront 0 pool_Idyllic Beachfront 0 Idyllic Beachfront 0 

pack_card_Impede Momentum 0 pool_Impede Momentum 0 Impede Momentum 0 

pack_card_Impulse 0 pool_Impulse 0 Impulse 0 

pack_card_In Thrall to the Pit 0 pool_In Thrall to the Pit 0 In Thrall to the Pit 0 

pack_card_Inscribed Tablet 0 pool_Inscribed Tablet 0 Inscribed Tablet 0 

pack_card_Island 0 pool_Island 0 Island 0 

pack_card_Ivy, Gleeful Spellthief 0 pool_Ivy, Gleeful Spellthief 0 Ivy, Gleeful Spellthief 0 

pack_card_Jaya's Firenado 0 pool_Jaya's Firenado 0 Jaya's Firenado 0 

pack_card_Jaya, Fiery Negotiator 0 pool_Jaya, Fiery Negotiator 0 Jaya, Fiery Negotiator 0 
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pack_card_Jhoira, Ageless Innovator 0 pool_Jhoira, Ageless Innovator 0 Jhoira, Ageless 

Innovator 

0 

pack_card_Jodah's Codex 0 pool_Jodah's Codex 0 Jodah's Codex 0 

pack_card_Jodah, the Unifier 0 pool_Jodah, the Unifier 0 Jodah, the Unifier 0 

pack_card_Join Forces 0 pool_Join Forces 0 Join Forces 0 

pack_card_Joint Exploration 0 pool_Joint Exploration 0 Joint Exploration 0 

pack_card_Juniper Order Rootweaver 0 pool_Juniper Order Rootweaver 0 Juniper Order 

Rootweaver 

0 

pack_card_Karn's Sylex 0 pool_Karn's Sylex 0 Karn's Sylex 0 

pack_card_Karn, Living Legacy 0 pool_Karn, Living Legacy 0 Karn, Living Legacy 0 

pack_card_Karplusan Forest 0 pool_Karplusan Forest 0 Karplusan Forest 0 

pack_card_Keldon Flamesage 0 pool_Keldon Flamesage 0 Keldon Flamesage 0 

pack_card_Keldon Strike Team 0 pool_Keldon Strike Team 0 Keldon Strike Team 0 

pack_card_King Darien XLVIII 0 pool_King Darien XLVIII 0 King Darien XLVIII 0 

pack_card_Knight of Dawn's Light 0 pool_Knight of Dawn's Light 0 Knight of Dawn's Light 0 

pack_card_Knight of Dusk's Shadow 0 pool_Knight of Dusk's Shadow 2 Knight of Dusk's 

Shadow 

0 

pack_card_Lagomos, Hand of Hatred 0 pool_Lagomos, Hand of Hatred 0 Lagomos, Hand of 

Hatred 

0 

pack_card_Leaf-Crowned Visionary 0 pool_Leaf-Crowned Visionary 0 Leaf-Crowned 

Visionary 

0 

pack_card_Leyline Binding 0 pool_Leyline Binding 0 Leyline Binding 0 

pack_card_Lightning Strike 0 pool_Lightning Strike 0 Lightning Strike 0 

pack_card_Liliana of the Veil 0 pool_Liliana of the Veil 0 Liliana of the Veil 0 

pack_card_Linebreaker Baloth 0 pool_Linebreaker Baloth 0 Linebreaker Baloth 0 

pack_card_Llanowar Greenwidow 0 pool_Llanowar Greenwidow 0 Llanowar Greenwidow 0 

pack_card_Llanowar Loamspeaker 0 pool_Llanowar Loamspeaker 0 Llanowar Loamspeaker 0 

pack_card_Llanowar Stalker 0 pool_Llanowar Stalker 0 Llanowar Stalker 0 

pack_card_Love Song of Night and Day 0 pool_Love Song of Night and 

Day 

0 Love Song of Night and 

Day 

0 

pack_card_Magnigoth Sentry 0 pool_Magnigoth Sentry 0 Magnigoth Sentry 0 

pack_card_Meria's Outrider 0 pool_Meria's Outrider 0 Meria's Outrider 0 

pack_card_Meria, Scholar of Antiquity 0 pool_Meria, Scholar of 

Antiquity 

0 Meria, Scholar of 

Antiquity 

0 

pack_card_Mesa Cavalier 0 pool_Mesa Cavalier 0 Mesa Cavalier 0 

pack_card_Meteorite 0 pool_Meteorite 0 Meteorite 0 

pack_card_Micromancer 0 pool_Micromancer 0 Micromancer 0 

pack_card_Molten Monstrosity 0 pool_Molten Monstrosity 0 Molten Monstrosity 0 

pack_card_Molten Tributary 0 pool_Molten Tributary 0 Molten Tributary 0 

pack_card_Monstrous War-Leech 0 pool_Monstrous War-Leech 0 Monstrous War-Leech 0 

pack_card_Mossbeard Ancient 0 pool_Mossbeard Ancient 0 Mossbeard Ancient 0 

pack_card_Mountain 0 pool_Mountain 0 Mountain 0 

pack_card_Nael, Avizoa Aeronaut 0 pool_Nael, Avizoa Aeronaut 0 Nael, Avizoa Aeronaut 0 

pack_card_Najal, the Storm Runner 0 pool_Najal, the Storm Runner 0 Najal, the Storm Runner 0 

pack_card_Negate 0 pool_Negate 0 Negate 0 

pack_card_Nemata, Primeval Warden 0 pool_Nemata, Primeval Warden 0 Nemata, Primeval 

Warden 

0 

pack_card_Nishoba Brawler 0 pool_Nishoba Brawler 0 Nishoba Brawler 0 

pack_card_Phoenix Chick 0 pool_Phoenix Chick 0 Phoenix Chick 0 

pack_card_Phyrexian Espionage 0 pool_Phyrexian Espionage 0 Phyrexian Espionage 0 

pack_card_Phyrexian Missionary 0 pool_Phyrexian Missionary 0 Phyrexian Missionary 0 
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pack_card_Phyrexian Rager 0 pool_Phyrexian Rager 0 Phyrexian Rager 0 

pack_card_Phyrexian Vivisector 1 pool_Phyrexian Vivisector 0 Phyrexian Vivisector 0 

pack_card_Phyrexian Warhorse 0 pool_Phyrexian Warhorse 0 Phyrexian Warhorse 0 

pack_card_Pilfer 0 pool_Pilfer 0 Pilfer 0 

pack_card_Pixie Illusionist 0 pool_Pixie Illusionist 0 Pixie Illusionist 0 

pack_card_Plains 0 pool_Plains 0 Plains 0 

pack_card_Plaza of Heroes 0 pool_Plaza of Heroes 0 Plaza of Heroes 0 

pack_card_Prayer of Binding 0 pool_Prayer of Binding 0 Prayer of Binding 0 

pack_card_Protect the Negotiators 0 pool_Protect the Negotiators 0 Protect the Negotiators 0 

pack_card_Queen Allenal of Ruadach 0 pool_Queen Allenal of Ruadach 0 Queen Allenal of 

Ruadach 

0 

pack_card_Quirion Beastcaller 0 pool_Quirion Beastcaller 0 Quirion Beastcaller 0 

pack_card_Radha's Firebrand 0 pool_Radha's Firebrand 0 Radha's Firebrand 0 

pack_card_Radha, Coalition Warlord 0 pool_Radha, Coalition Warlord 0 Radha, Coalition 

Warlord 

0 

pack_card_Radiant Grove 0 pool_Radiant Grove 0 Radiant Grove 0 

pack_card_Raff, Weatherlight Stalwart 0 pool_Raff, Weatherlight 

Stalwart 

0 Raff, Weatherlight 

Stalwart 

0 

pack_card_Ratadrabik of Urborg 0 pool_Ratadrabik of Urborg 0 Ratadrabik of Urborg 0 

pack_card_Relic of Legends 0 pool_Relic of Legends 0 Relic of Legends 0 

pack_card_Resolute Reinforcements 0 pool_Resolute Reinforcements 0 Resolute 

Reinforcements 

0 

pack_card_Rith, Liberated Primeval 0 pool_Rith, Liberated Primeval 0 Rith, Liberated 

Primeval 

0 

pack_card_Rivaz of the Claw 0 pool_Rivaz of the Claw 0 Rivaz of the Claw 0 

pack_card_Rona's Vortex 0 pool_Rona's Vortex 0 Rona's Vortex 0 

pack_card_Rona, Sheoldred's Faithful 0 pool_Rona, Sheoldred's Faithful 0 Rona, Sheoldred's 

Faithful 

0 

pack_card_Rulik Mons, Warren Chief 0 pool_Rulik Mons, Warren Chief 0 Rulik Mons, Warren 

Chief 

0 

pack_card_Rundvelt Hordemaster 0 pool_Rundvelt Hordemaster 0 Rundvelt Hordemaster 0 

pack_card_Runic Shot 0 pool_Runic Shot 0 Runic Shot 0 

pack_card_Sacred Peaks 0 pool_Sacred Peaks 0 Sacred Peaks 0 

pack_card_Salvaged Manaworker 0 pool_Salvaged Manaworker 0 Salvaged Manaworker 0 

pack_card_Samite Herbalist 0 pool_Samite Herbalist 0 Samite Herbalist 0 

pack_card_Scout the Wilderness 0 pool_Scout the Wilderness 0 Scout the Wilderness 0 

pack_card_Sengir Connoisseur 0 pool_Sengir Connoisseur 0 Sengir Connoisseur 0 

pack_card_Serra Paragon 0 pool_Serra Paragon 0 Serra Paragon 0 

pack_card_Shadow Prophecy 1 pool_Shadow Prophecy 0 Shadow Prophecy 0 

pack_card_Shadow-Rite Priest 0 pool_Shadow-Rite Priest 0 Shadow-Rite Priest 0 

pack_card_Shalai's Acolyte 0 pool_Shalai's Acolyte 0 Shalai's Acolyte 0 

pack_card_Shanna, Purifying Blade 0 pool_Shanna, Purifying Blade 0 Shanna, Purifying 

Blade 

0 

pack_card_Sheoldred's Restoration 1 pool_Sheoldred's Restoration 0 Sheoldred's Restoration 0 

pack_card_Sheoldred, the Apocalypse 0 pool_Sheoldred, the Apocalypse 0 Sheoldred, the 

Apocalypse 

0 

pack_card_Shield-Wall Sentinel 0 pool_Shield-Wall Sentinel 0 Shield-Wall Sentinel 0 

pack_card_Shivan Devastator 0 pool_Shivan Devastator 0 Shivan Devastator 0 

pack_card_Shivan Reef 0 pool_Shivan Reef 0 Shivan Reef 0 

pack_card_Shore Up 0 pool_Shore Up 0 Shore Up 0 

pack_card_Silver Scrutiny 0 pool_Silver Scrutiny 0 Silver Scrutiny 0 

pack_card_Silverback Elder 0 pool_Silverback Elder 0 Silverback Elder 0 
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pack_card_Slimefoot's Survey 0 pool_Slimefoot's Survey 0 Slimefoot's Survey 0 

pack_card_Smash to Dust 0 pool_Smash to Dust 0 Smash to Dust 0 

pack_card_Snarespinner 0 pool_Snarespinner 0 Snarespinner 0 

pack_card_Soaring Drake 0 pool_Soaring Drake 0 Soaring Drake 0 

pack_card_Sol'kanar the Tainted 0 pool_Sol'kanar the Tainted 0 Sol'kanar the Tainted 0 

pack_card_Soul of Windgrace 0 pool_Soul of Windgrace 0 Soul of Windgrace 0 

pack_card_Sphinx of Clear Skies 0 pool_Sphinx of Clear Skies 0 Sphinx of Clear Skies 0 

pack_card_Splatter Goblin 0 pool_Splatter Goblin 0 Splatter Goblin 0 

pack_card_Sprouting Goblin 0 pool_Sprouting Goblin 0 Sprouting Goblin 0 

pack_card_Squee, Dubious Monarch 0 pool_Squee, Dubious Monarch 0 Squee, Dubious 

Monarch 

0 

pack_card_Stall for Time 0 pool_Stall for Time 0 Stall for Time 0 

pack_card_Stenn, Paranoid Partisan 0 pool_Stenn, Paranoid Partisan 0 Stenn, Paranoid 

Partisan 

0 

pack_card_Strength of the Coalition 0 pool_Strength of the Coalition 0 Strength of the 

Coalition 

0 

pack_card_Stronghold Arena 0 pool_Stronghold Arena 0 Stronghold Arena 0 

pack_card_Sulfurous Springs 0 pool_Sulfurous Springs 0 Sulfurous Springs 0 

pack_card_Sunbathing Rootwalla 0 pool_Sunbathing Rootwalla 0 Sunbathing Rootwalla 0 

pack_card_Sunlit Marsh 0 pool_Sunlit Marsh 0 Sunlit Marsh 0 

pack_card_Swamp 0 pool_Swamp 0 Swamp 0 

pack_card_Tail Swipe 0 pool_Tail Swipe 0 Tail Swipe 0 

pack_card_Take Up the Shield 0 pool_Take Up the Shield 0 Take Up the Shield 0 

pack_card_Talas Lookout 0 pool_Talas Lookout 0 Talas Lookout 0 

pack_card_Tangled Islet 0 pool_Tangled Islet 0 Tangled Islet 0 

pack_card_Tattered Apparition 0 pool_Tattered Apparition 0 Tattered Apparition 0 

pack_card_Tatyova, Steward of Tides 0 pool_Tatyova, Steward of Tides 0 Tatyova, Steward of 

Tides 

0 

pack_card_Tear Asunder 0 pool_Tear Asunder 0 Tear Asunder 0 

pack_card_Temporal Firestorm 0 pool_Temporal Firestorm 0 Temporal Firestorm 0 

pack_card_Temporary Lockdown 0 pool_Temporary Lockdown 0 Temporary Lockdown 0 

pack_card_Territorial Maro 0 pool_Territorial Maro 0 Territorial Maro 0 

pack_card_The Cruelty of Gix 0 pool_The Cruelty of Gix 0 The Cruelty of Gix 0 

pack_card_The Elder Dragon War 0 pool_The Elder Dragon War 0 The Elder Dragon War 0 

pack_card_The Phasing of Zhalfir 0 pool_The Phasing of Zhalfir 0 The Phasing of Zhalfir 0 

pack_card_The Raven Man 0 pool_The Raven Man 0 The Raven Man 0 

pack_card_The Weatherseed Treaty 0 pool_The Weatherseed Treaty 0 The Weatherseed 

Treaty 

0 

pack_card_The World Spell 0 pool_The World Spell 0 The World Spell 0 

pack_card_Thran Portal 0 pool_Thran Portal 0 Thran Portal 0 

pack_card_Threats Undetected 0 pool_Threats Undetected 0 Threats Undetected 0 

pack_card_Thrill of Possibility 0 pool_Thrill of Possibility 0 Thrill of Possibility 0 

pack_card_Tidepool Turtle 0 pool_Tidepool Turtle 0 Tidepool Turtle 0 

pack_card_Timeless Lotus 0 pool_Timeless Lotus 0 Timeless Lotus 0 

pack_card_Timely Interference 0 pool_Timely Interference 0 Timely Interference 0 

pack_card_Tolarian Geyser 0 pool_Tolarian Geyser 0 Tolarian Geyser 0 

pack_card_Tolarian Terror 0 pool_Tolarian Terror 0 Tolarian Terror 0 

pack_card_Tori D'Avenant, Fury Rider 0 pool_Tori D'Avenant, Fury 

Rider 

0 Tori D'Avenant, Fury 

Rider 

0 

pack_card_Toxic Abomination 1 pool_Toxic Abomination 0 Toxic Abomination 0 
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pack_card_Tribute to Urborg 0 pool_Tribute to Urborg 0 Tribute to Urborg 0 

pack_card_Tura Kennerüd, Skyknight 0 pool_Tura Kennerüd, Skyknight 0 Tura Kennerüd, 

Skyknight 

0 

pack_card_Twinferno 0 pool_Twinferno 0 Twinferno 0 

pack_card_Urborg Lhurgoyf 0 pool_Urborg Lhurgoyf 0 Urborg Lhurgoyf 0 

pack_card_Urborg Repossession 0 pool_Urborg Repossession 0 Urborg Repossession 0 

pack_card_Urza Assembles the Titans 0 pool_Urza Assembles the Titans 0 Urza Assembles the 

Titans 

0 

pack_card_Uurg, Spawn of Turg 0 pool_Uurg, Spawn of Turg 0 Uurg, Spawn of Turg 0 

pack_card_Valiant Veteran 0 pool_Valiant Veteran 0 Valiant Veteran 0 

pack_card_Vanquisher's Axe 0 pool_Vanquisher's Axe 0 Vanquisher's Axe 0 

pack_card_Vesuvan Duplimancy 0 pool_Vesuvan Duplimancy 0 Vesuvan Duplimancy 0 

pack_card_Viashino Branchrider 0 pool_Viashino Branchrider 0 Viashino Branchrider 0 

pack_card_Vineshaper Prodigy 0 pool_Vineshaper Prodigy 0 Vineshaper Prodigy 0 

pack_card_Voda Sea Scavenger 1 pool_Voda Sea Scavenger 0 Voda Sea Scavenger 0 

pack_card_Vodalian Hexcatcher 0 pool_Vodalian Hexcatcher 0 Vodalian Hexcatcher 0 

pack_card_Vodalian Mindsinger 0 pool_Vodalian Mindsinger 0 Vodalian Mindsinger 0 

pack_card_Vohar, Vodalian Desecrator 0 pool_Vohar, Vodalian 

Desecrator 

0 Vohar, Vodalian 

Desecrator 

0 

pack_card_Volshe Tideturner 0 pool_Volshe Tideturner 0 Volshe Tideturner 0 

pack_card_Walking Bulwark 0 pool_Walking Bulwark 0 Walking Bulwark 0 

pack_card_Warhost's Frenzy 0 pool_Warhost's Frenzy 0 Warhost's Frenzy 0 

pack_card_Weatherlight Compleated 0 pool_Weatherlight Compleated 0 Weatherlight 

Compleated 

0 

pack_card_Wingmantle Chaplain 0 pool_Wingmantle Chaplain 0 Wingmantle Chaplain 0 

pack_card_Wooded Ridgeline 0 pool_Wooded Ridgeline 0 Wooded Ridgeline 0 

pack_card_Writhing Necromass 0 pool_Writhing Necromass 0 Writhing Necromass 0 

pack_card_Yavimaya Coast 0 pool_Yavimaya Coast 0 Yavimaya Coast 0 

pack_card_Yavimaya Iconoclast 0 pool_Yavimaya Iconoclast 0 Yavimaya Iconoclast 0 

pack_card_Yavimaya Sojourner 0 pool_Yavimaya Sojourner 0 Yavimaya Sojourner 0 

pack_card_Yavimaya Steelcrusher 0 pool_Yavimaya Steelcrusher 0 Yavimaya Steelcrusher 0 

pack_card_Yotia Declares War 0 pool_Yotia Declares War 0 Yotia Declares War 0 

pack_card_Zar Ojanen, Scion of Efrava 1 pool_Zar Ojanen, Scion of 

Efrava 

0 Zar Ojanen, Scion of 

Efrava 

0 

pack_card_Zur, Eternal Schemer 0 pool_Zur, Eternal Schemer 0 Zur, Eternal Schemer 0 

Table 3. Full Inputs and outputs for specific pack 

5.2 Neural Network architecture 

The basic structure of the proposed neural network for solving this problem is a multi-

layer perceptron. This structure has been selected for its capacity to learn complex patterns 

using multiple inputs and outputs.  

The proposed architecture of the neural network will follow the structure shown in 

Figure 5, with fully connected neurons (i.e., perceptrons). Therefore, each perceptron is 

connected to all the perceptrons of the next row in a feedforward way, which means without 

forming loops and the information can only move forward, from the input layer, through the 

hidden layers to the output layer. 



Model definition and design 

24 

 

Figure 6. Layers in a MLP 

Each perceptron takes inputs, then multiplies each input for a weight related to that 

input, adds all inputs together plus a weight, then applies an activation function and the 

output for the specific perceptron is ready to continue through the system, or get output if it 

is the last layer. 

 

Figure 7. Perceptron structure with output formula (from Mat the w) 

In the following sections, we will detail the different elements of the neural network 

architecture that define the final architecture of the proposed system: activation function, the 

number of hidden layers and the loss functions. 

5.2.1  Activation Function 

An activation function is a function that decides if the neuron should be activated, or 

if the output can be ignored since it is not important for the neural network. Additionaly, in 

some cansed the activation function is used to modify  the input so it is within a range. 
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There are multiple activation functions, but the most basic are the following (Table 4): 

Name Plot Function Range 

Identity 

 

𝑥 (−∞, ∞) 

Binary step 

 

{
0, 𝑥 < 0
1, 𝑥 ≥ 0

 
{0, 1} 

Logistic/Sigmoid 

 

1

1 −  𝑒−𝑥
 

(0, 1) 

Hyperbolic 

Tangent 

 

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(−1, 1) 

 

Rectified Linear 

Unit (ReLU) 

 

max (0, 𝑥) {0, ∞) 

Softplus 

 

ln (1 + 𝑒𝑥) (0, ∞) 

Table 4. Activation Functions 

These are the basic activation functions, there are also some extra a bit more complex 

that combine 2 of those or make some other changes, but all of these are only applied to a 

node at a time, modifying only a specific output. 

Outside these functions, there is another one called argmax that is useful when 

predicting an output. This is a special function because instead of just taking as an input the 

value of a node, it takes as an input all the values from the nodes and makes the operation 

using all of them. This function gives the node with the highest output value a 1 and all the 

others a 0, selecting the label that matches the most with the prediction. 

Of the options available,  the ReLU function is the best option for the problem we are 

considering. The cost of applying a max() function is comparable to a basic arithmetic 

function, so it has a low cost while still being useful deactivating certain nodes. And since 

our objective does not have a linear output rather a binary one, we do not need to worry 

about continuity. And for the final layer, the output layer, we can use the logistic activation 

function, so we get the output values in the range of (0, 1) to indicate the selected card. 

5.2.2 Hidden Layers 

Hidden layers are the layer between the input layer and the output layer. There is no 

scientific way to tell how many layers are needed. Different problems require different 

things, for example it might be useful to have a hidden layer for each element you want to 

be able to identify in a picture, but it usually ends up being chosen by trial and error. A neural 
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network with 1 hidden layer is called a simple neural network, while a neural network with 

more than one hidden layer is called a deep neural network. 

The number of nodes inside the hidden layers can also vary, providing different results 

but sometimes an extra node or one less does not make a difference. There are some rule-of-

thumb methods to determine the number of neurons to use in a hidden layer, but it is not 

something exact. These are ones fairly used: 

• The number of hidden neurons should be between the size of the input layer and 

the size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer, plus the 

size of the output layer. 

• The number of hidden neurons should be less than twice the size of the input layer. 

In our case, the first rule for a set with 300 cards would be that the number of hidden 

neurons should be between 600 and 300, while the second rule tells us we should use 700 

neurons. This is another thing that can be tested to see if there is any difference in 

performance. 

5.2.3 Loss function 

When training a model, you need to evaluate how well the model is doing, and then 

adjust to fit better the data. To evaluate this, the model uses a loss function to calculate an 

error, and this value is used via backpropagation to modify the weights and bias of the model. 

There are multiple functions to calculate the error, some of the most used ones are the 

squared loss 𝐿 = (𝑎)2, or the absolute loss 𝐿 =  |𝑎|. The loss functions must be selected by 

looking at the cases specifically and is not as flexible as the number of hidden layers or 

activation function. 

If we look at our case, we want the output to have a format of an array filled with zeros 

and in only one element of the array have a 1, looking something like this: 

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …, 0, 0, 0] 

The output is in a binary state, either 0 for not selected cards, or 1 for selected card, 

and since we will only select one card, each array being unique for a specific card, with no 

repeating arrays or cards, we can tell each array is represented by a label, the card name. 

And with this label, our multi-layer perceptron becomes a classifier, returning as output the 

class that is the selected card. 

With this information in mind, and that the final layer activation function is logistic, 

the used function to calculate the loss is Binary Cross-Entropy loss. This function uses the 

probability of an element being correctly assigned to a label. 

 

It uses the negative log of the probability of being or not being the label and then makes 

the mean to give as error. 

And we will be using the binary version of cross-entropy since we are classifying the 

data in different classes, that can be seen by a binary output. 
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5.3 Design of an AI system for MTG  

The architecture of the system to implement for building a drafting system for MTG 

has the following structure: 

 

Following these steps, a functional model should be created to later be used to predict 

card choices. 

5.3.1 Data selection 

From the dataset available, and presented in Chapter 3, we can take all the users or a 

subset. We can filter away data from bad players. Different options would be using the data 

that meets the criteria of having “user_game_win_rate_bucket” over 60% or restricting data 

only from players on specific ranks. Another way would be to filter so you only learn from 

decks that got at least 3 wins. But there is a problem here, and it is in Magic: The Gathering 

nature. 

Magic: The Gathering is a game ruled by variance. It is a game of hidden information, 

and since each game you play you will not get all the cards you need to win, and the players 

need to play with what they draw. This leaves open the opportunity to win with a bad deck, 

lose with an amazing deck, or that a pro-player loses versus a new player, just because of 

the luck and variation implied in the game. But it is also thanks to this characteristic that 

makes it a fun game and less repetitive than other games like chess. 

With this in mind, it is hard to select what is the correct data to use for training, and it 

is also hard to verify if the data is correct, since what a user has picked does not have to be 

the best choice, multiple choices can be equally good, or equally irrelevant, making it hard 

to evaluate. For this reason, we use all the dataset without doing any filtering. 

 

5.3.2 Neural network structure 

We propose a multi-layer perceptron classifier with 2N input nodes and N output nodes 

where N is the number of cards in a set. The activation function of the output layer will be a 

logistic function, and the loss function will be binary cross-entropy loss. 

The other parts will be as a start: 
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• 1 hidden layer 

• 400 nodes in the hidden layer 

• ReLU activation function 

In addition to these general parameters, for MTG, we want to choose unique card from 

a given fixed pack. This means picking a card from a specific subset of all the possible cards. 

If we negate this sentence, we must NOT choose a card NOT in the specific subset. To 

introduce this restriction to the neuronal network model, we propose the following operation: 

Since in the input we already give an array that contains which cards can be selected 

and which cannot, we can use this information to mask the output, so we know for sure there 

is no chance a card not in the pack is selected. 

This operation can be introduced in the model in the following way: we get the array 

with the cards in the pack, the first set of N, and multiply it with the output array before we 

apply the logistic function. This would be like applying a custom logistic function that not 

only takes as an input the actual value of the neuron, but it also takes as an extra input the 

original input for the card. We can relate those since each output node corresponds to a card, 

like the input nodes. 
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6 Implementation 

This project has been developed using the Python language. It is one of the top 

languages for data analysis and AI development. In this chapter, the implementation project 

is explained. This implementation of the neuronal network has been done in two different 

ways, just as an academic exercise. First, the neuronal network model has completely 

programmed from scratch using the simple functions of Python. Second, anew 

implementation is done using Python machine learning libraries to make the code more 

efficient. 

6.1 Basic implementation from scratch 

The first implementation of the neural network propose has been done using basic 

functions of Python, and following the methodology explained in [12]. For this 

implementation, only 3 libraries were required: 

• Pandas [13]: Pandas is a fast, powerful, flexible and easy to use open-source data 

analysis and manipulation tool, built on top of the Python programming language.  

• Numpy [14]: Fast and versatile, the NumPy vectorization, indexing, and 

broadcasting concepts are the de-facto standards of array computing today. 

• SciPy.special [15]: SciPy provides algorithms for optimization, integration, 

interpolation, eigenvalue problems, algebraic equations, differential equations, 

statistics and many other classes of problems. 

With these functions imported, we can start as follows: 

import numpy as np 

import pandas as pd 

import scipy.special 

 

The initialization of the class is done in the following way: 

class neuralNetwork : 

    # initialise the neural network 

    def __init__(self, inputnodes, hiddennodes, outputnodes, 

learningrate): 

        # set number of nodes in each input, hidden, output layer 

        self.inodes = inputnodes 

        self.hnodes = hiddennodes 

        self.onodes = outputnodes 

         

        self.weight_input_hidden = np.random.normal( 0, pow(self.hnodes, 

-0.5),(self.hnodes, self.inodes)) 

        self.weight_hidden_output = np.random.normal ( 0, pow(self.onodes, 

-0.5),(self.onodes, self.hnodes)) 

         

        self.learningrate = learningrate 

        self.activation_function = lambda x : scipy.special.expit(x) 

 

We create 2 weight arrays, one for the connection between the input and the hidden 

layer, and one for the hidden and the output layer. We also assign the learning rate for the 

training and the activation function. 

As the goal was just building a proof-of-concept model, there are some missing 

components like the bias, or using a different activation function between the input layer and 

the hidden layer, that for now I just coded to use the logistic sigmoid function. 
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To train the neural network is also very easy: 

    def train(self, inputs_list, targets_list): 

        targets = np.array(targets_list, ndmin=2).T 

         

        inputs = np.array(inputs_list, ndmin=2).T 

        hidden_inputs = np.dot(self.weight_input_hidden, inputs) 

        hidden_outputs = self.activation_function(hidden_inputs) 

        final_inputs = np.dot(self.weight_hidden_output, hidden_outputs) 

        final_outputs = self.activation_function(final_inputs) 

         

        output_errors = binary_log_loss(targets, final_outputs) 

        hidden_errors = np.dot(self.weight_hidden_output.T, 

output_errors) 

        self.weight_hidden_output += self.learningrate * 

np.dot((output_errors * final_outputs * (1 - final_outputs)), 

np.transpose(hidden_outputs)) 

        self.weight_input_hidden += self.learningrate * 

np.dot((hidden_errors * hidden_outputs * (1 - hidden_outputs)), 

np.transpose(inputs)) 

 

This implementation just takes the inputs, calculates the results by multiplying the 

inputs by the weights, applying the activation function and passing it to the next layer to do 

the same. Then it calculates the error using the binary_log_loss function that I defined and 

finalizes propagating the error so it can continue to learn with the next data. 

To do the query, or the predictor, it is using the same lines of code of the first part of 

the train function to get the final outputs, plus the argmax function to reduce the multiple 

outputs to just the highest one. 

This is enough to have a basic multi-layer processor, but it has some problems. Apart 

of not being fully complete, to train this model you have to give it the data one element at a 

time, making this process extremely slow. To avoid this problem, and be more efficient while 

training, another more professional implementation has been done by switching to using 

Python libraries specialized on providing AI machine learning tools. 

 

6.2 AI Libraries 

There are multiple libraries that are used for creating and training artificial intelligence 

models. Two of the most widespread are PyTorch and skilt-learn. The way of working of 

these two libraries has been studied to choose which one is more appropriate for this project. 

6.2.1 PyTorch 

PyTorch [16] is a machine learning framework based on the Torch library. It was 

originally developed by Meta AI with the first release in 2016, and some software developed 

using this library includes Tesla Autopilot, Uber’s Pyro or Hugging Face’s Transformers. 

And while fairly new it looks like one of the top tools on the market. 

To create a model with PyTorch is extremely easy, you just need to define your own 

class specifying the layers you want to use using their predefined models. It looks something 

as simple as this: 

class BasicNN(nn.Module): 

    def __init__(self, n_input, n_output, n_hidden): 

        super().__init__() 

        self.linear_relu_stack = nn.Sequential( 
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            nn.Linear(n_input, n_hidden), 

            nn.ReLU(), 

            #nn.Linear(n_hidden, n_hidden), 

            #nn.ReLU(), 

            nn.Linear(n_hidden, n_output), 

            #mascara 

            nn.Sigmoid(dim=-1), 

        ) 

         

    def forward(self, x): 

        logits = self.linear_relu_stack(x) 

        return logits 

 

As you can see, you just write what layers you want to use, and also add the forward 

to define how you want to run your neural network, and you already have your neural 

network. All the other functions are already defined thanks to nn.Module, so the only thing 

left is training. 

optimizer = SGD(model.parameters(), lr=0.1) 

loss_func = nn.BCELoss() 

print("Final bias, before optimization: " + "\n") 

 

for epoch in range(100): 

 

    total_loss = 0 

     

    for iteration in range(len(inputs)): 

         

        input_i = inputs[iteration].float() 

        label_i = labels[iteration].float() 

         

        output_i = model(input_i) 

         

        loss = loss_func(output_i, label_i) 

         

        loss.backward() 

         

        total_loss += float(loss) 

        optimizer.step() 

        optimizer.zero_grad() 

         

    if (total_loss < 0.0001): 

        print("Num steps: "+str(epoch) + "\n") 

        break 

         

     

     

    print("Step: " + str(epoch) #+ " model1 "+ 

str(model(inputs[70].float()).detach()) + " label " + str(labels[70]) 

          + " total loss " + str(total_loss) 

          + "\n") 

     

print("Final bias, after optimization: ") 

 This code trains the model with the data, with the given inputs and labels, and 

accumulates the losses to do steps using gradient descend and train. 

 Doing it this way works, but again it is slow since we are getting each input 

individually, and while it works with a small set of data, for bigger datasets like the one I 

will be using is too slow. To solve this problem, I should use torch.utils.DataLoader, the tool 
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provided by PyTorch to load data, but it has some problems with big quantities of data and 

I also want to look at other libraries, so let’s switch and leave it as a potential future upgrade. 

6.2.2 Scikit-learn (Sklearn) 

Scikit-learn [17] or Sklearn is a free machine learning library for python that features 

classification, regression, clustering algorithms and other tools. It is built on NumPy, SciPy 

and matplot. It was first released in 2007 and various organisations like Booking.com, JP 

Morgan, Evernote, Inria, AWeber, Spotify and many more are using Sklearn. 

Sklearn already has a built-in multi-layer perceptron classifier, so we can use that to 

build our model, by just initializing it with the specific parameters we want for our build. 

clf = MLPClassifier(hidden_layer_sizes=(400,), 

                    activation= "relu", 

                    batch_size=420) 

 

Sklearn has been chosen as the final library to implement the model because of the 

simplicity it provides, it is easy to use and it is also very robust and optimized. Plus, Sklearn 

also provides a lot of additional features that can be used to preprocess the data or evaluate 

the model. 

6.3 Advanced implementation with Sklearn 

With Sklearn, we have created a multi-layer perceptron with one hidden layer of 400 

nodes, ReLU as the activation function between layers, and the other presets already give 

the logistic sigmoid activation function on the last layer, binary cross-entropy loss and 

everything else we want. Batch_size is another argument that it is used while training to 

make minibatches of the data to feed it, and I chose to use 420 as the set I am going to train 

has 14 cards per pack, per 3 packs, makes a total of 42 picks. And This number times 10 

means each batch feeds the data of 10 drafts. This model will be called “MLPClassifier”. 

As an upgrade, I also wanted to apply the mask to prevent the outputs from ever 

picking cards not in the pack, and to do so I looked at the code for MLPClassifier since it is 

open source [18]. Thanks to knowing how a MLP is coded, I found where I could do the 

modification. The functions _forward_pass(self, activations) and 

_forward_pass_fast(self, X, check_input=True) are the ones used for 

calculating the output of the model, the first used while training for the backpropagation 

algorithm, and the second one to predict the values. 

To add the modification, I just needed to split the input values to save the 

pack_card_NAME inputs for the mask, and then apply said mask. To do the split, I will use 

the numpy function hsplit to divide the input array in 2. We can do it this way since the 

inputs will be ordered to have the picks first and the cards in pool later. And to apply the 

mask it is a simple multiplication, and this leaves the code this way: 

    def _forward_pass(self, activations): 

        """Perform a forward pass on the network by computing the values 

        of the neurons in the hidden layers and the output layer. 

        Parameters 

        ---------- 

        activations : list, length = n_layers - 1 

            The ith element of the list holds the values of the ith layer. 

        """ 

 

        hidden_activation = ACTIVATIONS[self.activation] 
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        # Save inputs for mask 

        packs = np.hsplit(activations[0], 2)[0] 

         

        # Iterate over the hidden layers 

        for i in range(self.n_layers_ - 1): 

            activations[i + 1] = safe_sparse_dot(activations[i], 

self.coefs_[i]) 

            activations[i + 1] += self.intercepts_[i] 

 

            # For the hidden layers 

            if (i + 1) != (self.n_layers_ - 1): 

                hidden_activation(activations[i + 1]) 

 

        # For the last layer 

        output_activation = ACTIVATIONS[self.out_activation_] 

        activations[i + 1] = activations[i + 1] * packs 

        output_activation(activations[i + 1]) 

         

 

        return activations 

 

    def _forward_pass_fast(self, X, check_input=True): 

        """Predict using the trained model 

        This is the same as _forward_pass but does not record the 

activations 

        of all layers and only returns the last layer's activation. 

        Parameters 

        ---------- 

        X : {array-like, sparse matrix} of shape (n_samples, n_features) 

            The input data. 

        check_input : bool, default=True 

            Perform input data validation or not. 

        Returns 

        ------- 

        y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs) 

            The decision function of the samples for each class in the 

model. 

        """ 

        if check_input: 

            X = self._validate_data(X, accept_sparse=["csr", "csc"], 

reset=False) 

 

        # Initialize first layer 

        activation = X 

         

        # Save inputs for mask 

        packs = np.hsplit(X, 2)[0] 

 

        # Forward propagate 

        hidden_activation = ACTIVATIONS[self.activation] 

        for i in range(self.n_layers_ - 1): 

            activation = safe_sparse_dot(activation, self.coefs_[i]) 

            activation += self.intercepts_[i] 

            if i != self.n_layers_ - 2: 

                hidden_activation(activation) 

        output_activation = ACTIVATIONS[self.out_activation_] 

        activation = activation * packs 

        output_activation(activation) 

         

 

        return activation 
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The advantage of implementing a class that inherits all the other functions is that it 

only needs the initializer, these 2 modified functions and everything else works the same. 

To create a MLPClassifier with the modifications is the same as before, but just with another 

class name: 

clf = DraftClassifier(hidden_layer_sizes=(400,400,), 

                    activation= "relu", 

                    batch_size=420) 

This one has 2 layers of 400 cards, and all the other parameters are the same as before. 

To train this model, we need to use the fit function predefined by the library. This 

function allows us to train the model by passing all the data and all the labels, and the library 

automatically takes care of feeding it multiple data at the time to be more efficient based on 

our batch_size. There is also a similar but better option for our case that is partial_fit(). 

Works exactly the same as fit, but while fit you have to give it all the data at once because it 

resets the model each time you call fit, with partial_fit you can keep feeding the data, perfect 

for big datasets like ours where it is hard to load all the data to the RAM, and it is also nice 

to do multiple epochs (multiple trainings with the same data) to get a better fitting. This 

model will be called “Draft classifier”. 

6.4 Downloading the data 

To obtain the data, it must be downloaded from 17lands.com. To do so, we can use the 

requests library. This is a simple library that allows you to send HTTP/1.1 requests very 

easily. With this code, the dataset is requested and saved, so it can later be read. 

import requests 

 

card_set = "DMU" 

 

url = "https://17lands-

public.s3.amazonaws.com/analysis_data/draft_data/draft_data_public."+card

_set+".PremierDraft.csv.gz" 

r = requests.get(url, allow_redirects=True) 

 

open("/content/database_"+card_set+".csv.gz", "wb").write(r.content) 

6.5 Data Preprocessing 

Before training the model, the dataset also needs to be processed to have the correct 

data for training. 

To read the data we can load it in memory using pandas read_csv, and we can get the 

dataset as a TextFileReader object, to then iterate over it and get chunks of data. To do this 

we can read the dataset as follows: 

all_data = pd.read_csv("/content/database_"+card_set+".csv.gz", 

compression="gzip", chunksize= 10500, usecols = lambda x: x not in exclude) 

data = next(all_data) 

Where in chunksize we indicate how many rows we want it to read at a time, and what 

we give in usecols is columns we do not need to read. 

X_data or input data will be the data in the columns containing “pack” or “pool” in the 

name. To get this data, we can use the filter function to just get those columns as follow: 

X_data = data.filter(regex="pack|pool", axis=1).sort_index(axis=1) 

Y-data or labels will be the data in the column “pick”. Using the library sklearn we 

can give the label directly and with just telling what all the possible labels are, the model 
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already understands and relates each label with an output array. To read this data, it is like 

with X_data, but filtering with “pick” instead, and we do not need the sort. 

 

6.6 Training and Testing 

With the model built and the data ready to be processed, the training can be started. 

The code to do so looks like this: 

for epoch in range(1, 11): 

  all_data = pd.read_csv("/content/database_"+card_set+".csv.gz", 

compression="gzip", chunksize= 105000, usecols = lambda x: x not in 

exclude) 

  i = 1 

  for data in all_data: 

    if (i%3 != 0): 

      subdata = data.loc[data["user_game_win_rate_bucket"]>=0.6] 

      X_data=subdata.filter(regex="pack|pool", axis =1).sort_index(axis=1) 

      Y_data = np.ravel(subdata.filter(regex="pick", axis=1))  

      clf.partial_fit(X_data, Y_data, classes=cardnames) 

    i = i +1 

  print(epoch) 

  dump(clf, "train_mplc_1layer_a_epoch_"+str(epoch)+".joblid") 

 

This code trains the data for 10 epochs, first reading all the data and then iterating over 

it. Then it only reads the training data using the counter to see what data is for testing, and 

after that it applies the preprocessing. After that, the processed data is separated in X_data 

and Y_data and finishes by calling the partial_fit function giving the data plus all the card 

names so it knows all the possible outputs and in what order they should be. After training 

with all the training data, what is called doing an epoch, the model is saved in a file for future 

references using the dump function, and this process is repeated until the data is trained 

enough times. 

With this code, if we want to train with another kind of data filtering, changing the line 

that defines subdata is enough. And if you want to train another model, changing the 

constructor is everything that must be done. 

To test the models, a similar approach is followed, where first the data is read, filtered, 

and then given to the model. To evaluate the success of the model, the function score() is 

used. This function compares the model output with the given output and counts how many 

times the output is the same to return the mean accuracy on the given test data and labels.  

all_data = pd.read_csv("/content/database_"+card_set+".csv.gz", 

compression="gzip", chunksize= 105000, usecols = lambda x: x not in 

exclude) 

i = 1 

for data in all_data: 

  if(i%3 == 0): 

    subdata = data.loc[data["user_game_win_rate_bucket"]>=0.6] 

    X_data = subdata.filter(regex="pack|pool", 

axis=1).sort_index(axis=1) 

    Y_data = np.ravel(subdata.filter(regex="pick", axis=1))  

    print(clf.score(X_data, Y_data)) 

  i = i + 1 

 Because of the size of the dataset, the training data chunks are passed one at a time, 

allowing you to see their individual performance. 
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7 Experimentation 

As a first study, I trained 4 models with only 1 layer. Two of these models were a 

normal MLPClassifier while the other two were the custom draft classifier model class. Two 

settings have been tested: (1) training the models with all the data and (2) training the models 

with only the data from the players that have at least a 60% Win-Rate. The testing was also 

done in the same way, comparing each model versus all the testing dataset and versus a 

testing dataset with only the players with at least a 60% Win-Rate.  

The performance results obtained in terms of the scoring function are the following: 

MLPC 1layer Trained All 

Tested All 

Trained All 

Tested +60% 

Trained +60% 

Tested All 

Trained +60% 

Tested +60% 

Max 0,647147656 0,660093652 0,624217955 0,639529717 

Min 0,5626 0,581229305 0,543704762 0,563603753 

Mean 0,628847619 0,64301363 0,607052381 0,622720229 

Table 5 Test MLPC 1 layer 

Draft 1layer Trained All 

Tested All 

Trained All 

Tested +60% 

Trained +60% 

Tested All 

Trained +60% 

Tested +60% 

Max 0,62092027 0,634079084 0,606465929 0,620209646 

Min 0,557580952 0,577400662 0,537885714 0,557464128 

Mean 0,607728571 0,619265853 0,592657143 0,607173503 

Table 6 Test Draft Classifier 1 Layer 

Comparing the results of the two classification methods, as it can be seen, in Table 5 

all the values are a bit higher than in Table 6. This means that the MLPClassifier has learned 

to only pick cards from the pack without needing a specific step for doing it. This observation 

has also been proven with some qualitative tests later, so the modification in the draft 

classifier model is not needed, and it even slows the training and lowers the final scores. 

Since the data is fed to the model in batches because of its big size, during the 

calculations of the score we can also evaluate how each individual batch of data is classified. 

And the scores show that the later batches have a higher score than the first ones. And since 

the data in the dataframe is ordered in chronological order, this means that the model makes 

similar choices to the players that were playing after having more weeks of experience and 

knowledge. The best and worse scores obtained this way are shown in Max-Min rows in 

Table 5 and Table 6. 

Another important conclusion is that the models trained with all the data have better 

results than only training with players with 60% Win-Rate. This can either be because using 

more data is beneficial for the models, and players could still make the correct choices but 

lose anyway later, or that using this filter is not the best way to curate the data. But on the 

other hand, the models scored higher when testing with data from the players with 60% Win-

Rate. 

The scores themselves are low. Having a score of maximum 66% is not the best, but 

this can be attributed as players not picking the best cards always. After analyzing in detail 

the case, we considered that the score function could be improved. Therefore, we propose a 
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new scoring function that takes into account the first and second choice of the model and 

compares them with the actual output. And using this score function, we get higher values 

indicating that the bot results are indeed like those from human players, but it can have some 

different opinions on certain spots. 

Using the top 2 choices we get much higher score (Table 7), having an 84% accuracy 

with the MLPClassifier and an 82% accuracy with the Draft Classifier model, both being 

trained with all the training data. 

 Draft Classifier all data MLPClassifier all data 

Tested with all data +60% WR all data +60% WR 

Max 0,826301353 0,836784599 0,848537615 0,863423517 

Min 0,768095238 0,785389073 0,775619048 0,790114514 

Mean 0,808265334 0,819659442 0,82631129 0,838778911 

Table 7 Score top 2 cards in 1-layer models 

To further analyze how the different models classify, I have analyzed the accuracy of 

each individual pick and pack, getting the following results using the models trained with all 

the data and tested versus data of players with 60% WR: 

 

Figure 8 Score for each pick - draft classifier 1 layer 
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Figure 9 Score for each pick - MLPClassifier 1 layer 

The highest picks are the ends of packs, where there are less cards and thus less 

options, making it easier for the bot to pick the same cards as the players. We can also see 

that the picks 2 to 5 of each pack are the ones with lower accuracy. This is because players 

usually take the easy choice on the first pick, and after that in picks 2-5 they might follow 

the first pick and try to force a deck playing that card while others are more flexible and 

open to picking an unrelated card that could be very good if the first card is not played, or 

they just pick the most expensive card in the pack for future uses outside the draft. Still, both 

models show a high score, being the lowest score for a specific pick just under 75% if we 

consider the best 2 cards. 

After training models with 1 layer, the next step to evaluate is having extra layers. 

Because of the time cost, only two models have been trained, both using all the data, and the 

results obtained are shown in Table 7. 

 Draft Classifier 2 layers MLPClassifier 2 layers 

All testing data top 1 0,618757143 0,638280952 

All testing data top 2 0,824542857 0,838933333 

60+% WR testing data top 1 0,630697789 0,653300168 

60+% WR testing data top 2 0,833432241 0,849758799 

Table 8 Avarage scores for 2-layered models 

The scores shown in table 8 are almost identical to the ones shown in table 6, meaning 

that training extra layers this way is not more useful than just having one layer. This little 

improvement could mean that the models are learning some qualitative rules, but it needs 

further incentives to correctly learn that.  If we look at the scores for each individual pick 

(Figure 10 and 11), the graphs show almost identical results to Figure 8 and Figure 9, further 

proving this point. 
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Figure 10 Score for each pick - Draft Classifier 2 layers 

 

Figure 11 Score for each pick - MLPClassifier 2 layers 

As a player, I can also do some qualitative tests. To do so, I tested the models with 

some new drafts, and evaluating the card choices. I have also shared these results with other 

players I know getting positive comments about it. 

https://www.17lands.com/site_draft_replay/e2600ed0dbdd401281b84d81ff50ab46 

This is one of the drafts I tested and asked for evaluation on other players. While 

sometimes the bot does not choose the best card in the pack, or picks more cards classified 

as interaction than what it is usually recommended to play, the model keeps choosing the 

two main colors when possible, as shown on Figure 12 where the model is picking red or 

white cards when possible because the cards in the pool (in screenshot shown as possible 

maindeck) are in those colors. 

https://www.17lands.com/site_draft_replay/e2600ed0dbdd401281b84d81ff50ab46
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Figure 12 Real Draft Screenshot (screenshot from 17lands log) 

While it is not optimal, it still follows basic drafting rules and makes good choices, 

better than what new players usually do, and it can be a good starting point or guide as it 

currently is for new players trying to learn to draft. 
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8 Conclusions 

After finishing the work done in this project, the project has been completed fulfilling 

the proposed objectives: 

1. I have conducted a comprehensive study on the state of the art in AI-based methods 

for card selection in Magic: The Gathering (MTG). This analysis allowed us to gain 

a deep understanding of the existing approaches and identify potential avenues for 

improvement in this challenging task. 

2. I have designed a model with Machine Learning techniques to learn from the 

thousands of real card selections made by human players. It is based on Neural 

Networks. The input and output format has been carefully studied and a proposal 

based on binary codification of the cards in the pack and in the pick has been made. 

3. The model has been implemented using state-of-the-art Machine Learning 

technologies. A first and simpler implementation of a neural network and its training 

has been done from scratch. Later, to improve speed and performance, an 

implementation with Skitlearn library has been done. 

4. Different neural network models have been trained using the large datasets of human 

records. A multi-scale network model and a modified model for drafting into a fixed 

subset of cards have been studied. Results show that the standard multi-scale model 

has been also able to learn autonomously that the selected card must be one in the 

available pick. 

5. Two different types of datasets have been used, including and excluding information 

for poorly performing players. As conclusion, it has been found that using all data 

gives more information to the model and so it produces better results. 

6. The system has been evaluated both in a quantitative way and in a qualitative way, 

obtaining satisfactory results. A performance of 85% accuracy has been obtained 

while checking the top 2 options for the model. While the training could still be 

optimized to obtain better qualitative results, the models obtained work in a satisfying 

way and can be used to help new players of MTG. 

The experience acquired in this project let me say that I think that neural networks are 

a good approach for building this kind of support tool for new players of complex card 

games. The methods proposed in this work could be also useful not only in the trained set 

but also in any other MTG set including future ones, plus in other similar games where 

drafting mechanics exist such as heartstone. A key point to building such systems is the 

availability of data for training, which fortunately was the case in MTG, thanks to 

17lands.com. 

As future work, there are 2 main points that can be worked. The first one would be the 

data preprocessing and include the gameplay data to give each input a specific weight so 

when training a model, the most useful data is taken with extra consideration, and the lesser 

important data, for example the data of losses, gets less importance. This would make the 

model learn more from the good choices and less about the bad ones, and probably also being 

able to use less data to train the models, since each individual data would bring more 

information. The second main point would be using more layers and trying to teach it more 

complex behaviors and see how better it can get. This would need the use of the previous 

explained data preprocessing, and a different kind of evaluation, since if it becomes better 

than an average player, trying to compare the choices of the model with the choices of 

average users could give a low accuracy, but because the humans do worse choices. And it 

would also need more computational resources to do the training and preprocess in a 

reasonable time. 
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Another extra project that could be done related with this is to make an overlay that 

reads the data from the online game while it is playing to predict and help the player make 

the choices without needing extra work from the player. This would help with the use of the 

project and would make it more accessible. 

Finally, my personal evaluation of the work done is a good one. I’m satisfied with the 

results obtained both qualitative and quantitative ones, and I think it can be easily trained 

with future sets for further use. I’m happy with the results obtained and with the knowledge 

I learned doing this project, that will be useful for me in a future. 
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