
Universitat Rovira i Virgili

WebAssembly for Edge-Cloud Computing

Final Master’s Project

———————————————— Marlon Funk ————————————————

directed by Dr. Marc Sánchez Artigas

Computer Security Engineering and Artificial Intelligence

September 4, 2023



Abstract In recent years, serverless computing has arisen as popular solution for building
and deploying applications in cloud environments. One of the leading platform in this field is
Apache OpenWhisk, which offers a severless framework for executing event-driven functions in
response to various triggers. While having recognized efficiency, its underlying technologies are
still evolving to fulfill constantly increasing demands. The runtime environment for function
execution is a key aspect of severless computing. As a binary instruction format for virtual
machines Wasm has gained attention for its portability and performance. The aim of this work
is to investigate and evalutate the use of WebAssembly (Wasm) as an alternative to the current
Docker containerization approach. The actual substitution was implemented before, however
several questions regarding the performance differences between Wasm and Docker remain unan-
swered. After conducting several benchmarks, the superiority of Wasm regarding latency and
capacity can be confirmed. Additionally, it shows fewer outlier occurrences compared to Docker
and Wasm causes less strain on memory and CPU usage.

1



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 4

3 Background 5
3.1 OpenWhisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Webassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 WebAssembly-flavored OpenWhisk (WoW) . . . . . . . . . . . . . . . . . . . . . 9

4 Methodology 11
4.1 Measuring of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Cold start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Summary information for actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conduction of benchmark 17
5.1 Cold-start tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Concurrency tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Test execution without load . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Test exectuion with hash load . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Test execution with mixed type of load . . . . . . . . . . . . . . . . . . . 26

5.3 Comparison of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Capacity tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Identifying Potential Enhancements 40
6.1 Enhance cold-starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Enhance warm-starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion 44

2



1 Introduction

1.1 Motivation

The integration of Wasm within OpenWhisk itself is not a novel idea, however with an increased
level of detail and transparency it is possible to add improvements to the existing work. A solid
foundation for the integration of Wasm runtimes into the existing OpenWhisk architecture is
implemented in ”Pushing Serverless to the Edge with WebAssembly Runtimes” (Gackstatter
et al., 2022)[17]. Which was presented at the 2022 22nd IEEE International Symposium on
Cluster, Clound and Internet Computing. We intend to extend this research by increasing the
transparency and adding a different type of test to the evaluation. Thus providing further in-
sights to the existing research.

While Gackstatter et al. did a good job for implementing a concurrent executor built upon
Rust’s async features, the evaluation in the paper [17] was incomplete. For instance, the authors
did not realize capacity tests to determine how many concurrent activations can be performed
with containers vs. WebAssembly with the same set of resources. Further, Gackstatter et al.
did not present the implementation details of the actions, which were used in the benchmark. In
addition benchmarks with mixed types of loads are missing from the assessment. Our evaluation
is much complete and we develop some scripts to evaluate new WebAssembly-based additions
to OpenWhisk in the future.

One of the major advantages of serverless computing is auto-scaling. These polygot platforms
are designed to handle varying workloads by automatically scaling resources up or down as
needed. With this arises the challenge of managing unpredictable workloads efficiently. In this
regard the latency is of high importance to enable support for critical services. We aim to
address those points by conducting various tests. To evaluate the difference in cold-start laten-
cies between Wasm modules and Docker containers, the cold-start latencies for an increasing
amount of concurrent requests are measured. In order to gain insights into the behaviour under
heavy load from concurrent requests, the time needed for initialization is measured for a growing
quantity of concurrent requests. We conduct these tests with different combinations of CPU-
and IO-load. Subsequently, the maximum capacity for multiple instances of containers and
modules are analyzed to obtain knowledge regarding the value of density for Docker and Wasm
within OpenWhisk. With the knowledge gained from conducting the benchmarks, potential
bottlenecks will be identified and possibilities for enhancements proposed.

To accomplish our goal, first the essential parts of the underlying theory will be explained.
Based on that knowledge, the methodology of this work will be laid out in detail for each con-
ducted experiment. Subsequently, the collected results will be compared and evaluated in detail.
Afterward, with new insights in the topic of performance, critical steps in the architecture will
be examined, and the time needed measured, leading to the final conclusion.

By substituting Docker with Wasm, the cold and warm latencies will be reduced while in-
creasing the total capacity of concurrently running instances, leading to a higher number of
requests being addressed more quickly and simultaneously.

3



1.2 Objectives

To conclude, the main goals of this thesis are the following ones:

1. Gain knowledge about the Function as a Service model and, in particular, the open-source
OpenWhisk platform;

2. Understand WebAssembly (Wasm) and the internals of a modified OpenWhisk platform
that replaces containers with a more lightweight isolation model built upon Wasm tech-
nology.

3. Design a test suite to capture the benefits of Wasm over Docker containers (if any) in
terms of performance and resource footprint.

4. Run the benchmarking suite and compare the performance of both runtimes: Wasm and
containers, and provide new insights.

2 Related Work

In order for the area of serverless computing to gain more significance for applications where
low latency is crucial, it is of high importance to reduce the current cold-start latencies. These
latencies, which can take as long as 24 seconds, as mentioned in [22], need to be minimized to
make serverless computing more attractive for latency-sensitive tasks. This reduction in cold-
start latencies is essential to make serverless computing more appealing for applications where
high responsiveness is a key factor.

The utilization of WebAssembly to improve on the cold-start latencies of the current container
technology has been discussed before in multiple works [20], [18], [23]. In [20] a new execution
model for serverless functions at the edge is proposed, taking the OpenWhisk architecture as a
role model. The model addresses the challenges of latency-sensitive applications by optimizing
the execution of serverless functions. By deploying functions closer to the end-users, it aims to
reduce latency and enhance responsiveness. The paper focuses on the architecture, explaining
in detail how functions are triggered, executed, and managed. The proposed model aims to
improve the overall performance of edge computing environments by efficiently handling the
execution of serverless functions. The evaluation sets the focus on the whole time needed to
instantiate the context, execute the function, and return the result. Thus making the results
specific for their use cases. This master’s thesis aims to provide more general information about
cold-starts and warm-starts respectively, for a growing amount of concurrent requests.

Gadepalli et al. discuss challenges and potential advantages for efficient serverless comput-
ing at the edge in [18]. They address the topics of managing resources, minimizing latency, and
optimizing serverless function execution by identifying ways for enhancing resource allocation,
load balancing, and execution strategies. Points that are not addressed are concurrent requests
and different types of workloads at the same time, which will be improved on in this work.

Shillaker and Pietzuch (2020) proposed a new framework for efficient stateful serverless com-
puting called Faasm[23]. This framework utilizes WebAssembly for lightweight isolation while
supporting shared memory. Additionally, the runtime FAASM is able to isolate the CPU and
the networking using Linux cgroups[10]. To train a machine learning model, they achieve a
2-time speedup using 10 times less memory compared to traditional container platforms while
doubling the throughput and reducing tail latency by 90%. For us, Faasm is of relevance due

4



to the possibility of replacing WebAssembly with Fasslets in the OpenWhisk system.

The primary reference paper utilized in this thesis is expanded on in the area of confiden-
tial serverless computing in [24]. This paper addresses the security challenges when executing
functions with sensitive data by implementing reusable enclaves. To overcome cold-start issues,
the the original WoW project is extended with enclaves that are resettable. The use and adap-
tation of WoW in the area of security enforces the importance of reevaluating the obtained
results in [17].

3 Background

3.1 OpenWhisk

OpenWhisk[3] is an serverless event-based programming service. Actions (stateless functions)
can be created in a variety of different programming languages and are executed after a defined
trigger is activated. A trigger can be anything from a change in a document to data arriving
from a sensor. With OpenWhisk its possible to deploy containers on local machines or in the
cloud. Due to the compatibility with Kubernetes[9] its possible to create a flexible platform for
serverless computing with the orchestration capabilities of Kubernetes.

An overview of the complete OpenWhisk system, including all components, is given by fol-
lowing the internal flow of an invocation of an action. The graphical representation of the
OpenWhisk architecture can be found in Fig.: 1. The internal flow starts by entering a com-
mand in the wsk CLI, which sends an HTTP request to nginx[12]. Nginx is an open-source
server that, among other features, implements reverse proxying, cacheing and load balancing. In
OpenWhisk it is used to forward HTTP calls to the controller. The controller acts as an inter-
face for all actions the user can take. It converts the HTTP call into an invocation of an action.
Next, the controller conducts measurements of authentication and authorization by verifying
the credentials contained in the request with credentials stored in the ’subjects’ database in
CouchDB[1]. A CouchDB server provides multiple named databases that can be accessed with
a RESTful HTTP API. In the case of an incoming invocation request, it validates if the given
user exists and if it has the required privilege to invoke this particular action. After ensuring the
privileges of the user, the action is loaded from the ’whisks’ database in CouchDB. In addition
to the parameters given with the request to invoke the action, the database contains informa-
tion about resource limitations. In the next step, the Load Balancer selects the best suitable
Invoker. As part of the controller, the Load Balancer is able to see the status of all existing
Invokers and thus is able to select the best-fitting one. Kafka[2] is responsible for handling the
communication of messages between the Controller and Invoker. It is an open-source platform
that implements high-performance data pipelines, among other functionalities. Those pipelines
ensure the messages can be retrieved after a system crash. Through Kafka, the controller sends
a message with the name and parameters to the Invoker, which returns an ActivationID. If the
HTTP request is accepted, it terminates. Using Docker[5] for an action, an isolated container is
created. The source code for the action and the parameters are given to the Docker container.
After a defined timeout, the container is destroyed again. If a new invocation request for the
same action arrives before the timeout expires, the container is reused, and the timeout for
destruction is reset. After the execution, the Invoker extracts the results and stores them in
the ’activations’ database in CouchDB. An example of the result of a ’hello’ action:

[

{

5



//The leading two fields are not part of the original result,

//but from our test architecture

"no_concurrent_requests":1,

"responses":[

{

"activationId":"c5f8fe18ee504024b8fe18ee50f02489",

"annotations":[

{

"key":"path",

"value":"guest/hello1"

},

{

"key":"waitTime",

"value":129

},

{

"key":"kind",

"value":"wasm:0.1"

},

{

"key":"timeout",

"value":false

},

{

"key":"limits",

"value":{

"concurrency":1,

"logs":10,

"memory":256,

"timeout":60000

}

},

{

"key":"initTime",

"value":100

}

],

"duration":105,

"end":1692272392926,

"logs":[

],

"name":"hello1",

"namespace":"guest",

"publish":false,

"response":{

"result":{

//The actual return value of the action

"result":{

6



"result":"Hello, \"there!\""

},

"status":"success",

"status_code":0,

"success":true

},

"size":91,

"status":"success",

"success":true

},

"start":1692272392821,

"subject":"guest",

"version":"0.0.1"

}

]

}

]

Figure 1: Sequence diagram of OpenWhisk (created with https://sequencediagram.org)

The source code of actions is unziped and stored in the variable called ’module’. This variable
gets passed on from the Controller through multiple instances. This has an interesting effect
in performance. First off, the size of the binaries will effect both network transmission and
decompression. So, for large binaries the time to fetch, unzip and run the code will be longer.

7

https://sequencediagram.org


3.2 Webassembly

WebAssembly (Wasm) stands for a binary instruction format developed for a stack-based vir-
tual machine. It serves as a portable compilation target for various programming languages
and is most commonly used for web applications on both client-side and server-side[15]. Wasm
comes with both a compact representation and a fast execution[19].

Due to the platform independence of WebAssembly, syscalls are not defined. To be able to
interact with the operating system, the use of syscalls is implemented by the WebAssembly sys-
tem interface (WASI). The key goals of WASI are to ”propose as a standard engine-independent
non-Web system-oriented API for WebAssembly”[4]. Among others, it provides access to the
filesystem, to sockets, to clocks and to random numbers via a standardized interface between
Wasm modules and the host operating system[4]. The design principles are defined in the WASI
GitHub repository[7]:

• Capability-based security: Access to external resources relies on two kinds of capabilities:
Handles and link-time capabilities. Handles are unforgeable, ensuring that an instance
can only get access to a handle when another instance shares it. Link-time capabilities
are used in scenarios where there is no need to identify multiple instances of a resource at
runtime.

• Interposition: The capability of a Wasm module to implement aWASI interface in addition
to a consumer Wasm module being able to utilize this implementation.

• Compatibility: Compatibility is provided between different platforms, libraries, and ap-
plications.

• Portability: Is defined explicitly for each API.

A WebAssembly consists of a single linear memory that can be accessed with 32 bit pointers.
All variables and functions are represented by integer indices on the linear memory and can be
accessed via $main, for example. A garbage collector is not provided[21]. As can be seen in
Fig. 2 the stack grows in the direction of data end and the heap towards mem max[16].

Figure 2: Memory layout of a Wasm module(created with https://app.diagrams.net/)

To give a simple overview over the relations between a C-Programm and the same code as
Wasm here a simple ”Hello World” in C and the corresponding Wasm counterpart are displayed:

#include <stdio.h>

int main() {

printf("Hello, World!");

return 0;

}

8

https://app.diagrams.net/


(module

(type $FUNCSIG$ii (func (param i32) (result i32)))

(type $FUNCSIG$iii (func (param i32 i32) (result i32)))

(import "env" "printf" (func $printf (param i32 i32) (result i32)))

(table 0 anyfunc)

(memory $0 1)

(data (i32.const 16) "Hello, World!\00")

(export "memory" (memory $0))

(export "main" (func $main))

(func $main (; 1 ;) (result i32)

(drop

(call $printf

(i32.const 16)

(i32.const 0)

)

)

(i32.const 0)

)

)

In the given Wasm binary all variables are of the type i32. Besides i32 the following types
are available[15]:

• Numeric Types:

– signed and unsigned integers: i32 and i64.

– single and double precision floats: f32 and f64.

• Vector Types: Can be processed by vector instructions, represented by a 128 bit vector.

• Reference Types: Refers to objects in the runtime.

• Value Type: Sets the values that Wasm code can compute.

• Result Types: Consists of a sequence of values as a result of a function.

• Function Types: Defines how parameters are mapped to results.

• Limits: Sets the size of memory and table types.

• Memory Types: Defines are region in memory.

• Table Types: Represents a table of elements.

• Global Types: Global variables can be accessed in a global scope.

• External Types: Variables and values that are imported.

3.3 WebAssembly-flavored OpenWhisk (WoW)

”Pushing Serverless to the Edge with WebAssembly Runtimes”[17] proposes an extended version
of OpenWhisk that is able to run Wasm modules in addition to Docker containers. They
name it ”WebAssembly execution in Apache OpenWhisk”, shortly WoW. The changes in WoW
take effect after the LoadBalancer messages the Invoker through Kafka. The updated system

9



architecture can be seen in Fig.: 3, the Invoker injects the code into the Wasm Executor leading
to the creation of the Wasm module. Subsequently, the Invoker instructs the Wasm Executor
to start the module.

Figure 3: WoW system overview [3]

The architecture of the Wasm Executor is shown in Fig.: 4. It offers three entry points to
be accessed by the Invoker /init, /run and /destroy. For the container to be initialized, with
the code of the module, /init is invoked once for each container. To initialize a WebAssembly
module, the request must contain the container id, the capabilities and the module bytes, which
is of type Vec〈u8〉. The entry point /run is used to start the container. In order to run
a WebAssembly module, the container id and optionally the parameters are required. The
destruction of the container can be ordered with /destroy. To destroy a WebAssembly module,
only the container id is needed.

Figure 4: Wasm executor[17]

10



To enable support for WebAssembly modules in OpenWhisk, WoW adds these additions
to the original OpenWhisk repository [17]. Through changes made in ’openwhisk/ansible/-
files/runtimes.json’ the new system is able to support the runtime ’wasm’. In ’common/scala/s-
rc/main/resources/application.conf’ the maximum for concurrent actions is set to ’10’. We
expanded this limit to ’15’. The limit for actions per minute is removed in ’core/controller/src/-
main/scala/org/apache/openwhisk/core/entitlement/Entitlement.scala’. Furthermore, the In-
voker is now able to handle wasmruntimes thanks to small changes made in ’core/invoker/init.sh’
and ’core/invoker/Dockerfile’. To be able to invoke a module, the containerpool ’openwhisk/-
core/invoker/src/main/scala/org/apache/openwhisk/core/containerpool/’ is expanded by three
files:

• WasmClient.scala: defines a class named WasmClient that implements the WasmRun-
timeApi trait. This client also implements functions to start and destroy modules.

• WasmContainer.scala: implements a WasmContainer class and a WasmContainer object.
The class represents a WebAssembly module. It provides a method for obtaining the logs
of modules, and it adds the desctruction of the runtime to to destroy of the container. The
’WasmContainer’ object provides a method for creating a WebAssembly module using the
WasmRuntimeApi.

• WasmContainerFactory.scala: acts as a factory to create WebAssembly modules. It uses
the WasmClient to interact with the runtime.

In addition, in ’StandaloneOpenWhisk.scala’ the system property of ’whisk.spi.ContainerFactoryProvider’
is set to ’org.apache.openwhisk.core.containerpool.wasm.WasmContainerFactoryProvider’.

4 Methodology

All tests are executed with Docker containers and with Wasm modules. In the case of concur-
rency, the tests are conducted with different types of loads. Each test is repeated 10 times,
which allows us to capture the variability of execution, including information about the coeffi-
cient of variation (CoV) and the standard deviation.

The test execution for Wasm modules was conducted with the OpenWhisk fork from WoW[17].
For the test execution of Docker containers, a slightly modified version of the original Open-
Whisk repository was used. In ’OriginalOW/openwhisk/core/invoker/src/main/resources/ap-
plication.conf’ the idle-container timeout was reduced to 10 seconds. This change decreases the
duration of the cold start tests by a margin. All used scripts and files, as well as the results,
can be in this repository: https://github.com/MarlonFunk/MasterThesis.

Before beginning the benchmark, the maximum number of concurrent containers and mod-
ules has to be defined. When flooding the system with many requests, the log messages of
OpenWhisk give the required size of one container or one module. The same size is allocated
for all types of our actions:

[ContainerPool] Rescheduling Run message, too many message in the pool,

freePoolSize: 0 containers and 0 MB, busyPoolSize: 4 containers and 1024 MB,

maxContainersMemory 1024 MB, userNamespace: guest,

action: ExecutableWhiskAction/guest/prime@0.0.1,

needed memory: 256 MB, waiting messages: 0

11

https://github.com/MarlonFunk/MasterThesis


From this log message, the initial configuration of ’maxContainersMemory’ with 1024MB can
be read. This amount is not sufficient to run enough concurrent requests with our tests. The
amount of invoker memory can be defined in:

OpenWhisk/openwhisk/core/invoker/src/main/resources/application.conf:

userMemory: "{{ invoker_user_memory | default(’1024 m’) }}"

As an experiment, the value was set to ’8192 m’. This should exceed the actual available
memory of 8GB and give the maximum amount of concurrent running Wasm modules and
Docker containers. To validate the behaviour the capacity test for Wasm was executed, starting
with 30 concurrent requests. During this experiment, the following log message was returned
from the server:

freePoolSize: 0 containers and 0 MB, busyPoolSize: 32 containers and 8192 MB,

maxContainersMemory 8192 MB

The actual maximum measured RSS memory was 63,332 KB for all executor threads. The
details of how the measurements were done are explained in the following section. From this
measurement, we can determine that the actual size of one Wasm module with the action ’sleep’
is slightly less than 2MB. With 8GB of RAM about 4000 concurrent requests should be possible.
To exceed this limit, we set ’invoker user memory’ to 1,280,000:

5000 concurrent actions ∗ 256MB = 1280000MB

Additionally, the limits for the invocations of actions were increased:

OpenWhisk/openwhisk/core/standalone/build/resources/main/standalone.conf:

config {

controller-instances = 1

limits-actions-sequence-maxLength = 50000

limits-triggers-fires-perMinute = 50000

limits-actions-invokes-perMinute = 50000

limits-actions-invokes-concurrent = 50000

}

With those configurations, all tests were conducted.

Alternatively, the action memory configuration could have been adapted, but the previously
mentioned solution seems to be less complicated.

OpenWhisk/openwhisk/common/scala/build/resources/main/application.conf:

# action memory configuration

memory {

min = 128 m

max = 512 m

std = 256 m

}

4.1 Measuring of resources

To measure the resources of running Wasm modules, a bash script is executed to measure the
resources used. The ps command[13] is used with the parameter −o to control the formatting
of the output. The following specifiers are used, as defined by[13]:

12



• spid: The thread ID.

• stat: The current status of the process or thread.

• %cpu: The CPU utilization as a percentage. Computed by dividing CPU time by the
time the process has been running.

• rss: The resident set size.

The output returned by ps is then piped to awk[14] which is used to only show running processes
by filtering ’stat’. If the output of awk is non-empty the used resources are piped into a.log file.

#!/bin/bash

outfile="wasm_res.log"

echo "SPID STAT %CPU RSS" >> "$outfile"

while [ true ]; do # Keep logging until cancelled

stats_executor=$(sudo ps -o spid,stat,%cpu,rss= -C "executor" )

# Filter by state

running=$(echo "$stats_executor" | awk ’$2 ~ /R/ {print}’)

# Only log if not empty

if [[ ! -z "$running" ]] ; then

while IFS= read -r info; do

echo "$info" >> "$outfile"

done <<< "$running"

fi

done

To measure the consumed resources by Docker containers, the command ’docker-stats’ [6] is
utilized. This command returns data for all running instances of Docker containers, including
information about the CPU usage in percent and the total used memory. The gained data for
each container is then summed up and saved in a log file.

#!/bin/bash

outfile="docker_res.log"

while [ true ]; do # Keep logging until cancelled

docker_stats_output=$(docker stats --no-stream

--format "table {{.Name}}\t{{.CPUPerc}}\t{{.MemUsage}}")

cpu_sum=$(echo "$docker_stats_output" |

awk ’NR > 1 { total += $2 } END { print total }’)

mem_sum=$(echo "$docker_stats_output" |

awk ’NR > 1 { sub(/[A-Za-z]+/, "", $3); total += $3 }

END { print total "MiB" }’)

echo "CPU%: $cpu_sum"" Memory: $mem_sum" >> "$outfile"

done

13



4.2 Cold start

A cold start refers to a container or module being initialized for the first time. In the case of
Docker, this includes the creation of the container, which is more time consuming than execut-
ing a precompiled Wasm module. A cold start latency consists of the sum of waitTime and
initTime. The waitTime refers to the duration needed for OpenWhisk to handle an activation
request, from the moment the Controller receives the request until the Invoker provisions a
container or module[3]. The initTime represents the time taken for initializing the function.
This value is only returned for cold starts, as for a warm start, no initialization is required[3].

In this test, the cold start times of 1 to 15 concurrent requests are measured. With the bi-
nary cold-start-test created with an adapted version from the rust source code[17] an increasing
number of concurrent requests are sent to the server. After each cycle of requests, the pro-
gram waits for a defined time before the next concurrent requests are sent. That ensures the
destruction of containers or modules, and in each cycle, a cold start is forced. The correct
behaviour can be validated by counting how often initTime is returned for each cycle of con-
currect requests. For each cold start, one initTime is required, thus after 15 cycles, 120 values
are expected. If a container has not been deallocated and thus a warm start was executed, no
initTime is returned. Also, the amount of initTime’s in the result file must equal the amount
of waitTime’s. With this information, the correct execution of each test can be ensured.

The cold start tests are conducted an action named ”hello” which simply prints:

Hello, < Input >

The use of an action with a low amount of lines of code and without adding libraries
showcases the lower border of the cold start times. No CPU or memory-intensive computation
is required.

4.3 Concurrency

Concurrency tests measure the impact of parallel execution of multiple actions on the starting
time of containers and modules. For this test, we only validate the waitTime, in contrast to the
preceding cold start test.

We reuse the concurrency.rs script from WoW[17]. A defined number of seconds is saved in
the global variable ’INCREASE AFTER’, the default is 5 seconds. For this time period, the
same amount of concurrent requests are sent. Initially, two concurrent requests are executed.
The script stops after the amount of requests exceeds the value defined in ’ABORT AFTER’,
which has a default value of 15. Directly before the test execution, a manual start of the cor-
responding action was done. This ensures that the first invocation in the actual test execution
is a warm-start. After each period of ’INCREASE AFTER’ an additional concurrent request
is sent. The resulting cold-start was later filtered out of the results.

Here three different cases of loads are interesting. To commence, the executed action is not
resource demanding, displaying the ability of the OpenWhisk system to handle concurrent re-
quests. For this scenario, we reuse the ’hello’ action. In the next step, we use a hash function
that takes as input a number of iterations as an integer and a string. The hash function is
repeatedly executed on the input string for the given number of iterations, and the output is
reused for the next iteration. The resulting computation is a good fit for our needs, as it has
a constant time complexity and solely focuses on the CPU, not requiring a huge amount of

14



memory. In [17] an example for rust is already provided, ’hash.rs’. We reuse this example for
the test execution with Wasm modules. The essential part of the rust code consists of:

let hash = {

let mut prev_output;

let mut hash = input.as_bytes();

for _ in 0..iterations {

prev_output = blake3::hash(hash);

hash = prev_output.as_bytes();

}

hash.to_vec()

};

To be able to create an OpenWhisk action from code written in Rust, an additional fork of the
original OpenWhisk repository is required. In order to validate the behaviour of the original
OpenWhisk implementation instead of the fork, we decided to implement a hash function in
Golang [8] that is used to create the test action for Docker containers. For a defined number
of iterations, the hash algorithm is continuously repeated. In Golang, the following code was
utilized:

hash := sha256.New()

hash.Write([]byte(input))

hashSum := hash.Sum(nil)

for i := 0; i < iterations; i++ {

hash.Write(hashSum)

hashSum = hash.Sum(nil)

}

The input parameters for the hash action are the following:

• var: ”iterations”, value: 100000. Defines the amount of iterations for the hashing to
repeat.

• var: ”input”, a random string as the first input for the hashing algorithm.

To verify how the system behaves when not all functions are CPU-intensive, a mixed workload
is created. Here fore we reuse ’prime.rs’ and ’net.rs’ ,which were also implemented in [17] for
the evaluation of Wasm modules. In ’prime.rs’ , the 20,000,001st prime number is calculated
using the ’primal’ crate:

let p = primal::Primes::all().nth(20000001 - 1).unwrap();

In the case of Docker, again, an action in Golang was implemented to calculate the 5000th
prime number. To be independent of non-default Go libraries, a simple function to check for
primes was implemented. Due to less performance with this function compared to the ’primal’
crate, a lower value was selected.

func isPrime(n int) bool {

if n <= 1 {

return false

}

15



if n <= 3 {

return true

}

if n%2 == 0 || n%3 == 0 {

return false

}

i := 5

for i*i <= n {

if n%i == 0 || n%(i+2) == 0 {

return false

}

i += 6

}

return true

}

Finally, to evaluate the behaviour under a mixed type of load, we execute the ’prime’ ac-
tion and simulate an IO-intensive workload at the same time. An example of an IO-intensive
workload is a blocking HTTP request, as implemented in ’net.rs’ [17]. This action and the
corresponding function in Golang implement a 300ms sleep. The straightforwardness of this
functionality does not require to be shown here. To realize concurrent requests with a mixed
load, the ’concurrency.rs’ [17] script needs to be adapted. We named the new script ’concur-
rency mixed.rs’ and define five different configurations:

• Configuration 1: 10% IO-intensive & 90% CPU-%intensive

• Configuration 2: 25% IO-intensive & 75% CPU-%intensive

• Configuration 3: 50% IO-intensive & 50% CPU-%intensive

• Configuration 4: 75% IO-intensive & 25% CPU-%intensive

• Configuration 5: 90% IO-intensive & 10% CPU-%intensive

To create these different configurations in Rust, the functionality of ’rand::distributions::WeightedIndex’
is used to randomly select the following action with defined probabilities:

let probabilities = [<Probability-first-action>, <Probability-second-action>];

let mut rng = thread_rng();

let distribution = WeightedIndex::new(&probabilities).unwrap();

let mut random_index = distribution.sample(&mut rng);

match random_index {

0 => {

futures.push(make_request(&first_path, &auth));

}

1 => {

futures.push(make_request(&second_path, &auth));

}

_ => {

panic!("Unexpected value for var: {}", random_index);

16



}

}

Where 〈first path 〉and 〈second path 〉are used to invoke either of the actions.

4.4 Capacity

To get the maximum capacity of parallel running functions inside OpenWhisk an action that
implements a sleep for 5 seconds is invoked with an increasing amount of concurrency. The
sleep ensures that no module or container is deallocated before the test finishes. The test waits
for all actions to finish before invoking again with a higher number of concurrency. As soon as
an action fails, the test aborts and the error message is returned. After conducting the same
test with Docker containers, we are able to compare the amount of functions that can be packed
with WebAssembly compared to Docker containers, resulting in the density.

4.5 Summary information for actions

To give additional information about the actions, the number of lines of code and the size of
the source used are listed. In the case of Wasm, ’Size’ refers to the precompiled ’ 〈action-
name 〉-wasmtime.zip’ file. For Docker, it represents the size of the compiled binary. The
following tables show that the actions are roughly equivalent in terms of complexity. Naturally,
a precompiled Wasm module is larger than a simple binary.

Lines of code Size Type

hello.rs 13 555KB behaviour showcasing
hash.rs 21 459KB CPU-bound
prime.rs 19 559KB CPU-bound
net.rs 15 426KB IO-bound (simulated)
sleep.rs 23 455KB behaviour showcasing

Table 1: Lines of code and size of source files for Wasm actions

Lines of code Size Type

hello.go 18 14KB behaviour showcasing
hash.go 33 21KB CPU-bound
prime.go 51 18KB CPU-bound
net.go 17 14KB IO-bound (simulated)
sleep.go 17 14KB behaviour showcasing

Table 2: Lines of code and size of source files for Docker actions

5 Conduction of benchmark

The tests were conducted on a middle-class laptop, thus only the relation between the measured
times is of importance. The lowest values do not represent the best latency obtainable, but solely
the required time for this specific machine. Read from ’/proc/cpuinfo’ and ’/proc/meminfo’
the hardware specifications are:

• CPU: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz,
4 cores, cache size: 8192 KB

17



• RAM: Mem totaL: 7928.68 mB

As operating system a Linux debian with kernel ’5.10.0-25-amd64’ is used.

To be able to recognize accumulations, the outliers are plotted with a slight value of trans-
parency. The mean value is represented by a red square, adding more information to the plot.

5.1 Cold-start tests

In the plots of this section, the y-Axis is labeld with ’Warm latency (ms)’, which refers to the
measured ’waitTime’ in ms.

The most significant distinction between Docker and Wasm can be seen in the case of the
required time for a cold start. The longest cold start for Docker measures almost 40 seconds,
with a total of 8 requests taking more than 30 seconds. For one concurrent request, the maximum
is 3.04 seconds, which increases almost linearly to 24 seconds with 15 concurrent requests. In
the cases of 5 and 12 concurrent requests, outliers are present.

3041
3799

5411

6912

14640

9500

10978

12728

14265

15680

17331

36999

21108
22256

24000

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Responses

C
ol

d 
st

ar
t t

im
e 

in
 m

s

Figure 5: Cold-start test for Docker container

18



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 2.8952049 83.35295 2879.000
2 0.9208138 34.64102 3762.000
3 4.7713439 239.56918 5021.000
4 5.5690380 351.83268 6317.656
5 18.9652182 1556.41856 8206.700
6 4.9790999 446.30059 8963.479
7 3.2410157 345.38521 10656.696
8 2.7055461 330.21444 12205.094
9 2.8851798 396.49342 13742.417
10 2.4497701 374.52391 15288.125
11 2.7763803 467.37523 16833.977
12 23.2138688 4653.80035 20047.50
13 2.4350599 491.33608 20177.577
14 2.3154548 502.51034 21702.446
15 1.6593547 390.23321 23517.167

Table 3: Statistics for the Cold-start test for Docker container

Growing from 45ms to a maximum of 367ms maximum latencies measured with Wasm modules
show a linear growth as well as the mean latencies, which displays identical behavior as Docker.
The outlier for one concurrent request with 229ms is the first module instantiated. It is ensured
that all values measured is from a cold start. Wasm outperforms Docker by a margin.

229

45

90
102

125

148

173

188

224

244

282

309 313

367
361

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Responses

C
ol

d 
st

ar
t t

im
e 

in
 m

s

Figure 6: Cold-start test for Wasm module

19



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 133.39197 63.761361 47.80000
2 21.74142 7.044221 32.40000
3 33.53445 15.861795 47.30000
4 39.52966 21.642491 54.75000
5 42.89924 26.683328 62.20000
6 43.98450 32.233308 73.28333
7 46.73451 38.248856 81.84286
8 47.95512 45.347559 94.56250
9 50.00198 51.896503 103.78889
10 50.33115 56.370886 112.00000
11 51.09428 65.632929 128.45455
12 52.61631 70.918012 134.78333
13 50.90389 73.485642 144.36154
14 52.39570 85.906497 163.95714
15 52.59331 88.360267 168.00667

Table 4: Statistics for the Cold-start test for Wasm module

20



5.2 Concurrency tests

5.2.1 Test execution without load

In the case of Docker, the highest value measured is 57ms, which occurs for three concurrent
requests. Until 8 concurrent requests, the mean values increase only slightly. Afterwards the
growth accelerates, but only in small steps. The outliers are scattered more heavily than for
Wasm. For 1 to 5 concurrent requests, the mean latency of Docker is lower than the means for
Wasm, but not the maximum latency.

13
14

51

57

14
15

18

31

28 28

23

43

24

38 38

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 7: Concurrency test without load for Docker container

21



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 93.28363 2.548562 2.732057
2 73.33433 1.832381 2.498667
3 143.08814 4.190983 2.928952
4 191.32341 5.452845 2.850067
5 74.79927 2.256015 3.016092
6 75.45313 2.436387 3.229008
7 83.18531 2.886381 3.469821
8 76.49774 2.987159 3.904899
9 72.11771 2.901549 4.023352
10 69.77787 2.874676 4.119753
11 66.53349 3.272456 4.918510
12 73.75841 3.894727 5.280384
13 59.53093 3.385172 5.686408
14 66.72659 3.987966 5.976577
15 66.21479 4.495280 6.788936

Table 5: Statistics for the Concurrency test without load for Docker container

In this test scenario, Wasm shows marginal growth from a mean of 2.80ms to 4.84ms. With the
exception of the maximum value 46ms all data points are closely spaced.

15

13 13
14

46

19

17
18

17 17
16

22
23

21
22

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 8: Concurrency test without load for Wasm module

22



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 92.28299 2.586586 2.802885
2 84.59156 2.559001 3.025126
3 82.91962 2.484764 2.996593
4 69.72616 2.082027 2.986005
5 82.97736 2.647694 3.190863
6 61.17928 1.983912 3.242784
7 60.31003 2.052996 3.404070
8 66.59699 2.495473 3.747126
9 64.87472 2.464868 3.799427
10 59.68282 2.294789 3.844974
11 53.29894 2.026897 3.802885
12 59.60124 2.581495 4.331278
13 60.89057 2.715076 4.458943
14 60.84321 2.740470 4.504151
15 62.68593 3.034308 4.840493

Table 6: Statistics for the Concurrency test without load for Wasm module

23



5.2.2 Test exectuion with hash load

For Docker without load, the maximum measured latency is 57ms by adding load, this value
increases to 91ms. The growth exhibits the same behaviour as without load, with an increased
advancement after 8 concurrent requests. The small size of the box plots for a lower amount of
concurrent requests, as well as the low values for the standard deviation, show a high density.

13 12

35

59

17
19

21
24

31

48

44
42

54

64

91

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 9: Concurrency test with hashing for Docker container
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 74.60631 1.909044 2.558824
2 72.55094 2.281087 3.144118
3 120.35861 3.952486 3.283925
4 177.21808 6.381626 3.601002
5 70.82116 2.369866 3.346269
6 77.03969 2.774665 3.601604
7 72.31940 3.125169 4.321343
8 82.66642 3.915222 4.736170
9 89.32469 5.113417 5.724528
10 93.26569 6.391071 6.852542
11 91.41650 7.744474 8.471637
12 84.32587 7.863878 9.325581
13 83.71822 9.224701 11.018750
14 90.36316 10.457244 11.572464
15 89.57771 12.624405 14.093243

Figure 10: Statistics for the Concurrency test with hashing for Docker container

24



With a standard deviation of 0.53 for one concurrent request and a maximum standard deviation
of 2.55, the latencies for Wasm modules have a high density. The mean values are consistently
lower than in the previous test scenario. The growth of mean latencies is extremely gradual, only
in the maximum measured latency a change is visible. A reason for this behaviour could be the
longer execution time for each Wasm module. As the test increases the amount of concurrent
requests by time and with hashing load, each action takes more time, so the total amount of
actions invoked in the same period of time is lower than with actions of less complexity. Thus,
the strain on the OpenWhisk system is lower, and the measured mean latency values are smaller.
The measured maximum latencies grow almost linearly.

6

8

18

27

18

28

26 26

42

39
40

44

41

44
43

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 11: Concurrency test with hashing for Wasm module
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 91.55433 0.5370488 0.5865903
2 94.38191 0.5570982 0.5902595
3 111.05644 0.6772899 0.6098610
4 129.64084 0.8643753 0.6667462
5 122.20171 0.8950962 0.7324743
6 143.46836 1.1273378 0.7857745
7 145.64355 1.2469356 0.8561558
8 157.82147 1.3177278 0.8349484
9 192.07150 1.7436208 0.9077978
10 189.01211 1.7472731 0.9244239
11 195.90516 1.8746471 0.9569156
12 218.31174 2.1842222 1.0005061
13 202.81986 2.0239534 0.9979069
14 229.04933 2.4757957 1.0809007
15 233.72508 2.5527074 1.0921838

Figure 12: Statistics for the Concurrency test with hashing for Wasm module
25



5.2.3 Test execution with mixed type of load

In the different scenarios for mixed load, first the portion of IO-load and then the portion of
CPU-load are given. For the first test, ’mixed load 10/90’ this implies 10% IO-load and 90%
CPU-load. Step by step, the IO-load is decreased and the CPU-load increased. For Docker,
increasing the IO-load while decreasing the CPU-load leads to lower mean and maximum la-
tencies, as well as a higher density consistently. In the case of Wasm, the mean values decrease
too, but slower.

With mixed types of loads and thus different types of containers, the maximum latency measured
is significantly higher. For Docker, the longest warm latency is 589ms, with multiple values over
400ms. The mean value does not rise above 5ms.

102

123

148

250

89

228

76

171 174

243

117

365

589

191

459

0

200

400

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 13: Concurrency test with mixed load 10/90 for Docker container

26



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 212.0841 4.836140 2.280294
2 245.4397 5.430822 2.212691
3 337.0182 8.010329 2.376824
4 421.3227 6.762235 1.605002
5 246.0607 3.698266 1.502989
6 404.4446 6.915386 1.709847
7 214.2260 3.368749 1.572521
8 342.8710 6.662441 1.943133
9 317.4047 7.107820 2.239356
10 337.4955 9.288928 2.752312
11 255.6141 6.265316 2.451084
12 434.5748 10.955845 2.521049
13 564.4459 17.009485 3.013484
14 311.2113 7.003935 2.250540
15 512.0065 25.420462 4.964871

Table 7: Statistics for the Concurrency test with mixed load 10/90 for Docker container

With a maximum latency of 83ms and a maximum mean 1.67ms Wasm displays the same
behavior as Docker regarding these two traits. However, the standard deviation shows that the
Wasm latencies are denser. The following figures show that, as IO-load increases and CPU-load
decreases, the maximum latencies as well as the mean latencies decrease for Wasm and for
Docker.

2
4

1

18

4

16

40

15

76

83

74

77

60

15

58

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 14: Concurrency test with mixed load 10/90 for Wasm module

27



No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 76.89942 0.6168854 0.8021978
2 92.10132 0.5750241 0.6243386
3 72.93823 0.4764173 0.6531792
4 148.49717 1.1235630 0.7566225
5 67.49192 0.5040123 0.7467742
6 99.66890 0.8721028 0.8750000
7 179.90813 1.6609074 0.9231975
8 79.08173 0.7268353 0.9190939
9 302.62264 3.5816730 1.1835443
10 389.31945 5.2376528 1.3453355
11 284.36538 3.1748614 1.1164725
12 396.57010 6.6073695 1.6661290
13 269.45577 2.9579001 1.0977312
14 102.08584 0.9511753 0.9317406
15 268.57557 2.8616370 1.0654867

Table 8: Statistics for the Concurrency test with mixed load 10/90 for Wasm module

28



44

81 79 74
87

102 103

79

141
127

222 219

274

234

543

0

200

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 15: Concurrency test with mixed load 25/75 for Docker container
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 140.1339 3.452660 2.463830
2 230.7502 4.281440 1.855444
3 302.7471 3.712798 1.226370
4 286.1608 3.223677 1.126527
5 273.7594 3.846351 1.405011
6 260.3761 3.608860 1.386018
7 253.5950 5.287277 2.084929
8 216.4388 4.746323 2.192917
9 250.8908 6.008293 2.394784
10 203.5183 4.155698 2.041929
11 377.8533 11.310440 2.993342
12 326.3104 8.375841 2.566833
13 411.4154 13.353520 3.245751
14 347.8126 10.305942 2.963073
15 581.1660 26.497916 4.559441

Figure 16: Statistics for the Concurrency test with mixed load 25/75 for Docker container

29



4 3

14

22

4

17

32

18

60

78

88

74

29

83

95

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 17: Concurrency test with mixed load 25/75 for Wasm module
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 82.16623 0.6909433 0.8409091
2 88.64437 0.5712110 0.6443850
3 133.59363 0.9511433 0.7119675
4 154.02402 1.2664766 0.8222591
5 61.25280 0.4791827 0.7823034
6 113.18491 1.0308719 0.9107856
7 148.43486 1.3926513 0.9382239
8 105.04751 1.0636060 1.0125000
9 259.47276 3.1181413 1.2017220
10 316.11297 3.6127197 1.1428571
11 328.14215 4.0806337 1.2435567
12 266.03089 2.8652198 1.0770252
13 166.40779 1.8508139 1.1122159
14 336.19894 4.5235756 1.3455056
15 344.89601 4.8415416 1.4037685

Figure 18: Statistics for the Concurrency test with mixed load 25/75 for Wasm module

30



55
46

112 114

82

67 68

83

115

93

146
159

174

139

372

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 19: Concurrency test with mixed load 50/50 for Docker container
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 180.3958 3.946523 2.187702
2 181.3313 2.907808 1.603589
3 339.1992 6.760024 1.992936
4 307.6704 5.650164 1.836434
5 287.2045 4.453346 1.550584
6 233.1869 3.544704 1.520113
7 221.4474 3.642453 1.644839
8 203.3330 3.318982 1.632289
9 265.9789 5.026335 1.889749
10 247.8396 5.195400 2.096275
11 269.1971 5.221776 1.939759
12 334.9931 9.476812 2.828958
13 352.5422 10.130444 2.873541
14 286.0254 7.087849 2.478049
15 472.2494 15.290640 3.237831

Figure 20: Statistics for the Concurrency test with mixed load 50/50 for Docker container

31



7 8

2

14 14

2

28

22

49

59

85

81

28

53

69

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 21: Concurrency test with mixed load 50/50 for Wasm module
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 72.93096 0.7709845 1.0571429
2 79.87409 0.6910455 0.8651685
3 71.85391 0.5038361 0.7011952
4 116.10657 0.8374608 0.7212864
5 104.57660 0.8089386 0.7735369
6 63.49168 0.4610451 0.7261504
7 156.70717 1.4027047 0.8951120
8 109.40149 0.9800115 0.8957935
9 207.34681 2.0806865 1.0034813
10 293.93375 3.3339932 1.1342669
11 268.57253 3.0639965 1.1408451
12 271.50582 3.0887104 1.1376221
13 148.63860 1.5785748 1.0620221
14 229.79070 2.7147656 1.1814079
15 291.99155 3.5090666 1.2017699

Figure 22: Statistics for the Concurrency test with mixed load 50/50 for Wasm module

32



9

48 47

68

84

47 48

167

58

101

107

136

155

78

88

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 23: Concurrency test with mixed load 75/25 for Docker container
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 83.76495 1.125592 1.343750
2 204.93580 3.019869 1.473568
3 244.76570 5.418759 2.213855
4 298.38657 6.125137 2.052752
5 256.57174 4.360146 1.699387
6 177.40891 2.494032 1.405810
7 181.01360 2.481250 1.370753
8 346.80601 6.315520 1.821053
9 221.26176 3.835593 1.733509
10 237.86756 3.755025 1.578620
11 260.07814 4.498938 1.729841
12 283.41704 6.141850 2.167071
13 375.90175 9.830764 2.615248
14 195.75533 3.544136 1.810493
15 245.69100 4.500590 1.831809

Figure 24: Statistics for the Concurrency test with mixed load 75/25 for Docker container

33



5

11

2

24

9
12 13

24

30

91

38

71

35

45

81

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 25: Concurrency test with mixed load 75/25 for Wasm module
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 57.34431 0.6160417 1.0742857
2 90.39264 0.9250709 1.0233918
3 64.88197 0.5271660 0.8125000
4 135.47802 1.1705956 0.8640483
5 87.43659 0.6730807 0.7697929
6 87.40576 0.6656492 0.7615622
7 85.66642 0.6264592 0.7312775
8 128.83087 0.9702078 0.7530864
9 166.85895 1.3107816 0.7855626
10 300.32478 2.5223355 0.8398693
11 171.04187 1.4701858 0.8595473
12 327.41570 3.1299210 0.9559471
13 187.22497 1.6243661 0.8676012
14 173.38020 1.5733451 0.9074537
15 289.44645 3.0064360 1.0386847

Figure 26: Statistics for the Concurrency test with mixed load 75/25 for Wasm module

34



31

41

63 62
64

53
51

45

62

55

33

104

85

103

119

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 27: Concurrency test with mixed load 90/10 for Docker container
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 182.8886 3.156303 1.725806
2 154.2888 2.303588 1.493036
3 255.7437 5.403617 2.112903
4 278.5925 6.285046 2.256000
5 241.3429 3.791747 1.571104
6 215.0893 3.347087 1.556139
7 188.4199 2.441474 1.295763
8 154.7753 2.140149 1.382745
9 215.5783 3.103200 1.439477
10 192.0730 2.666411 1.388228
11 146.8115 2.074284 1.412889
12 228.1417 3.665485 1.606670
13 238.0157 3.684941 1.548193
14 232.9671 4.660480 2.000488
15 300.7822 7.776575 2.585451

Figure 28: Statistics for the Concurrency test with mixed load 90/10 for Docker container

35



2

10

14

9

5

12
11

16

24

13

21

16

12

34

25

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Concurrent number of Activations

W
ar

m
 la

te
nc

y 
(m

s)

Figure 29: Concurrency test with mixed load 90/10 for Wasm module
No. concurrent responses Coefficient of Variation in % Standard Deviation Mean in ms

1 55.02741 0.5438003 0.9882353
2 87.47505 0.9722377 1.1114458
3 86.66844 0.8474247 0.9777778
4 77.11526 0.6545277 0.8487654
5 60.90973 0.5290699 0.8686131
6 83.59541 0.6987459 0.8358663
7 80.43115 0.6629094 0.8241950
8 128.53614 1.0942151 0.8512898
9 117.95994 0.9065293 0.7685061
10 118.27473 0.9336351 0.7893784
11 143.55072 1.1129923 0.7753304
12 107.55283 0.7807660 0.7259372
13 104.89804 0.7716864 0.7356538
14 143.85471 1.0944240 0.7607843
15 126.30338 0.9103551 0.7207686

Figure 30: Statistics for the Concurrency test with mixed load 90/10 for Wasm module

5.3 Comparison of performance

The prior sections give detailed information for each combination of test and platform. This
makes cross-comparisons between both types of runtimes challenging. For this reason, this sec-
tion aims to ease cross-comparison by summarizing the obtained information and introducing

36



the slowdown ratio, defined as how many times the latency with Docker is higher than for
Wasm. For each test scenario for all concurrent requests, the mean of means as well as the
mean coefficient of variation values are computed.

Again, it is visible that the difference in latencies between Docker and Wasm is largest in
the case of cold starts. Giving a relation between standard deviation and mean, the coefficient
of variation (CoV) here is significantly higher for Wasm, as Wasm has lower mean values.

Mean CoV in %

Docker 16158.29 36.58
Wasm 119.41 62.45

Slowdown ratio 135.31

Table 9: Comparison cold-start tests

For concurrency without load Docker has a higher mean and CoV.
Mean in ms CoV in %

Docker 4.57 85.25
Wasm 3.98 64.90

Slowdown ratio 1.14

Table 10: Comparison concurrency no load

After adding load, the mean values for Docker rise, while the same values for Wasm decline.
As most mean values for Wasm are below 0, a mean Cov of 194.25 is no surprise.

Mean in ms CoV in %

Docker 7.39 112.40
Wasm 0.87 194.25

Slowdown ratio 8.49

Table 11: Comparison concurrency with hashing

For the concurrency tests with mixed loads, the slowdown ratio is decreasing slightly as IO-load
increases and CPU-load decreases. For both Docker and Wasm, the mean values fall, but more
gradually for Wasm, as here the mean of means is not significantly more than 1ms. In either
scenario, the mean CoV falls as well.

Mean in ms CoV in %

Docker 2.33 442.78
Wasm 1.01 291.30

Slowdown ratio 2.30

Table 12: Comparison concurrency with mixed load 10/90

37



Mean in ms CoV in %

Docker 2.38 426.97
Wasm 1.05 263.89

Slowdown ratio 2.27

Table 13: Comparison concurrency with mixed load 25/75

Mean in ms CoV in %

Docker 2.19 348.28
Wasm 1.00 228.38

Slowdown ratio 2.38

Table 14: Comparison concurrency with mixed load 50/50

Mean in ms CoV in %

Docker 1.86 287.25
Wasm 0.87 219.32

Slowdown ratio 2.13

Table 15: Comparison concurrency with mixed load 75/25

Mean in ms CoV in %

Docker 1.70 248.83
Wasm 0.79 117.30

Slowdown ratio 2.15

Table 16: Comparison concurrency with mixed load 90/10

The evaluation of the obtained results shows that Wasm has a lower latency for all cases,
except in the case of test execution without load for a lower number of concurrent requests.
With a simple action, the most invocations were executed. Furthermore, Wasm records a
lower CoV for all warm latencies. That shows, Docker outperforms Wasm only if a multitude
of warm actions are invoked with a low amount of parallelity. In all other scenarios, Wasm
proves to be the superior solution. The heavy outliers while invoking the functions could be
reduced by using an rt-patch for the kernel and configuring the operating system. As none of
those steps were taken its not possible to conclude whether the outliers originate from
OpenWhisk or if a high priority task from the operating system interrupted the execution.

5.4 Capacity tests

The capacity tests reveal the maximum amount of concurrent running instances for both Docker
containers and Wasm modules. With this information, we can calculate the density, which is
roughly 10 times higher for Wasm. The use of Docker causes about four times more load on
memory and the CPU.

38



Docker Wasm vs. Docker

max. CPU usage 773.37 182 4.25x
RSS memory 4947.56 1030.58 4.8x
Capacity 81 878 10.84x

.

Table 17: Capacity test results

In both cases, the error causing the abortion was:

Curl("Failure when receiving data from the peer")

Multiple test executions for Wasm all returned similar results, the capacity was never higher
than 900 modules. Which raises the question of why the error occurs when neither the CPU
nor memory are near the maximum of their respective capacities. An in-depth analysis of the
OpenWhisk system and all components regarding this error would exceed the limits of this
thesis, however it provides an opportunity to continue the research. Wasm shows a linear
growth in both CPU usage and memory required, and for Docker, a drop is recorded during the
test execution. This test was executed twice, with similar results.

153.71

773.37

497.29

766.93

11.24

732.97

0

200

400

600

800

0 10 20 30 40 50

Observations

C
P

U
%

4734.05

2405.44

3655.8

336.038

2150.61

523.461

869.929

2797.46

608.612

4947.56

1000

2000

3000

4000

5000

0 10 20 30 40 50
Observations

M
em

or
y 

(M
iB

)

Figure 31: Evolution of CPU (left) and memory (right) usage during the capacity test for Docker

39



182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182182

0

50

100

150

0 50 100 150
Observations

P
er

ce
nt

ag
e 

of
 C

P
U

 U
sa

ge

1030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.581030.58

0

250

500

750

1000

0 50 100 150
Observations

M
em

or
y 

(M
iB

)
Figure 32: Evolution of CPU (left) and memory (right) usage during the capacity test for Wasm

6 Identifying Potential Enhancements

After evaluating the results, it shows that Wasm has rather low warm-up latencies. However,
the question arises if it’s possible to improve on the existing code to decrease the latencies
even further. For this, several durations in the Executor and in the runtime environment are
measured.

We remember the size of each action:

Action Size

hello.rs 555KB
hash.rs 459KB
prime.rs 559KB
net.rs 426KB
sleep.rs 455KB

6.1 Enhance cold-starts

In the initialization function of the Executor the Wasm runtime is initialized by decoding the
received code from the request. Here two durations are of interest, first the time to initialize
the Wasm runtime and the overhead related to preparing the code.

OpenWhisk/openwhisk/wow/ow-executor/src/core.rs : init()

let activation_init: ActivationInit = activation_init?;

println!("/init {}", activation_init.value.name);

let container_id = req.param("container_id").unwrap().to_owned();

println!("Initializing container with id {}", container_id);

// Get the WasmRuntime instance from the request state

40



let runtime = req.state();

// Decode the code

let module_bytes = util::b64_decode(activation_init.value.code)?;

// Unzip the module bytes

let module = util::unzip(module_bytes)?;

OpenWhisk/openwhisk/wow/ow-executor/src/core.rs : init()

runtime.initialize(container_id, activation_init.value.annotations, module)?;

In Table: 18 the measured times for both sequences are displayed in µs.

Task Type Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean
hash Overhead 526 368 557 591 326 374 503 486 403 401 453.5

Init 910 886 1580 1606 886 861 840 841 830 849 1008.9
hello Overhead 444 448 446 676 425 589 492 394 560 520 499.4

Init 1100 1073 1084 1918 1084 1077 1107 1078 1118 1130 1176.9
net Overhead 353 325 383 553 371 318 364 329 335 417 374.8

Init 798 802 782 1198 822 844 846 818 1190 1104 920.4
prime Overhead 680 709 449 619 869 448 444 418 419 431 548.6

Init 1281 2044 1011 1099 1890 1056 1044 1069 1042 1080 1261.6
sleep Overhead 429 340 401 328 415 426 369 350 395 442 389.5

Init 933 875 923 865 880 920 884 868 898 884 893.0

Table 18: Duration comparison cold-starts in µs

It can be easily seen that the size of the source code is directly related to the required time
for both types. With 559KB and 555KB are ’prime.rs’ and ’hello.rs’ the actions with the largest
source file. For those two actions, the highest mean values were measured. Moreover, it can be
noted that the time to initialize the runtime is significantly higher than the overall overhead to
prepare the module in all cases. In addition Fig.: 33 eases the comparison of proportions by
displaying the mean values in a stacked bar plot.

41



Figure 33: Mean cold-start duration comparison in µ

6.2 Enhance warm-starts

To enhance latencies occurring with warm starts, several durations in the run functions are
measured. Improving those times would benefit every warm-start and, naturally, every cold-
start. We measure the time for cloning the runtime:

OpenWhisk/openwhisk/wow/ow-executor/src/core.rs : run()

//Cloning runtime

let runtime = req.state().clone();

Furthermore, the duration needed for providing and linking the WASI and instantiating the
module was determined:

OpenWhisk/openwhisk/wow/ow-wasmtime/src/wasmtime.rs : run()

//Providing WASI

let ctx = build_wasi_context(&wasm_action.capabilities, json_bytes.len())?;

let wasi = Wasi::new(&store, ctx);

wasi.add_to_linker(&mut linker)?;

//Instantiating the module

let module = &wasm_action.module;

let instance = linker.instantiate(module)?;

42



let main = linker.instance("", &instance)?.get_default("")?;

pass_string_arg(&instance, json_bytes)?;

The following table displays the duration required for providing WASI as ’Type I’ and the
duration required for instating the module as ’Type II’. For Cloning the runtime in all cases 0µ
were recorded, thus its not included in the table.

Action Type Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean
hash I 109 107 108 111 112 260 114 109 118 114 126.2

II 128 123 127 145 225 164 126 133 133 107 141.1
hello I 175 187 105 436 177 121 244 107 149 119 172

II 239 241 150 244 243 144 245 156 151 165 177.8
net I 113 275 174 214 127 116 115 121 111 125 149.1

II 113 173 179 179 141 118 143 159 118 171 149.4
prime I 112 128 148 110 153 154 124 126 108 183 134.6

II 130 157 147 167 154 174 167 154 171 211 163.2
sleep I 106 115 152 150 196 126 119 175 199 124 146.2

II 129 144 185 177 202 199 177 189 202 151 175.5

Table 19: Duration comparison warm-starts in µ

With all five actions, used for the benchmark, the time required for cloning the runtime
is 0µs. For adding WASI times between 106µs and 436µs where measured. Hereby 436µs
represents a heavy outlier. For instantiating the module the minimum required time is 107µs
and the maximum 245µs. In most cases the required amount of time for instantiating the module
is 10-15µs longer. In the worst case not more than 380µs are required for creating the module,
which is concordant to presented average of 340µs in WoW[17]. A graphical representation of
the mean values is given by the following figure Fig.: 34.

Figure 34: Mean warm-start duration comparison in µ

43



7 Conclusion

The primary objective of this work was to evaluate the substitution of Docker by Wasm in the
OpenWhisk system. For this evaluation, we focused on aspects of cold-start and warm-start
latencies for a growing amount of concurrent requests in different environments. Additionally,
the maximum capacity of concurrent running containers and modules was of interest. To answer
whether the substitution improves the performance, various tests were conducted to measure
the latencies in several environments as well as gain knowledge about the highest count of con-
currency before system failure.

Only in one specific scenario did Docker show a slightly higher mean latency than Wasm,
while simultaneously showing higher maximum latencies. The lower measured CoV for Wasm
in all but one scenario demonstrates that Wasm is better suited for tasks that require more con-
sistent latencies. Thus, current containerization solution can be improved by replacing Docker
containers with Wasm modules.

Additionally, the sending of the module, starting from the Controller, until the invocation
of the action effects the performance as larger binaries require more time to be sent and to be
decompressed. From this, further opportunities for enhancements arise. However, implement-
ing an improved solution including a new set of benchmarks would be beyond the scope of this
work and thus gives further opportunities to continue this research.

In the future, these research results could be expanded by evaluating the performance of differ-
ent Wasm runtimes. In addition, the combination of OpenWhisk with lithops[11] may have the
capability to create promising opportunities, giving a prospective way of exploration.

References

[1] Apache couchdb. https://couchdb.apache.org/, 2023. Accessed: 2023-05-06.

[2] Apache kafka. https://kafka.apache.org/, 2023. Accessed: 2023-05-06.

[3] Apache openwhisk. https://openwhisk.apache.org/, 2023. Accessed: 2023-05-06.

[4] Bytecode alliance: Webassembly system interface. https://wasi.dev/, 2023. Accessed:
2023-27-06.

[5] Docker. https://www.docker.com/, 2023. Accessed: 2023-05-06.

[6] Docker stats command. https://docs.docker.com/engine/reference/commandline/stats/,
2023. Accessed: 2023-21-08.

[7] Github: Wasi. https://github.com/WebAssembly/WASI, 2023. Accessed: 2023-23-08.

[8] The go programming language. https://go.dev/, 2023. Accessed: 2023-16-08.

[9] Kubernetes. https://kubernetes.io/, 2023. Accessed: 2023-06-06.

[10] Linux control groups: cgroups. https://man7.org/linux/man-pages/man7/cgroups.7.html,
2023. Accessed: 2023-29-08.

44

https://couchdb.apache.org/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://wasi.dev/
https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/stats/
https://github.com/WebAssembly/WASI
https://go.dev/
https://kubernetes.io/
https://man7.org/linux/man-pages/man7/cgroups.7.html


[11] Lithops. https://lithops-cloud.github.io/, 2023. Accessed: 2023-23-08.

[12] Nginx, inc. nginx. https://www.nginx.com/, 2023. Accessed: 2023-05-06.

[13] Standard unix command: ps. https://man7.org/linux/man-pages/man1/ps.1.html, 2023.
Accessed: 2023-02-08.

[14] Text processing utility: awk. https://man7.org/linux/man-pages/man1/awk.1p.html,
2023. Accessed: 2023-02-08.

[15] Webassembly. https://webassembly.org/, 2023. Accessed: 2023-27-06.

[16] Webassembly memory layout. https://bytecodealliance.github.io/wamr.dev/blog/
understand-the-wamr-heaps/, 2023. Accessed: 2023-27-06.

[17] P. Gackstatter, P. A. Frangoudis, and S. Dustdar. Pushing serverless to the edge with
webassembly runtimes. In 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), pages 140–149, 2022.

[18] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer. Challenges and
opportunities for efficient serverless computing at the edge. In 2019 IEEE 38TH INTER-
NATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS 2019),
Symposium on Reliable Distributed Systems Proceedings, pages 261–266. Red Hat; Inst
Natl Sci Appliquees Lyon; Univ Lumiere Lyon 2; ENS Lyon; IEEE; IEEE Comp Soc; In-
ria; Liris; Inst Genre, Groupement Interet Sci; Citi Lab; CNRS; LIa; Univ Lyon; IDEX
Lyon; Univ Lyon, Labex Milyon, 2019. IEEE 38th International Symposium on Reliable
Distributed Systems (SRDS), Lyon, FRANCE, OCT 01-04, 2019.

[19] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the web up to speed with webassembly. SIGPLAN
Not., 52(6):185–200, jun 2017.

[20] A. Hall and U. Ramachandran. An execution model for serverless functions at the edge.
In G. Ramachandran and J. Ortiz, editors, PROCEEDINGS OF THE 2019 INTERNA-
TIONAL CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTA-
TION (IOTDI ‘19), pages 225–236. Assoc Comp Machinery; IEEE; ARM; IBM; IEEE
Comp Soc; ACM SIGBED, 2019. ACM/IEEE International Conference on Internet of
Things Design and Implementation (IoTDI), Montreal, CANADA, APR 15-18, 2019.

[21] D. Lehmann, J. Kinder, and M. Pradel. Everything old is new again: Binary security
of WebAssembly. In 29th USENIX Security Symposium (USENIX Security 20), pages
217–234. USENIX Association, Aug. 2020.

[22] J. Manner, M. Endress, T. Heckel, and G. Wirtz. Cold start influencing factors in func-
tion as a service. In A. Sill and J. Spillner, editors, 2018 IEEE/ACM INTERNATIONAL
CONFERENCE ON UTILITY AND CLOUD COMPUTING COMPANION (UCC COM-
PANION), International Conference on Utility and Cloud Computing, pages 181–188.
IEEE; ACM; IEEE Comp Soc, 2018. 11th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC-Companion) / 5th IEEE/ACM International Conference on
Big Data Computing, Applications and Technologies (BDCAT), Zurich, SWITZERLAND,
DEC 17-20, 2018.

45

https://lithops-cloud.github.io/
https://www.nginx.com/
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/awk.1p.html
https://webassembly.org/
https://bytecodealliance.github.io/wamr.dev/blog/understand-the-wamr-heaps/
https://bytecodealliance.github.io/wamr.dev/blog/understand-the-wamr-heaps/


[23] S. Shillaker and P. Pietzuch. Faasm: Lightweight isolation for efficient stateful serverless
computing. In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
419–433. USENIX Association, July 2020.

[24] S. Zhao, P. Xu, G. Chen, M. Zhang, Y. Zhang, and Z. Lin. Reusable enclaves for confidential
serverless computing. In 32nd USENIX Security Symposium (USENIX Security 23), pages
4015–4032, Anaheim, CA, Aug. 2023. USENIX Association.

46


	Introduction
	Motivation
	Objectives

	Related Work
	Background
	OpenWhisk
	Webassembly
	WebAssembly-flavored OpenWhisk (WoW)

	Methodology
	Measuring of resources
	Cold start
	Concurrency
	Capacity
	Summary information for actions

	Conduction of benchmark
	Cold-start tests
	Concurrency tests
	Test execution without load
	Test exectuion with hash load
	Test execution with mixed type of load

	Comparison of performance
	Capacity tests

	Identifying Potential Enhancements
	Enhance cold-starts
	Enhance warm-starts

	Conclusion

