
 

 
Frederic Christopher Schwill 

 

 

 

 

Towards decentralized and privacy-preserving data 

marketplaces to unlock data for AI: 

An examination of Ocean Protocol 

 
 

 

 
Final Master’s Project 

 

 

Directed by Dr. Josep Domingo Ferrer 

 

Master’s Degree in Computer Security Engineering and Artificial Intelligence 

 
 

 

 

 

 

 
 

 

Tarragona 

 

2021 
 
  



- 2 - 

 

Content 
1. Introduction ................................................................................................................................................... - 4 - 

1.1 Motivation ................................................................................................................................................ - 4 - 

1.2 Goal of the thesis ...................................................................................................................................... - 4 - 

2. Status quo ...................................................................................................................................................... - 5 - 

2.1 Data privacy regulation ............................................................................................................................. - 5 - 

2.2 State of the art ........................................................................................................................................... - 7 - 

2.3 Limitations ................................................................................................................................................ - 8 - 

2.4 Proposal .................................................................................................................................................... - 8 - 

3. Preliminaries.................................................................................................................................................. - 9 - 

3.1 Distributed ledger technology ................................................................................................................... - 9 - 

3.2 Smart contracts ....................................................................................................................................... - 10 - 

3.3 Tokens .................................................................................................................................................... - 10 - 

3.4 Standards: ERC20, ERC-721 and ERC-998 ........................................................................................... - 11 - 

3.5 Transactions, keys and addresses ............................................................................................................ - 11 - 

3.6 Wallets .................................................................................................................................................... - 11 - 

3.7 Exchanges ............................................................................................................................................... - 11 - 

4. Introducing Ocean Protocol ....................................................................................................................... - 12 - 

4.1 Data tokens ............................................................................................................................................. - 12 - 

4.2 Data ownership and access ..................................................................................................................... - 12 - 

4.3 Data transfer ........................................................................................................................................... - 12 - 

4.4 Data wallets ............................................................................................................................................ - 13 - 

4.5 Data exchanges ....................................................................................................................................... - 13 - 

4.6 Data marketplaces ................................................................................................................................... - 13 - 

4.7 Data privacy ............................................................................................................................................ - 14 - 

4.8 License .................................................................................................................................................... - 14 - 

5. Deep Dive ..................................................................................................................................................... - 15 - 

5.1 Architecture ............................................................................................................................................ - 15 - 

5.2 Smart contracts ....................................................................................................................................... - 16 - 

5.2.1 Ocean Token Contract ..................................................................................................................... - 16 - 

5.2.2 Metadata Contract ........................................................................................................................... - 17 - 

5.2.3 Data Token Factory Contract .......................................................................................................... - 18 - 

5.2.4 Data Token Contract........................................................................................................................ - 19 - 

5.2.4 Fixed Rate Exchange Contract ........................................................................................................ - 20 - 

5.2.5 Liquidity Pool Factory Contract ...................................................................................................... - 21 - 

5.3 Metadata ................................................................................................................................................. - 22 - 

5.4 Pricing ..................................................................................................................................................... - 25 - 

5.5 Access Control ........................................................................................................................................ - 26 - 

5.6 Compute-to-data ..................................................................................................................................... - 27 - 

 



- 3 - 

 

5.7 Protocol flow .......................................................................................................................................... - 30 - 

5.7.1 Publish a dataset .............................................................................................................................. - 30 - 

5.7.2 Consume a dataset ........................................................................................................................... - 33 - 

6. Deployment of a privacy-preserving data marketplace prototype ......................................................... - 35 - 

6.1 Prototype architecture ............................................................................................................................. - 35 - 

6.1.1 Infrastructure ................................................................................................................................... - 36 - 

6.1.2 Data provider ................................................................................................................................... - 36 - 

6.1.3 Data consumer ................................................................................................................................. - 36 - 

6.2 Prototype deployment ............................................................................................................................. - 37 - 

6.2.1 VM1 - Infrastructure........................................................................................................................ - 37 - 

6.2.2 VM2 – Data provider....................................................................................................................... - 39 - 

6.2.3 VM3 – Data consumer..................................................................................................................... - 39 - 

6.3 Prototype demo ....................................................................................................................................... - 40 - 

7. Evaluation .................................................................................................................................................... - 41 - 

7.1 Risks ....................................................................................................................................................... - 43 - 

7.1.1 Malicious algorithms ....................................................................................................................... - 44 - 

7.1.2 Data asset integrity .......................................................................................................................... - 45 - 

7.1.3 Data token leaks, theft and misuse .................................................................................................. - 46 - 

7.1.4 Model leaks, overfitting, unintended memorization ........................................................................ - 47 - 

7.1.5 Model poisoning .............................................................................................................................. - 48 - 

7.1.6 Profiling ........................................................................................................................................... - 49 - 

7.1.7 URL disclosure ................................................................................................................................ - 50 - 

7.1.8 Smart contract upgradeability .......................................................................................................... - 51 - 

7.2 Usability, scalability and costs ................................................................................................................ - 52 - 

7.3 Limitations .............................................................................................................................................. - 53 - 

8. Conclusion ................................................................................................................................................... - 54 - 

9. Future research ........................................................................................................................................... - 56 - 

10. Bibliography .............................................................................................................................................. - 57 - 

11. List of Figures ............................................................................................................................................ - 61 - 

12. Appendix .................................................................................................................................................... - 62 - 

12.1 Prerequisites .......................................................................................................................................... - 62 - 

12.2 Ocean provider...................................................................................................................................... - 62 - 

12.3 Aquarius metadata storage .................................................................................................................... - 63 - 

12.4 Ocean.js ................................................................................................................................................ - 63 - 

12.5 React ..................................................................................................................................................... - 64 - 

12.6 Compute cluster .................................................................................................................................... - 64 - 

12.7 Ocean market ........................................................................................................................................ - 66 - 

12.8 Ocean contracts ..................................................................................................................................... - 66 - 

12.8 Barge ..................................................................................................................................................... - 67 - 

 



- 4 - 

 

1. Introduction 
 

1.1 Motivation 
While large amounts of valuable data are generated each year, data exchange and analysis are often 

hindered by restrictions or concerns over security, privacy and trust. Many organizations own data but 

have no secure and trusted way to share it. Thus, data remains locked. On the other hand, AI researchers, 

developers and startups regularly aim for large quantities of data, as many developments in AI are 

dependent on data availability. This especially applies to the training of machine learning models.  

A novel possible solution towards privacy-preserving data sharing is Ocean Protocol, an open and 

decentralized network that aims to connect data providers and consumers securely. Ocean Protocol 

claims to enable data exchange while preserving privacy and ensuring data ownership, transparency and 

trust. Ocean Protocol is open-source and permissionless, which appear to be suitable conditions to 

develop data marketplaces with equivalent properties on top. As of December 2020, Ocean Protocol is 

still under development with most components being in beta status. A production-ready release is 

expected to be available in spring 2021. [1] 

1.2 Goal of the thesis 
This thesis has the goal to examine Ocean Protocol, an open-source toolset for privacy-preserving data 

exchange, especially concerning its security and privacy properties and resulting risks. First, we describe 

the state-of-the-art data marketplaces, their limitations and how Ocean Protocol aims to overcome them. 

We explain its principles and the underlying technology and show, how Ocean Protocol enables privacy-

preserving data exchange. The contribution includes the local deployment of a permissionless data 

marketplace prototype on Ocean Protocol1, which showcases a solution enabling global privacy-

preserving data sharing across organizations to be used to train machine learning models. Moreover, the 

thesis assesses, if and under which circumstances Ocean Protocol can be used in practice to build open 

and privacy-preserving data marketplaces on top. The analysis primarily evaluates the resulting risks 

from a business perspective, with respect to corporate risk management and including relevant privacy 

regulation. Finally, it elaborates on how to mitigate the risks to an acceptable level and advises on how 

to securely share and exchange data on data marketplaces built on Ocean Protocol. 

 

 

 

  

 
1 Ocean Protocol is developed by BigchainDB GmbH [2] under the oversight of Ocean Protocol Foundation (OPF) 

[3]. All tools are open-source and available under Apache 2.0 license on Github [4].  The license allows to freely 

use, modify and distribute the software as long as modifications and distributions contain a copy of the license, a 

list of modifications and a reference to the copyright owner. Ocean Protocol software used in this work was cloned 

or forked and modified from Ocean Protocols Github repository [4]. 

 



- 5 - 

 

2. Status quo 
 

2.1 Data privacy regulation 
Any data sharing solution, such as data marketplaces on Ocean Protocol, need to comply with privacy 

regulations as soon as personal data is involved. The relevant EU law is the ‘General Data Protection 

Regulation’ (GDPR), aiming to give individuals control over their personal data. The GDPR applies to 

any enterprise processing personal data of individuals inside the European Economic Area (EEA).  

Personal data “means any information relating to an identified or identifiable natural person (‘data 

subject’); an identifiable natural person is one who can be identified, directly or indirectly, in particular 

by reference to an identifier such as a name, an identification number, location data, an online identifier 

or to one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or 

social identity of that natural person.” [GDPR, Article 4.1] The regulation “applies to the processing of 

personal data wholly or partly by automated means and to the processing other than by automated means 

of personal data which form part of a filing system or are intended to form part of a filing system.” 

[GDPR, Article 2.1] 

Following that, a privacy-preserving data marketplace that involves personally identifiable information 

(PII) needs to guarantee GDPR-compliance if it aims to be adopted and used by EU enterprises. Essential 

compliance requirements are 

- to collect data “for specified, explicit and legitimate purposes and not further processed in a 

manner that is incompatible with those purposes; further processing for archiving purposes in 

the public interest, scientific or historical research purposes or statistical purposes shall, in 

accordance with Article 89(1), not be considered to be incompatible with the initial purposes 

(‘purpose limitation’)” [GDPR, Article 5.1b] 

 

- to process personal data “in a manner that ensures appropriate security of the personal data, 

including protection against unauthorized or unlawful processing and against accidental loss, 

destruction or damage, using appropriate technical or organizational measures (‘integrity and 

confidentiality’)”. [GDPR, Article 5.1f] 

 

- to implement “appropriate technical and organizational measures, such as pseudonymization, 

which are designed to implement data-protection principles, such as data minimization, in an 

effective manner and to integrate the necessary safeguards into the processing in order to meet 

the requirements of this Regulation and protect the rights of data subjects.” 

[GDPR, Article 25.1] 

 

- to implement “appropriate technical and organizational measures to ensure a level of security 

appropriate to the risk, including inter alia as appropriate:  

a)  the pseudonymization and encryption of personal data;  

b)  the ability to ensure the ongoing confidentiality, integrity, availability and 

resilience of processing systems and services; […] 

In assessing the appropriate level of security account shall be taken in particular of the risks that 

are presented by processing, in particular from accidental or unlawful destruction, loss, 

alteration, unauthorized disclosure of, or access to personal data transmitted, stored or otherwise 

processed.” [GDPR, Article 32] 

 

  



- 6 - 

 

The data owner, which is referred to as ‘data controller’ in the GDPR, is responsible to “implement 

appropriate technical and organizational measures to ensure and to be able to demonstrate that 

processing is performed in accordance with this Regulation.” [GDPR, Article 24.1] Infringements are 

“subject to administrative fines up to 20,000,000 EUR, or in the case of an undertaking, up to 4 % of 

the total worldwide annual turnover of the preceding financial year, whichever is higher” [GDPR, 

Article 83.5]. Moreover, “any person who has suffered material or non-material damage as a result of 

an infringement of this Regulation shall have the right to receive compensation from the controller or 

processor for the damage suffered.” [GDPR, Article 82.1] 

To conclude, a privacy-preserving data marketplace to be used by EU enterprises needs to protect data 

subjects' rights by fulfilling the principles of security and privacy by design and by default. It needs to 

implement suitable technical and organizational measures appropriate to the risk to ensure the ongoing 

data confidentiality, integrity and availability.  

Responsibility is with the data controller, who needs to be able to demonstrate that all data processing 

is performed in accordance with GDPR. Depending on the severity, violations can be fined with up to 

20,000,000 EUR or up to 4 % of the total worldwide annual turnover, whichever is higher. Any person 

who has suffered damage due to such a violation has the right to receive compensation. 

Given the strict EU regulations and the resulting financial risks regarding PII data breaches, a privacy-

preserving data marketplace needs to follow the ‘security by design’ principle and thoroughly address 

all GDPR requirements. 

  



- 7 - 

 

2.2 State of the art 
Over the past years, a lot of data marketplaces and exchanges appeared that allow for global data sharing 

and trade. However, as GDPR prohibits corporations from sharing data containing personally 

identifiable information (PII), affected data assets cannot be shared, unless they were anonymized2 or 

pseudonymized3 beforehand. However, proper anonymization of large data assets is a complex and 

costly task. Another challenge with many traditional data marketplaces is that data owners lose control 

once a data asset is sold and transferred to the buyer. In many cases, the buyer can potentially distribute 

or resell the data. Because of that, many organizations refrain from sharing their data, and the data 

remains locked. 

These circumstances led to the development of privacy-preserving data marketplaces, that represent the 

state of the art today. Examples are “Data Republic” [6], “OPAL” [7] and “X-Road” [8]. They all have 

in common that an algorithm is moved to the data. The data never leaves its repository to comply with 

GDPR and only aggregated, and thus anonymized, answers are returned to the buyer. Algorithms are 

open so that their trustfulness can be inspected. Corporations can sell compute access on their data assets, 

while they do not sell the data itself. The method has the advantage to allow for data monetization while 

ensuring GDPR compliance and data ownership. The following figure shows the architecture of the 

“Data Republic” marketplace.  

When applied to machine learning, the approach of selling remote computation on private data assets is 

similar to federated learning. With federated machine learning, a central server holds a global machine 

learning model. A copy of the model is sent from the server to the place where the data is stored and 

trained locally. Afterwards, the local model is sent back and aggregated on the central server, refining 

the global model, without exposing any of the private data it was trained on. Federated learning 

eliminates the need to move the data to a central repository for the purpose of training. Applied to 

privacy-preserving data marketplaces, as the computation is brought to the data, buyers can train a 

prediction model across many data silos, while the data is kept in its respective repository. Provided the 

algorithm is trusted and does not leak any PII, models can be trained on PII while assuring GDPR 

compliance. State-of-the-art and most prominent federated learning projects are TensorFlow Federated 

[9] and OpenMined [10]. However, both are missing marketplace functionality.  

 
2 Anonymization is a “process by which personal data is irreversibly altered in such a way that a data subject can 

no longer be identified directly or indirectly, either by the data controller alone or in collaboration with any other 

party” [5]. 
3 Pseudonymization is a process that replaces fields containing PII with artificial identifiers or pseudonyms. The 

difference to anonymization is, that pseudonymized data can be restored to its original state, while anonymized 

data can never be restored. 

 

Figure 1: Data Republic Architecture 



- 8 - 

 

2.3 Limitations 
The privacy-preserving data marketplaces that represent the state of the art today, like “Data Republic”, 

“OPAL” and “X-Road” allow for GDPR compliant data sharing. An algorithm is moved to the data, and 

the data never leases its repository. Only aggregated, and thus anonymized, answers are returned to the 

buyer. The technology of said marketplaces is an improvement compared to the traditional marketplace 

approach that relies on downloads and thus lacks GDPR compliance. However, they introduce new 

drawbacks and associated risks to corporations: 

- Data owners lose control over their data. 

- The data needs to be deposited in custodial repositories managed by a third party. The repository 

(called “Data Sandbox” within Data Republic, “Database” within OPAL, “Security Server” 

within X-Road) is in control of the marketplace operator. 

- Marketplaces are managed by a centralized entity, a valuable target for attackers. 

- Marketplace/repository operators have full control over customers, data providers and data. 

- Data needs to be pseudonymized before depositing into the repository, which is costly. 

- The deposit of non-anonymized/pseudonymized data into the repository is questionable, as it 

contradicts the GDPR principle of purpose limitation. It states that “data shall be collected for 

specified, explicit and legitimate purposes and not further processed in a manner that is 

incompatible with those purposes; further processing for archiving purposes in the public 

interest, scientific or historical research purposes or statistical purposes shall, in accordance with 

Article 89(1), not be considered to be incompatible with the initial purposes.” [GDPR, Article 

5.1b] 

- The security of the solution is mainly dependent on the operator of the data repository. 

 

 

2.4 Proposal 
A novel possible solution is Ocean Protocol, which aims to overcome the limitations of current privacy-

preserving data sharing technology. Ocean Protocol is a set of tools that combine data marketplaces, the 

idea of federated machine learning and distributed ledger technology to form an open and decentralized 

network based on blockchain that connects data providers (data sellers) and consumers (data buyers). It 

claims to enable data exchange while preserving privacy and ensuring data ownership, transparency and 

trust. Ocean Protocol eliminates many drawbacks of the state-of-the-art data marketplaces by design: 

- There does not exist a central entity. The network is based on blockchain and is community-

governed. 

- Data owners keep full control over their data. 

- The data stays on-premise. Data never leaves its location, as there is no external repository. 

- It follows the principle of purpose-limitation because the data is never moved anywhere. 

- The security of the solution is mainly dependent on the distributed ledger and the data owner.  

- It follows a permissionless approach, allowing for data sovereignty of organizations and 

individuals. 

- The underlying blockchain allows for auditability, transparency and trust. 

- The underlying blockchain offers censorship-resistance. 

 

 

  



- 9 - 

 

3. Preliminaries 
Ocean Protocol is primarily based on distributed ledger technology (DLT). The following chapter gives 

a brief introduction to the foundation of DLT. It introduces the standards and tools necessary to build a 

data-sharing solution that satisfies the requirements listed above.  

 

3.1 Distributed ledger technology 
“Distributed  ledger  technology  (DLT)  allows  the  maintenance  of  a  global  and  append-only  data  

structure  by  a  set of  mutually  untrusted  participants  in  a  distributed  environment.” [11] It holds a 

consensus of replicated, shared and synchronized data, geographically distributed across the globe, 

based on a peer-to-peer network. There exists no central authority or administration. Given these 

features, distributed ledgers offer immutability, accountability and censorship resistance. The 

characteristics of a distributed ledger make it suitable to run a distributed payment system on top, with 

Bitcoin [12] being the most known representative today.  

While Bitcoin is based on a blockchain, the shaping of such a ledger is not limited and could be a graph, 

lattice or similar. Moreover, the transaction does not necessarily have to be grouped into blocks. To 

build a data-sharing solution on top, most types of distributed ledgers might be suitable. Nevertheless, 

for simplicity and interoperability, we will keep the focus on blockchains. 

Blockchain 

As mentioned before, the blockchain is a subset of distributed ledger designs. It is characterized by its 

structure of blocks that form an immutable chain. Blocks hold batches of transactions. All blocks are 

linked by using a cryptographic hash function, and every block contains a cryptographic hash of the 

previous block. The chain of hashed blocks consequently guarantees immutability because altering a 

block is not possible without altering all following blocks. As the chain is geographically replicated 

across all participating nodes, an attacker needs to control the majority of those nodes which is infeasible 

in practice. Furthermore, because of the geographical replication, blockchains can be described as secure 

and highly available by design. 

Blockchains can be permissioned or permissionless. Permissionless blockchains have no access control 

and thus are open and public so that anyone can add nodes, transactions and applications to the network 

without requiring the trust or approval of others. On the other hand, permissioned blockchains contain 

an access control layer that governs access to the network. They are often referred to as ‘consortia 

blockchains’.  

For the purpose of building a decentralized and open data sharing solution, a permissionless ledger 

appears to be most suitable. The core functionality of such a solution is an escrow function that manages 

payment and data delivery in case pre-defined conditions are met. The functionality can be implemented 

on top of a blockchain by using smart contracts. 

  



- 10 - 

 

3.2 Smart contracts 
A computer program that automatically executes, controls or documents events according to the terms 

of a digital contract is referred to as a smart contract. [13] It is a collection of code (functions) and data 

(state) that resides on the blockchain [14]. Specifically, the code is compiled into bytecode, and its 

content and state are written into a blockchain transaction. The program can be triggered by blockchain 

transactions and is then executed on every node of the network. Consequently, all nodes hold the state 

changes corresponding to the replicated execution of the program. Given that the blockchain features 

are inherited by the smart contract layer, nobody has authority over the program execution. Smart 

contracts can be used to implement tokens, ownership, voting and similar logic on the blockchain. They 

guarantee and allow for immutability, transparency and auditability in a permissionless and trustless 

environment. 

The most common and popular smart contract implementation today is based on the Ethereum 

blockchain [15]. Ethereum offers a Turing-complete programming language and a smart contract 

framework on its blockchain, that became a de-facto standard within the permissionless blockchains. 

The corresponding programming language is called Solidity, which is an object-oriented language to 

develop smart contracts that run on the Ethereum nodes, isolated in a runtime environment called 

Ethereum Virtual Machine (EVM) [16]. It can be used to implement applications on top of the Ethereum 

blockchain that enforce a pre-defined logic and offer a non-repudiable record of transactions [17]. Every 

transaction and computation within the Ethereum network costs fees, which are called ‘gas fees’. 

It must be noted that the replicated execution of smart contracts is costly in terms of computation and 

gas fees and therefore only appropriate for reasonably simple programs. For the purpose of decentralized 

data exchange, a basic escrow functionality is needed, that grants access do a data set if a condition is 

fulfilled. If the data consumer issued payment, then the smart contract should grant access to the data 

and forward the payment to the data seller. The logic appears to be reasonably simple to be implemented 

in a smart contract.  

To permit the smart contract to interact with an asset like a dataset, a representation of said asset needs 

to be present on the blockchain. This can be realized by tokenizing the asset. 

 

3.3 Tokens 
In general, a token represents a digital asset. The range of represented assets is broad; it can be anything 

from real-world or digital objects to units of a currency. Tokens can be fungible (FT) or non-fungible 

(NFT), which describes the property of interchangeability. Given a fungible token, it is interchangeable 

because every token of a kind has the same type and value. These tokens are suitable to represent, for 

example, a unit of a currency or a share in a company. Fungible tokens in Ethereum are based on the 

ERC-20 standard (Ethereum Request for Comments 20) [18].  

In contrast, a non-fungible token is unique and can have a different value than another token from the 

same contract. It can represent a unique asset like a lottery ticket, a physical property, an access key or 

negative valued assets like loans and responsibilities. Non-fungible tokens in Ethereum are based on the 

ERC-721 standard [19]. 

  



- 11 - 

 

3.4 Standards: ERC20, ERC-721 and ERC-998 
The ERC-20 and ERC-721 standards introduce a specification for fungible/non-fungible tokens and 

define an API within Smart Contracts so that token-related conditions and actions like a token transfer 

can be implemented into a contract. Hence, an ERC-20/ERC-721 token itself is deployed as a smart 

contract on the Ethereum blockchain. Moreover, the standard introduces a defined set of commands to 

interact with software tools and applications like wallets, exchanges, marketplaces and similar. 

Because it only takes a smart contract to deploy an ERC-20/ERC-721 token to the blockchain, tokens 

are simple and easy to deploy at scale. 

 

3.5 Transactions, keys and addresses 
A transaction is a cryptographically signed instruction issued from an account. In its simplest form, a 

transaction transfers a token from one account to another.  

To be able to issue transactions and to send and receive tokens, each account needs to generate a 

public/private key pair. The private key is utilized to send transactions to an address of another 

participant. Addresses are used to receive transactions and are derived from the public key. Precisely, 

in Ethereum keys are based on the Elliptic Curve Digital Signature Algorithm (ECDSA) [20], and an 

address is composed with the prefix “0x” concatenated with the rightmost 20 bytes of the public keys 

Keccak-256 hash. Hence, to send an Ethereum transaction, one needs to know the private key of the 

spending address and needs to calculate the Keccak-256 hash of the receivers’ public key. 

 

3.6 Wallets 
A wallet stores the private and public key of a participant. It is a software tool used to store and manage 

the keys to send and receive transactions. In general, a wallet is not necessary to participate in a 

blockchain network but increases usability and convenience and is useful when managing transactions 

and tokens. 

 

3.7 Exchanges 
Exchanges offer the possibility to exchange tokens. Because tokens represent an asset, token exchanges 

can be used to exchange any asset represented by a token. Exchanges in a traditional sense can be 

centralized (CEX), where a trusted instance oversees the process of exchanging assets but also 

decentralized (DEX) based on smart contracts. 

 

  



- 12 - 

 

4. Introducing Ocean Protocol 
To enable a decentralized data sharing solution, Ocean Protocol takes the blockchain standards, and 

tools described in the preceding chapter and apply them to data assets. In general, a data asset can be 

any dataset or any algorithm stored anywhere. The following chapter describes the general concepts 

behind Ocean Protocol: 

- Tokens become data tokens 

- Private keys become data access keys 

- Token transfers become data (access) transfers 

- Wallets become data wallets 

- Exchanges become data exchanges 

- Data marketplaces allow to buy and sell data services 

 

4.1 Data tokens 
Tokens become data tokens. A data token represents the right to access a data asset. Hence, each data 

asset gets its own token. [21] Data tokens can be (fungible) ERC-20 tokens which means that each token 

grants equal rights to access the data. This enables it to be accessed multiple times. If individual access 

control is needed, data tokens can be ERC-721 which makes them non-fungible.  

The purpose of a data token is similar to traditional access/authorization tokens, such as OAuth 2.0. 

OAuth 2.0 uses tokens to delegate and authorize third-party access to server resources on behalf of the 

owner without sharing credentials [22]. Using OAuth in practice, a user can grant access to web services 

and applications without giving away his password. The mental model is comparable to Ocean Protocol 

data tokens, where the tokens are used to grant access to a data service. The main difference is that 

traditional access tokens such as OAuth tokens are technically a string of characters that can be copied 

and transferred limitless, potentially granting access to everyone that obtains a copy of the token. On 

the other hand, an ERC token can only be spent once. The double-spend problem is of no concern 

because token spends (transfers) are processed on the blockchain, which prevents double spends by 

design.  

 

4.2 Data ownership and access 
Ownership of a data token is equivalent to ownership of the represented data set. To own a data token 

and the corresponding data set, one needs to hold the private key to the token. To access a data set, the 

data consumer needs to hold one data token. Access to a dataset is managed by a smart contract that 

grants access as soon as it receives one data token from a consumer. A license is attached to the data 

token that specifies the terms of use and copyright to comply with intellectual property regulation. 

Access properties are essential for privacy-preserving data exchange, which will be later discussed in 

detail.  

 

4.3 Data transfer 
Ownership of a token implies the right to transfer the token (unless specified otherwise in the license 

attached). A transfer of a data token transfers the access right to the data. Because data tokens are built 

on the ERC-20/ERC-721 standards, they are integrated within the Ethereum ecosystem, and they can be 

transferred with any compatible software or device. Following that, with Ocean Protocol, it becomes 

possible to transfer data access rights on the blockchain. 



- 13 - 

 

4.4 Data wallets 
As data tokens are ERC-20 or ERC-721 tokens, it becomes feasible to leverage existing blockchain 

technology to manage and store data access rights. Ocean Protocol enables it to use regular Ethereum-

compatible blockchain wallets for data token custody and management. These can be software wallets 

(mobile or desktop such as Metamask [23], MyEtherWallet [24] and others), hardware wallets (like 

Trezor [25] or Ledger [26]), paper wallets (write down the private key) or brain wallets (memorize the 

key). Using a hardware wallet is probably a suitable solution for enterprises, as the private key is stored 

inside the wallet and never leaves it because the hardware wallet itself signs transactions. This can be 

further secured by using multi-sig hardware wallets, where m of n parties needs to sign a transaction to 

be valid. 

Using Ocean Protocol, holding and transferring data access rights can ultimately be reduced to hold a 

private key of an Ethereum account. 

 

4.5 Data exchanges 
Data access rights in the form of fungible or non-fungible tokens can be exchanged and traded on 

supporting token exchanges. As of now, there are no centralized exchanges that support this, but on 

decentralized exchanges, the data token exchange is already operational because of the compatibility to 

ERC standards. Data tokens can be swapped for any ERC-based cryptocurrency on decentralized 

exchanges like Uniswap [27] or Balancer [28]. Said services are based on smart contracts that manage 

the escrow and release of tokens during an exchange. Because they are permissionless as well, it is 

possible for everyone to create any data token pair and to swap data tokens to any other data token or 

ERC-based currency. To participate, one needs only a wallet holding a public/private Ethereum key 

pair. 

 

4.6 Data marketplaces 
A data marketplace is a directory of data services. Providers can list their data assets and algorithms on 

the marketplace. Data consumers can search for data services and buy data access. The pricing of data 

assets can be fixed or dynamic. The functionality is governed by smart contracts, that allow data access 

once payment is completed. Data access can be of the following forms: 

- download (of non-PII assets) 

- stream (of non-PII assets) 

- “compute-to-data” 

The data provider chooses which access methods to allow once he registers a dataset on the marketplace. 

Depending on his choice, different contracts and tools are deployed in the background.  

To sum it up, data tokens represent access rights to a data set. Data tokens can be held, transferred, 

exchanged and traded with any Ethereum-compatible software or device. Following that, with Ocean 

Protocol, it becomes possible to transfer, exchange and trade data access rights on a decentralized and 

permissionless network. 

  



- 14 - 

 

4.7 Data privacy 
With Ocean Protocol data owners can keep control over their data sets by using a solution similar to 

federated machine learning which is in the Ocean vocabulary called “compute-to-data”. Given this 

concept, a dataset never leaves its location. Once data access is sold on a marketplace, the machine 

learning algorithm is brought to the data and executed on-premise. Hence, the data provider needs to 

deploy and run a software container next to his private data, where the algorithm is executed. The main 

difference in relation the federated learning is that there is no central authority that orchestrates the 

process. Smart contracts manage the compute-to-data functionality in a decentralized and trustless 

fashion. Compute-to-data will be analyzed in a dedicated chapter after introducing the full Ocean 

architecture.   

 

4.8 License 
Ocean Protocol is developed by BigchainDB GmbH [2] under the oversight of Ocean Protocol 

Foundation (OPF) [3]. The Ocean Protocol reference marketplace [29] was made publicly available on 

27.10.2020 [30]. All tools are open-source and available under Apache 2.0 license on Github [4].  The 

license allows to freely use, modify and distribute the software as long as modifications and distributions 

contain a copy of the license, a list of modifications and a reference to the copyright owner. 

As of December 2020, Ocean Protocol is still under development with most components being in beta 

status. A production-ready release is expected to be available in spring 2021. All Ocean Protocol tools 

used in this work were cloned or forked and modified from Ocean Protocols Github repository [4]. 

  



- 15 - 

 

5. Deep Dive 
After introducing the general concepts, this section presents the full Ocean Protocol toolkit and 

architecture.  

5.1 Architecture 
The Ocean Protocol architecture consists of three main layers: smart contracts, libraries/middleware 

and application layer. From a functionality perspective, it can be divided into data token & access 

control, market tools, metadata tools, and external tools. [31] 

a) Application layer 

The top layer holds applications like data marketplaces and data wallets, as well as related tools 

for the management of data tokens, data markets, data exchanges and metadata. 

 

b) Libraries / Middleware layer 

Middleware includes the Ocean Protocol JavaScript, Python and React libraries and metadata 

storage. They provide efficient utilities to the application layer so that applications do not 

directly need to interact with the blockchain and smart contract layer, which is comparatively 

slow and costly. The layer moreover accommodates Ocean Provider, which supports the 

consume of data assets and a container component executed by data providers to allow for on-

premise computing. It is essential for allowing remote machine learning using “compute-to-

data” functionality. 

 

c) Smart Contract layer 

Blockchain and smart contract functionality is located in the base layer. It contains a data token 

factory and data token templates that are invoked once a new dataset is registered. Furthermore, 

it enables static and dynamic pricing of datasets. In case a data provider opts for dynamic 

pricing, market liquidity is needed to allow quick purchases without causing drastic changes in 

the assets price. To provide market liquidity, a liquidity pool is instantiated from the liquidity 

pool factory and linked to the data token. In addition, because metadata is partly stored on-chain, 

it holds contract functionality to store metadata in smart contracts.  

As Ocean Protocol is deployed on the Ethereum main net, it is based and reliant on a few lower 

layers (like the Ethereum blockchain with its P2P-network, consensus, EVM, and ledger state). 

They are not part of the Ocean Protocol toolkit and not shown here. 

Figure 2: Ocean Protocol Architecture     



- 16 - 

 

5.2 Smart contracts 

Ocean Protocol’s core functionality is entirely based on smart contracts. To enable data tokens, token 

transfers, token exchange and payment, there exist the following contracts: 

- Ocean token contract 

- Metadata contract 

- Data token factory contract 

- Data token contracts 

- Fixed-rate exchange contract 

- Liquidity pool factory contract 

 

Like explained before, a smart contract is a collection of code (functions) and data (state) that resides 

on the blockchain. The code is compiled into bytecode, and its content and state are written into a 

blockchain transaction. The program can be triggered by blockchain transactions and is then executed 

on every node of the network. In the following chapter, we introduce each contract and describe its most 

important functionality. States and functions irrelevant to the topic of privacy-preserving data exchange 

will be ignored. 

 

5.2.1 Ocean Token Contract 

The native Ocean token is an ERC-20 utility token used to buy, sell and curate data assets as well as to 

provide liquidity when using the reference implementation developed and provided by Ocean Protocol 

Foundation. Its use is not mandatory when deploying a marketplace and the underlying infrastructure. 

The native Ocean token or any ERC-20 token with equivalent properties can be used at the contract 

level. However, because the Ocean token is already deployed on all relevant Ethereum networks, it is 

convenient to use, and we will do so for testing. To avoid confusion, we refer to the token as a ‘payment 

token’ from now on. 

 

Contract functions: 

transfer(addressTo, value) Transfers a specified number of tokens to a specified address. 

approve(addressFrom, value) Approves to spend the number of tokens from a specified 

address. 

transferFrom(addressFrom, 

addressTo, value) 

Transfers tokens from an address to another. 

totalSupply() Returns the total number of tokens in existence. 

balanceOf(address) Returns the balance of a specified address. 

allowance(address, address) Checks the number of tokens that an owner allowed to a 

spender. 

 

Addresses: 

Network Address 

Ethereum main-net 0x967da4048cD07aB37855c090aAF366e4ce1b9F48 

Rinkeby test-net 0x8967BCF84170c91B0d24D4302C2376283b0B3a07 

Ropsten test-net 0x5e8DCB2AfA23844bcc311B00Ad1A0C30025aADE9 

 

  



- 17 - 

 

5.2.2 Metadata Contract 

The metadata contract is used to (partly) store the metadata of every data asset published on Ocean 

Protocol. The exact implementation of metadata storage is described in Section 5.3. 

 

Contract state:  

Variable Type Description 

dataToken address The address of the data token belonging to the data asset. 

created/updated by address The address of the market participant who created or updated 

a data asset. 

flags bytes Indicates special flags associated with metadata. 

data bytes A unique reference to the metadata (DID). 

 

Contract functions: 

create(dataToken, flags, data) Creates/publishes a new metadata entry on chain. 

update(dataToken, sender, flags, data) Allows the data token creator to update a metadata entry. 

 

Addresses: 

Network Address 

Ethereum main-net 0x1a4b70d8c9DcA47cD6D0Fb3c52BB8634CA1C0Fdf 

Rinkeby test-net 0xFD8a7b6297153397B7eb4356C47dbd381d58bFF4 

Ropsten test-net 0x3cd7Ef1F207E1a46AAd7D5d7F5f0A5cF081Fc726 

 

  



- 18 - 

 

5.2.3 Data Token Factory Contract 

The data token factory contract creates a data token and its corresponding contract when called. It is 

usually triggered when a data provider registers a new data asset on the marketplace to create a related 

data token. Technically, it instantiates an ERC-20 token contract from an ERC-20 data token template 

through an ERC-1167 proxy contract. 

ERC-1167 is a standardized solution to deploy contract clones in a simple, cheap and immutable way 

[32]. Because each dataset has its own token and consequently its own token contract, a lot of very 

similar contracts are to be expected once Ocean Protocol is used at scale. Without using a proxy contract, 

each of these contracts would need to be compiled and deployed separately, which is costly and creates 

on-chain redundancy because the same bytecode would need to be stored for each copy. On-chain 

storage is costly. To give an example, storage of one megabyte (1MB) of data on the Ethereum 

blockchain costs about 6,000 EUR as of November 20204. The proxy contract relays every incoming 

transaction to a reference contract and stores minimal data to circumvent this. Every proxy is a replica 

of the reference contract but serves a different token. 

 

Contract state: 

Variable Type Description 

tokenTemplate address The address of the ERC-20 data token template. 

communityFeeCollector address The address of the community fee collector. Marketplaces 

can take fees (usually 0.3%) from marketplace participants 

to fund their operation. This is not relevant in our context and 

will be ignored. 

currentTokenCount uint256 The number of data tokens minted. 

 

Contract functions: 

constructor(tokenTemplate, 

communityFeeCollector) 

The constructor is called at contract deployment given the 

ERC-20 token template and an address to collect community 

fees. 

createToken(blob, name, symbol, 

cap) 

Creates a new data token proxy contract given its name, 

symbol and quantity. 

 

Addresses: 

Network Address 

Ethereum main-net 0x57317f97E9EA49eBd19f7c9bB7c180b8cDcbDeB9 

Rinkeby test-net 0x3fd7A00106038Fb5c802c6d63fa7147Fe429E83a 

Ropsten test-net 0x6ebcCa6df2CAba986FCF44E64Ee82251c1455Dcc 

 

  

 
4 To store a 256 bit word on the Ethereum blockchain costs 20,000 gas fees [33]. A megabyte is thus 655,360,000 gas. The average gas price 

as of late 2020 is about 20 gwei (0.00000002 ETH), so a megabyte of storage costs about 13 ETH which is circa 6,000 EUR (at 470 EUR per 

ETH in December 2020). It must be noted that prices are volatile. Gas prices change continually depending on blockchain utilization. ETH 

prices are subject to market volatility. 



- 19 - 

 

5.2.4 Data Token Contract 

The data token contract is created by the data token factory. Like explained before, it is instantiated 

from an ERC-20 data token template through an ERC-1167 proxy contract. A data token contract is 

unique to each data asset registered on Ocean Protocol. 

Contract state: 

Variable Type Description 

name string Data token name. 

symbol string Data token symbol. 

blob string A reference to the metadata store. 

cap Uint256 Number of tokens. 

decimals Uint8 Number of supported decimal points. 

minter address Specifies the address that is allowed to mint tokens. 

   

 

Contract functions: 

transfer(addressTo, value) Transfers a specified number of tokens to a specified address. 

approve(addressFrom, value) Approves to spend the number of tokens from a specified 

address. 

transferFrom(addressFrom, 

addressTo, value) 

Transfers tokens from an address to another. 

mint(address, value) Allows to mint data tokens. Can only be called by the address 

specified in the minter variable, e.g. the contract owner. 

startOrder(address, amount, serviced, 

marketFeeCollector) 

The function is called by the data consumer to initiate data 

asset consumption. It transfers one data token to the seller. 

finishOrder(orderTxId, address, 

amount, serviced) 

The function is called by Ocean Provider only if there is a 

partial or full refund (in case the data to be sold is missing or 

corrupted). 

 

  



- 20 - 

 

5.2.4 Fixed Rate Exchange Contract 

The fixed-rate exchange contract allows data consumers to exchange payment tokens for data tokens 

using a fixed exchange rate. Swapping the token is equivalent to a token transfer in both directions with 

an escrow functionality in the middle, managing the exchange. A fixed-rate exchange contract is always 

deployed when a data asset is published, and the publisher opts for fixed pricing. 

 

Contract state:  

Variable Type Description 

active boolean Indicates whether the exchange is active. 

exchangeOwner address Specifies the exchange owner. 

dataToken address Refers to a data token contract address. 

paymentToken address Refers to a payment token contract address. 

fixedRate uint256 The exchange rate between data and payment tokens. 

 

Contract functions: 

create(paymentToken, dataToken, fixedRate) Creates a new exchange pair between a payment 

token and data token and sets a fixed exchange rate. 

swap(exchangeId, dataTokenAmount) Does an atomic swap with the number of data tokens 

to be exchanged. 

 

Addresses: 

Network Address 

Ethereum main-net 0x608d05214E42722B94a54cF6114d4840FCfF84e1 

Rinkeby test-net 0xeD1DfC5F3a589CfC4E8B91C1fbfC18FC6699Fbde 

Ropsten test-net 0xA7a711A09396DF82D9be46A26B48BafdB9BB4fA6 

 

  



- 21 - 

 

5.2.5 Liquidity Pool Factory Contract 

The liquidity pool factory contract instantiates a new liquidity pool that allows data consumers to 

exchange payment tokens for data tokens using a dynamic exchange rate. A liquidity pool contract is 

always deployed when a data asset is published, and the publisher opts for dynamic pricing. The pool 

holds data tokens and payment tokens. The details and price dynamics are described in Section 5.4. 

Technically, the smart contract is again deployed by cloning from a reference contract using an ERC-

1167 proxy to minimize on-chain redundancy and network fees.  

 

Contract state:  

Variable Type Description 

dataTokenAddress address Refers to a data token contract address. 

dataTokenAmount uint256 The number of data tokens in the pool. 

dataTokenWeight uint256 The ratio of data tokens in relation to payment tokens. 

paymentTokenAddress address Refers to a payment token contract address. 

paymentTokenAmount uint256 The number of payment tokens in the pool. 

paymentTokenWeight uint256 The ratio of payment tokens in relation to data tokens. 

 

Contract functions: 

constructor(address) The constructor is called at contract deployment 

given the liquidity pool template address. 

newPool() Deploys a new liquidity pool proxy contract. 

setup(dataTokenAddress, dataTokenAmount, 

dataTokenWeight, baseTokenAddress, 

baseTokenAmount, baseTokenWeight, swapFee)  

Setups a liquidity pool with data and payment 

tokens and their respective weights. 

getSpotPrice(tokenAddressIn, tokenAddressOut) Calculates and returns the spot price based on 

the number of data and payment tokens. 

swap(callerAddress, tokenAddressIn, 

tokenAddessOut, tokenAmountIn, 

tokenAmountOut) 

Swaps a specified number of data/payment 

tokens from and to a callers address. 

joinSwap(callerAddress, tokenAddressIn, 

tokenAmountIn) 

Allows a caller to add liquidity into the pool. 

exitSwap(callerAddress, tokenAddressOut, 

tokenAmountOut) 

Allows a caller to remove liquidity from the 

pool. 

 

Addresses: 

Network Address 

Ethereum main-net 0xbe0083053744ECb871510C88dC0f6b77Da162706 

Rinkeby test-net 0x53eDF9289B0898e1652Ce009AACf8D25fA9A42F8 

Ropsten test-net 0x75be6e18c80A487C8b49663bf14f80A6495045B2 

 

 

 

 

  



- 22 - 

 

5.3 Metadata 
Metadata is essential to be able to search, find and discover data assets effectively. An assets metadata 

is set by its publisher. Metadata consists of the following attributes, all of which are objects: 

Attribute Required Description 

(1) main yes Main attributes used to calculate the service checksum. 

(2) curation (remote) Curation attributes. 

(3) additionalInformation no Optional attributes. 

(4) encryptedFiles (remote) Encrypted string of the attributes.main.files object. 

(5) encryptedServices (remote) Encrypted string of the attributes.main.services object. 

 

Together the attributes (1 - 5) form a Decentralized Descriptor Object (DDO) 

that is a JSON document holding all the metadata of a data asset [34]. Each 

DDO is referenced by a decentralized identifier (DID) [35], which is a hex 

string that is calculated by hashing an assets DDO checksum using SHA3-

256. [36] Hence, a DID is unique and references its corresponding DDO. 

Note: Descriptive labels are not part of the reference design, but we use them 

here to facilitate understanding.  

- Metadata object: 1 - 5 

- Main attributes:  m1 - m7  

- File attributes:   f1 - f13  

- Additional attributes:  a1 - a10 

The main attribute object (1) holds a list of the following attributes (m1-m7). Because main attributes 

are used to calculate the service checksum, they cannot be modified after creation.  

Main attributes (1) [34] 

Attribute Required Description 

(m1) name yes Descriptive name or title of the asset. 

(m2) type yes  Type of asset. ("dataset", "algorithm"). 

(m3) dateCreated yes The date on which the asset was created by the originator,  

ISO 8601 format, UTC. 

(m4) datePublished (remote) The date on which the asset DDO is registered into the 

metadata store (Aquarius). Is set automatically when 

publishing. 

(m5) author yes Name of the entity generating the data asset. 

(m6) license yes Short name referencing the license of the asset (e.g. Public 

Domain, CC-0, CC-BY, No License Specified, …). 

(m7) files yes Array of file objects. 

Contains all file metadata, as shown in the next table. 

 

 

 

  



- 23 - 

 

For each file, a file attribute object (m7) is stored. [34] 

Attribute Required Description 

(f1) url (local) Content URL. Supports http(s):// and ipfs:// URLs. 

The url is only held locally and omitted when publishing. 

(f2) name no File name. 

(f3) Index yes Index number starting from 0 of the file. 

(f4) contentType yes File format. 

(f5) Checksum no Checksum of the file (i.e. MD5,SHA). Format specified in 

checksumType. If it is not provided it cannot be validated if 

the file was not modified after registering. 

(f6) checksumType no Format of the provided checksum. Can vary according to 

storage service (i.e AWS, Azure). 

(f7) contentLength no Size of the file in bytes. 

(f8) Encoding no File encoding (e.g. UTF-8). 

(f9) Compression no File compression (e.g. no, gzip, bzip2, …). 

(f10) Encrypted no Boolean. Is the file encrypted? If is not set, it is assumed the 

file is not encrypted. 

(f11) 

encryptionMode 

no Encryption mode used. Just valid if encrypted=true. 

(f12) resourceId no Remote identifier of the file in the external provider. It is 

typically the remote id in the cloud provider. 

(f13) attributes no Key-Value hash map with additional attributes describing the 

asset file. It could include details like the Amazon S3 bucket, 

region, ... 

 

Selected additional attributes (3) [34] 

Attribute Required Description 

(a1) categories no A list of categories describing the asset. 

(a2) tags no A list of keywords/tags describing the asset. 

(a3) description no Additional description. 

(a4) copyrightHolder no Copyright or IP holder. 

(a5) links no Links, http(s):// or ipfs:// 

(a6) isLanguage no Language of the asset. 

(a7) sla no Service level agreements. 

(a8) 

updateFrequency 

no An indication of update latency - i.e. How often are updates 

expected (seldom, annually, quarterly, …), or is the resource 

static that is never expected to get updated. 

(a9) termsOfService no Terms of Service. 

(a10) 

structuredMarkup 

no A link to machine-readable structured markup (such as ttl/json-

ld/rdf) describing the dataset. 

 

Not all attributes are set by the publisher. Some are set automatically during the publishing process, like 

for example ‘datePublished’ (m4) which is indicated by the ‘remote’ tag. Others are only used locally, 

like ‘URL’ (f1). 

 

 

 

  



- 24 - 

 

Metadata storage 

Because blockchain storage is expensive, Ocean stores minimal data on-chain. Only DID, DDO and the 

data assets URL (encrypted) are stored on-chain. This is done by issuing a transaction to the metadata 

smart contract that contains the following fields:  

create {DID,{dataTokenAddress, encrypted[URL], DDO}, optional}  

The ‘URL’ attribute (f1) which holds the original plain text URL is only held locally and not written 

into the on-chain DDO.  

To separate the market application from the comparatively slow blockchain layer and to allow for 

additional metadata fields that exceed the size to be reasonably stored on-chain, Ocean Protocol uses 

additional off-chain metadata storage. The off-chain component is called ‘Aquarius’. It retrieves 

metadata entries from the chain, caches them locally and manages additional information that 

complements the DDO. Storing the metadata on-chain costs about 1.5 - 3.5 EUR, depending on its size 

and current gas prices. It is paid once by the publisher. Afterwards, the metadata can be retrieved from 

the chain by anyone. 

Metadata integrity 

The concept of separating the identifier and the metadata has the advantage to be able to ensure its 

integrity. Because the DID is effectively a hash of the DDOs main attributes, modification of main 

metadata attributes is prevented by design. While a modification of non-main attributes is possible by 

calling the update() function of the metadata contract,  an update of main attributes is only possible by 

deriving a new data asset using the create() function of the metadata contract with a new DID. 

Furthermore, the asset owner can choose to sign a specific integrity checksum corresponding to an asset. 

This allows a third party to validate that changes in non-main attributes were made or approved by the 

owner.  

 

  



- 25 - 

 

5.4 Pricing 
Pricing of data assets can be fixed or dynamic. With fixed pricing, a smart contract with exchange 

functionality is deployed for every data asset that swaps a fixed number of ERC-20 payment tokens for 

one data token.  

With dynamic pricing, a decentralized automated market is deployed for every dataset. The automated 

market is implemented with the help of a liquidity pool that holds ERC-20 compatible payment tokens 

and data tokens. The benefit of such a pool is that it can be implemented on a smart contract to offer 

automated market maker (AMM) functionality for the pricing of datasets. Hence, the pricing of datasets 

becomes possible without maintaining a traditional order book or other centralized components. It 

operates autonomously in a trustless environment.  

The dynamic pricing of data is complex, and Ocean Protocol offers an in-depth solution using AMMs 

combined with liquidity staking. The implementation is based on Balancer [37], a decentralized and 

trustless protocol for programmable liquidity. This enables individuals and institutions to explore the 

value of their data and to let the market price it based on supply and demand.  However, as this is not 

necessarily relevant to the scope of this thesis and to archieve the goal of privacy-preserving data 

marketplaces, we only give a brief introduction. 

In addition, dynamic pricing serves another purpose: It enables the possibility of data curation. Data 

curation in Ocean Protocol is equal to liquidity staking. Liquidity providers are incentivized to search 

for data assets and to evaluate their quality and valuation as they can earn from transaction fees. Each 

time a data asset is sold, liquidity providers share a cut of the fees (usually 0.1%). In order to maximize 

their ROI, liquidity providers will likely direct their liquidity towards high quality, but undervalued data 

assets. To stake liquidity, a liquidity provider inserts tokens into a liquidity pool. By locking his tokens, 

a liquidity provider vouches for the quality of the data. He gains a share in the liquidity pool if other 

liquidity providers come to the same conclusion that the quality is equally good or better, or if they 

assess that the asset is still undervalued. On the other hand, he loses a share if the data asset turned out 

to be less in demand. The mechanism ensures that with enough data curators and over time, a fair market 

price is found. Data assets of a higher quality rise in visibility and valuation over time, while lower 

quality to worthless assets slowly disappear.  

Figure 3: Ocean Protocol data token exchange overview 



- 26 - 

 

5.5 Access Control 
Access to data assets can be of the types of 

a. Download 

The data consumer can download the data asset. 

 

b. Stream 

The data consumer can stream the data asset. 

 

c. Compute-to-data 

The data consumer purchases compute-only access that allows him/her to run remote 

compute jobs on the data, while the data stays on-premise. Compute-to-data 

functionality is crucial to enable privacy-preserving marketplaces because it ensures 

GDPR compliance. Hence it will be discussed in a dedicated chapter (5.6). 

Access to data assets is managed by smart contracts. Given the properties of data tokens, it becomes 

possible to restrict access to a data asset (of any access type) in a decentralized and trustless manner 

based on various conditions: 

- grant equal access for all token holders, but limit the number of possible accesses by minting a 

fixed amount of ERC-20 tokens 

- ensure individualized or personalized access control by using ERC-721 tokens 

- implement time-bound access  

- restrict to one-time access 

- allow perpetual access 

- restrict the access methods (download, stream, compute access) 

- allow read or write access 

- group access 

Once a data asset is bought by a consumer, the smart contract logic assesses who is allowed to access 

which resource. In case of the access types ‘download’ or ‘stream’, the contract grants access as soon 

as one data token arrives and the consumer called the startOrder() function of the data token contract. 

Once this is completed successfully, the Ocean Provider service loads the encrypted URL, decrypts it 

and relays it to the consumer. 

On the other hand, when the data publisher restricted the access type to ‘compute’ a so-called ‘Service 

Execution Agreement’ (SEA) is deployed. A SEA is an agreement between a data publisher, consumer 

and a verifier that is implemented on a smart contract. It specifies the conditions to be fulfilled to access 

a data asset, what data assets need to be delivered and the rewards for meeting the conditions. A SEA is 

created upon every purchase of compute access. It holds the DID, consumer and provider addresses, 

payment information and is signed by the consumer and validated by the provider. An algorithm can be 

included in the form of a payload. Alternatively, a pre-published algorithm can be used by referencing 

its DID. Moreover, it includes an escrow function which manages the payment. A consumer locks tokens 

in escrow. If the computation terminates successfully, the compute provider is allowed to withdraw 

those tokens, otherwise (timeout, unsuccessful) they are returned to the consumer. Once the compute 

job terminates, the results can be accessed via a URL, or they are published in the form of a new data 

asset, referenced by a new DID. 

 

  



- 27 - 

 

5.6 Compute-to-data  
Compute-to-data allows for privacy-preserving data sharing and is a core feature and foremost 

advantage of Ocean Protocol. The idea behind compute-to-data is to keep the data on-premise and to 

allow data consumers to run remote compute jobs on the data. Data owners keep full control as the data 

never leaves their location. [38] Compute-to-data is directly integrated into data marketplaces, where 

data providers can opt to restrict the access type to “compute only”. Once data access is sold on a 

marketplace, the compute job is brought to the data and executed on-premise. This is especially suitable 

to train machine learning models remotely, and the concept is very similar to federated ML. Using Ocean 

Protocol, data consumers can train their machine learning models across many data sets of different data 

providers while ensuring compliance with privacy regulations. Furthermore, because compute-to-data 

on Ocean Protocol operates in a trustless and decentralized manner, the central authority that was needed 

to orchestrate the process of federated ML is no longer necessary. 

Compute-to-data adds a new role to the data marketplace, called “compute provider”. Compute 

providers sell computation on data instead of the data itself. The compute provider can be the same 

entity as the data provider. From a security perspective, it is recommended for data providers to take 

over both roles to keep full control over the data. The compute provider needs to deploy and run a 

software container next to the data where the computation is executed.  

 

 

  

Figure 4: Compute-to-data 



- 28 - 

 

Architecture 

Compute-to-data introduces two new components to the collection Ocean Protocol tools:  

- Operator Service 

The Operator service manages the compute-to-data workflow, communicates with the data 

provider, and performs the computation. 

- Operator Engine 

The Operator Engine is a backend service that orchestrates and manages the compute 

infrastructure. 

Both use a Kubernetes K8s cluster5 for the compute execution and are maintained by the compute 

provider. The compute provider needs to deploy the containerized applications in his/her infrastructure, 

provide resources (CPU, memory, storage, bandwidth) and set up read-only access to the storage holding 

the data where access is sold to. The compute provider decides what exact compute resources should be 

available to compute consumers, supporting JavaScript and Python runtimes as of early 2021. 

Data assets of the compute type have additional metadata attributes. They are necessary to orchestrate 

and control the remote computation and describe the language, runtime, version, container and related 

information. [34] 

Attribute Required Description 

(1) language no Language used to implement the algorithm 

(2) format no Packaging format of the algorithm 

(3) version no Version  

(4) container yes Object describing the docker container image 

 

The container object (4) has the following attributes: 

Attribute Required Description 

entrypoint yes The command to execute or script to run inside the docker 

container image 

image yes Name of the docker container image 

Tag yes Tag of the docker container image 

 

Starting a compute job 

Once a compute service is bought by a consumer, a Service Execution Agreement (SEA) [40] is created 

on-chain. It holds the DID, consumer and provider addresses, payment information and is signed by the 

consumer and validated by the provider. An algorithm can be included in the form of a payload. 

Alternatively, a pre-published algorithm can be used by referencing its DID. Moreover, it includes an 

escrow function which manages the payment. A consumer locks tokens in escrow. If the computation 

terminates successfully, the compute provider is allowed to withdraw those tokens, otherwise (timeout, 

unsuccessful) they are returned to the consumer. Once the compute job terminates, the results can be 

accessed via a URL, or they are published in the form of a new data asset, referenced by a new DID. 

 

 
5 “A Kubernetes cluster is a set of nodes that run containerized applications. Containerizing applications 

packages an app with its dependences and some necessary services. They are more lightweight and flexible than 

virtual machines. Kubernetes clusters allow containers to run across multiple machines and environments and are 

not restricted to a specific operating system. They are able to share operating systems and run anywhere.” [39]. 



- 29 - 

 

 

Figure 5: Starting compute-to-data remote compute jobs [41] 

After completion of the compute job, the results can be retrieved via URL or DID if the consumer 

requested to publish the results as a separate asset. 

 

Trusting algorithms 

With compute-to-data, it is essential that algorithms do not act maliciously. Algorithms leaking sensitive 

information, PII or returning the data itself defeat the purpose of compute-to-data and pose a critical 

risk. It is the data owner’s responsibility to choose which algorithms to trust. Because of the trustless 

environment, anyone can buy compute access. Hence, the selection and approval of algorithms need to 

be governed and restricted effectively. A narrow implementation of vetted algorithms on the Ocean 

Protocol reference marketplace (GUI) is currently in development by the Ocean Protocol Foundation 

and a solution towards extensive GUI-based control is planned. As of January 2021, it is possible to 

restrict the supported algorithms to pre-published known (and vetted) ones by registering them as a data 

asset and referencing the DID inside the compute SEA. This is feasible for common use cases and 

computations. 

As the remote computation and selection of algorithms pose potential risks, the topic is further discussed 

in Section 7.1 (Evaluation/Security). 

  



- 30 - 

 

5.7 Protocol flow 

5.7.1 Publish a dataset 

Like described before, a data marketplace is a directory of data services where providers can list their 

data sets and algorithms on the marketplace. Data consumers can search for data services and buy data 

access. To publish a dataset on the marketplace, the data seller needs to provide the following main 

metadata attributes. Optionally the publisher can include any other metadata attribute described in 

Section 5.3. 

- provide a title 

- provide a description 

- provide a URL to specify where the data is stored 

- specify the access type (download, stream, compute) 

- provide the name of the author  

- provide the license 

 

Alice publishes a data asset: 

1. Preparation 

- Alice stores the data asset “asset1” on her server, to be accessed at ‘URL: 

alice.com/data/asset1.csv’ 

- Alice has an Ethereum address (for example 0x112935) and ETH to pay for gas fees 

- Alice visits any data marketplace based on Ocean Protocol. She can rely on their Ocean 

Provider service (for example ocean-provider.com) or run her own 

- Alice provides a title, description, URL, access type, author and license 

- Alice clicks “publish” 

 

2. Data token contract creation 

Once the publication is initiated, the marketplace application triggers the creation of a 

dedicated data token contract to the Ethereum network. The information is forwarded by 

the respective libraries to the ‘data token factory contract’, which instantiates an ERC-20 

data token contract from the ERC-20 data token template. This is done through an ERC-

1167 proxy contract. 

 

The resulting token holds the following information 

name string Data token name 

symbol string Data token symbol 

blob string A reference to the metadata store 

cap Uint256 Number of tokens 

decimals Uint8 Number of supported decimal points 

minter address Specifies the address that is allowed to mint tokens 

 

It is generated by issuing a transaction to the data token factory contract. As an example, 

the following transaction mints 100 data tokens with symbol ‘ADT-1’ and name ‘alice-

datatoken’, that reference to ‘example-metadata-store.com’ for metadata storage. 

dataTokenFactory.createToken(blob:example-metadata-service.com,  

name: alice-datatoken, symbol: ADT-1, cap:100) 

 

The token contract address is assigned by Ethereum. We assume 0x1234 for this example.  

 

 



- 31 - 

 

On-chain registration 

Metadata is stored on-chain. To initiate the process, the marketplace calls the create() 

function on behalf of Alice. It creates a DDO document holding the associated metadata 

[34] and calculates its DID. The URL provided by Alice that specifies where the data asset 

can be retrieved (url:alice.com/data/asset1.csv) is separated from the metadata and 

encrypted. Moreover, the Ocean Provider URL and data token Ethereum address is added. 

 

Ocean_assets.create(metadata, ocean-provider.com/api/consume, 0x1234) 

 

The URL decryption key is stored by Ocean Provider, which is usually operated by the same 

entity that runs the data marketplace (in case of a simple download) or the entity that runs 

the compute-to-data container. If desired, Alice could run her own Ocean Provider.  

DID, DDO and the encrypted URL are stored on-chain by issuing a transaction to the 

metadata smart contract: 

 

DDO.create({DID,{dataTokenAddress: 0x1234, encrypted[alice.com/data/asset1.csv], 

DDO}, optional}) 

 

 

3. Setting a price 

Afterwards, Alice needs to specify whether the dataset should be priced in a fixed or 

dynamic way.  

 

a. With fixed pricing, Alice chooses a price (denominated in any ERC-20 compliant 

token and denominated in Oceans native token when using the reference 

implementation). Then she specifies the number of tokens to be minted and invokes the 

mint function of the data token contract. Afterwards, she issues a transaction to the 

fixed-rate exchange contract to create an exchange for her data-token/payment-token 

pair. Alice then approves to send the minted data tokens to the exchange contract. 

 

As an example, the following transactions mint 900 data tokens with symbol ‘ADT-1’ 

and name ‘alice-datatoken’ (referenced by the token address 0x1234) and create a 1:1 

exchange contract between data tokens (0x1234) and payment tokens (0x4444). Then 

Alice approves to insert 900 data tokens into the exchange contract. 

 

dataToken.mint(address: 0x1234, value:900) 

fixedRateExchange.create(paymentToken: 0x4444, dataToken: 0x1234, fixedRate:1-1) 

dataToken.approve(addressFrom: 0x112935, value:900) 

 

 

  



- 32 - 

 

b. With dynamic pricing, a decentralized automated market based on a smart contract is 

created for every dataset. To do this, Alice specifies the number of tokens to be minted 

and invokes the mint function of the data token smart contract. Following that, a 

liquidity pool is created by calling the liquidity pool factory contract. The pool holds 

the minted data tokens and any ERC-20 compliant token or Oceans native token when 

using the reference implementation. Technically, the automated market smart contract 

is again deployed by cloning from a reference contract using an ERC-1167 proxy.  

As an example, the following transactions mint 900 data tokens with symbol ‘ADT-1’ 

and name ‘alice-datatoken’ (referenced by the token address 0x1234) and create an 

equally weighted (1-1) liquidity pool contract between data tokens (0x1234) and 

payment tokens (0x4444). Then Alice approves to insert 900 data tokens into the 

liquidity pool. 

 

dataToken.mint(address: 0x1234, value:900) 

liquidityPoolFactory.newPool() 

liquidityPool.setup(dataToken: 0x1234, dataTokenAmount: 900, dataTokenWeight: 

0.5, paymentToken: 0x4444, paymentTokenAmount:900, paymentTokenWeight:0.5, 

swapFee:1) 

dataToken.approve(addressFrom: 0x112935, value:900) 

 

 

After following the four steps, the data asset is registered on-chain and ready to be consumed. The data 

asset can be discovered and bought by anyone. 

The Ethereum gas fees to publish a dataset (including metadata and all necessary contracts) with fixed 

pricing are about 15 EUR and with dynamic pricing about 20 EUR as of December 2020. The fee is 

paid once per data asset registered on-chain by the publisher. 

 

 

  



- 33 - 

 

5.7.2 Consume a dataset 

As soon as a dataset is published, it can be bought and accessed by data consumers. To consume a 

dataset, the consumer needs to follow the steps: 

Bob consumes a data asset: 

1. Find a dataset 

As Ocean Protocol is open-source and permissionless, anyone can deploy data marketplaces on 

top. The Ocean Protocol Foundation runs a reference marketplace called “Ocean Market” [29], 

which can be used to explore its capabilities and for testing. To find a dataset, the potential 

buyer discovers suitable marketplaces and searches for datasets. To simplify the selection, data 

providers can include a sample file which shows the data structure. 

 

2. Buy the data token 

Once Bob finds a suitable data asset, he buys the corresponding data token. Data tokens can be 

traded on any ERC-20 compatible exchange or bought directly on the data marketplace. This is 

done by connecting an ERC-20 wallet to the marketplace, approving the transaction, and 

swapping the required amount of payment tokens for at least one data token. Swapping the token 

is equivalent to a token transfer in both directions with an escrow contract in the middle, 

managing the exchange. Once swapped, Bob can hold the data token in his wallet for later use 

or immediately spend it to access the dataset. 

 

-  for fixed-price assets: 

fixedRateExchange.swap(exchangeId: 9999, dataTokenAmount:1) 

 

- for dynamically prices assets: 

liquidityPool.swap(BobAddress, paymentToken: 0x4444, dataToken: 0x1234, 

amountIn:1, amountOut:1) 

 

 

3. Access 

To be granted access to a dataset, Bob needs to hold at least one data token and to transfer the 

token to the data publisher (Alice). Bob unlocks access by calling the data tokens startOrder() 

function. He needs to provide the respective arguments of the data asset he wants to access, 

which he finds in the DDO in the assets metadata contract. The function transfers one data token 

to Alice’s wallet. 

 

startOrder(dataToken: 0x1234, amount: 1.0, serviced: …, marketFeeCollector: …) 

 

After the transactions are confirmed, Bob needs to note the transaction id (for example 0x9876) 

to be able to prove his payment to Alice to Ocean Provider. Bob calls the Ocean Provider 

service. He finds the address (in this case ‘https://ocean-provider.com/api/consume’) in the data 

assets metadata entry. 

 

https://ocean-provider.com/api/consume?consumerAdress=BobAddress?dataToken=0x1234? 

transferTxId=0x9876 

 

In case of buying access to a compute-to-data service, tokens are not directly sent to Alice. 

When buying compute access, Bob sends his data token to an escrow contract and it is held 

there until the computation terminates.  



- 34 - 

 

 

Figure 6: Consume a data asset 

 

Ocean Provider checks if the transaction is confirmed and indeed one data token has been 

transferred to Alice. If yes, access is granted. 

 

a. Download 

The Ocean Provider component fetches the encrypted data asset URL from the chain, 

decrypts it using the corresponding key it holds, accesses the URL and relays the 

content to the data consumer (Bob). From the perspective of the consumer, the dataset 

is delivered directly by the marketplace. The URL is not disclosed. 

 

b. Stream 

Access to streams is similar. The Ocean Provider component fetches the encrypted 

streaming URL from the chain, decrypts it using the corresponding key it holds and 

creates a temporary URL to relay the streaming content to the data consumer. From the 

perspective of the consumer, the stream is delivered directly by the marketplace. The 

original URL is not disclosed. 

 

c. Compute-to-data 

A Service Execution Agreement (SEA) is created on-chain which holds the DID, 

consumer and provider addresses, payment information and is signed by the consumer 

and validated by the provider. An algorithm can be included in the form of a payload, 

or a pre-published algorithm is referenced by pointing to its DID. The algorithm is then 

brought to the compute container that has read access to the private data asset and is 

executed inside the capsuled environment. If the computation terminates successfully, 

the compute provider is allowed to claim the tokens escrowed in step 3 from the SEA, 

otherwise (timeout or unsuccessful) they are returned to the consumer. Once the 

compute job terminates, the results can be accessed via a URL, or they are published in 

the form of a new data asset, referenced by a new DID.  

 

  



- 35 - 

 

6. Deployment of a privacy-preserving data marketplace prototype 
To verify and test the concept of a privacy-preserving data marketplace based on Ocean Protocol in 

practice, we decided to deploy a prototype. As the compute-to-data functionality is a prerequisite to 

guarantee compliance with privacy law, the prototype should include all Ocean Protocol components 

required to test compute-to-data under realistic conditions. The prototype includes the connection to a 

permissionless blockchain, the possibility to publish and consume data assets, the handling of payments, 

as well as the execution of remote compute jobs on private data sets.  

 

6.1 Prototype architecture  
From a high-level perspective, the prototype consists of three parts implemented as virtual machines 

(VM) that represent the market participants and the underlying infrastructure. The data provider and 

data consumer are on both ends, and the software tools necessary to enable the market functionality in 

the middle. The tools consist of the connectivity to the blockchain layer, metadata management, storage 

and a marketplace. To model real-world conditions and to test the permissionless approach, each part is 

separated and only connected to the internet.  

 

Figure 7: Prototype architecture 

 

  



- 36 - 

 

6.1.1 Infrastructure 

The infrastructure VM holds all tools necessary to host a data market: This includes tools to 

- Connect to the Ethereum networks (main and test nets) 

- Deploy smart contracts to store metadata on-chain, create data tokens, enable static or dynamic 

pricing of data assets, and enable payment and escrow functionality 

- Query and write on-chain metadata 

- Cache metadata  

- Publish datasets 

- Consume datasets 

- Manage payment between participants 

Blockchain and smart contracts 

The permissionless approach allows it to leverage existing smart contracts by the Ocean Protocol 

Foundation or to deploy our own contracts. Using existing contracts, one can directly publish data assets, 

which is a trade-off between convenience and control. Contracts are available on Ethereum main-net, 

Rinkeby test-net and Ropsten test-net [42].  

 

Metadata 

Reading and caching of metadata to and from the chain is managed by a component called ‘Aquarius’ 

[43]. It is provided with the contract address of the metadata smart contract and regularly caches all 

metadata stored on-chain. The caching relies on a conventional database, where we use Elasticsearch 

[44]. 

 

Market 

The data marketplace [45] queries the metadata store (Aquarius) and displays the data assets retrieved. 

It lets consumers and publishers interact with the permissionless blockchain layer by leveraging a Web3 

wallet like Metamask [23]. The publication and consumption of data assets are enabled by interacting 

with the respective middleware libraries. The market itself is built on Ocean Protocol JavaScript libraries 

[46] and React hooks [47].  

 

6.1.2 Data provider 

If a data provider wants to sell data assets (using default smart contracts and any public marketplace) to 

be accessed by download or stream, he does not need to deploy or run anything. He just provides the 

URL to the data asset, which will be encrypted and stored by Ocean Provider [48]. The keys are held by 

Ocean Provider too, which is maintained by the entity who runs the marketplace. 

In our case, because the access type is restricted to ‘compute only’, the data provider needs to deploy 

containerized applications where the remote algorithm is executed. This makes him a ‘compute 

provider’ as well. To keep maximum control over the data and to reduce the risk of data breaches, it is 

recommended for data providers to take over both roles.  

The first software container comprises the Operator Service [49], which manages the compute-to-data 

workflow, communicates with the data provider, and performs the computation. The second container 

holds the Operator engine [50], which is a backend service that orchestrates and manages the compute 

infrastructure. 

6.1.3 Data consumer 

The data consumer only needs a browser with a Web3 wallet like Metamask [23] to browse and consume 

datasets. 

 



- 37 - 

 

6.2 Prototype deployment 
Each part is set up on its own virtual machine (VM). The virtual machines are connected to the internet, 

while direct connectivity between them is blocked. 

The VM specifications are in all cases: 

- Ubuntu 20.04.1 LTS on VMware Hypervisor 

- 3GB RAM (+3GB for the infrastructure VM) 

- 60 GB HDD 

- Internet connection, no local connectivity 

 

6.2.1 VM1 - Infrastructure 

 

Blockchain and smart contracts 

A first iteration builds on top of the existing smart contracts by the Ocean Protocol Foundation on 

Rinkeby test-net. Rinkeby and Ropsten Ethereum test-nets can be used without spending money on gas 

fees, so they are suitable to test blockchain applications extensively before shifting them to production. 

Ether, the currency to pay for gas fees on the Ethereum network, can be obtained for free to be used on 

test-nets by providing an Ethereum address to a faucet [51]. The same is true for the native Ocean token 

on Ethereum test-nets [52], which will be used for testing. Transactions can be explored and traced using 

an Ethereum-compatible blockchain explorer like Etherscan [53]. 

 

In a second iteration and to allow the data provider to gain maximum control over his data to be sold, 

we deployed our own contracts to Ethereum. Holding the private keys to the contracts mitigates some 

risks for the data provider that is described in detail in chapter 7.1. Contracts were deployed using the 

respective utility available in Ocean Protocol’s Github repository [54]. As a prerequisite, it is necessary 

to obtain an Infura6 ID [55] and to generate a private/public Ethereum key pair. 

 

Metadata  

The metadata component ‘Aquarius’ [43] was installed and configured to query metadata from the 

respective contracts. An Elasticsearch database instance was set up and connected to the metadata cache. 

Aquarius regularly queries the metadata smart contracts, extracts the metadata, and writes it to the 

Elasticsearch database. Because blockchain interactions are slow, it only searches in the local database 

when queried for metadata. 

 

  

 
6 Infura is a blockchain Infrastructure-as-a-Service (IaaS) provider that simplifies the access to Ethereum data. 

Instead of running a dedicated Ethereum node to monitor network transactions, it is possible to query the Infura 

API for relevant transactions. This allows running lightweight applications on the Ethereum network without 

spending many resources to monitor the blockchain layer, which is suitable for a prototype implementation. To 

host a data marketplace in a production environment, it can be considered to deploy a dedicated Ethereum node. 

 



- 38 - 

 

Market 

The Ocean Protocol reference marketplace [45] was forked and customized. It interacts with the default 

contracts on Ethereum main- and test-net. In this particular configuration, the market can be accessed 

with a browser on port 8000. When browsing for datasets, the market queries the metadata cache on port 

5000, which fetches its data from the database at port 9800. Writing operations are carried out through 

the wallet connected to the browser.  

 

 

 

 

  

Figure 9: VM1 - Infrastructure 

Figure 8: Ocean Market web interface 



- 39 - 

 

6.2.2 VM2 – Data provider 

On the provider's side, the Ocean Operator Engine [50] and Operator Service [49] were deployed. Both 

use a Kubernetes cluster. In this case, Kubernetes Minicube [56] was used in combination with kubectl 

[57], which require Docker [58] and Docker Compose [59]. 

The data (and compute) provider need to deploy these containerized applications, provide sufficient 

resources in accordance with the expected compute jobs and set up read-only access to the storage 

holding the data. Afterwards, he needs to specify the runtimes (JavaScript, Python) that should be 

available to compute consumers.  

Furthermore, read access to the data needs to be given to the Docker containers. Depending on where 

the containers are deployed, read-only access to the storage can be configured on the file system level. 

It must be noted that setting up a secure compute-to-data deployment is not trivial and mostly relies on 

the security of the underlying infrastructure. The data provider needs to 

- ensure the security of the infrastructure where the containers are running 

- ensure secure connectivity to the data storage to allow read-only access  

- allow (but restrict) internet connectivity to the containers to receive the algorithm to execute 

- check and possibly modify or deny the results if they contain sensitive information (this is 

especially hard and will be discussed further in Section 7.1) 

- monitor the whole system 

 

6.2.3 VM3 – Data consumer 

The system is equipped with a regular web browser and Ethereum-enabled wallet, like Firefox with a 

Metamask wallet plugin [60]. 

 

  

Figure 10: VM2 - Data Provider 

Figure 11: VM3 - Data Consumer 



- 40 - 

 

6.3 Prototype demo 
To publish a data asset, data owners navigate to the publish tab in the marketplace and follow the steps 

described in Section 5.7.1.  

 

To consume a data asset, consumers can browse the market and follow the steps in Section 5.7.2. In this 

prototype deployment, they can provide an algorithm implemented in Python or JavaScript, by dropping 

it into the “use” tab, visible on the right. In order to showcase the use case, it will be executed remotely 

without further checking. Note that this can be easily exploited by an attacker. Hence, the approach is 

only appropriate for demonstration purposes in a closed environment or on non-critical data. Data 

publishers should restrict what algorithms can be executed on their data. The risks are discussed further 

in the following chapter.  

Figure 12: Web Interface - Publish 

Figure 13: Web Interface - Consume 



- 41 - 

 

7. Evaluation 
 

In comparison to the state-of-the-art data marketplaces presented in Section 2.2, Ocean Protocol offers 

unique advantages, that result from the combination of blockchain, ‘compute-to-data’ and decentralized 

computing. 

Full control over data assets 

With compute-to-data, data owners never give away their data. Because of the decentralized access 

control powered by smart contracts, centralized data repositories which are in control of the marketplace 

operator, as used by competing projects, are dismissed. The data owner retains full control.  

Token-based access control 

Data tokens represent access rights to a data asset. Data tokens can be held, transferred, exchanged and 

traded with any Ethereum compatible software or device. Following that, with Ocean Protocol, it 

becomes possible to transfer, exchange and trade data access rights on a decentralized and 

permissionless network. While fungible (ERC-20) tokens grant equal rights to access the data, non-

fungible tokens (ERC-721) enable individual access control. Using Ocean Protocol, holding and 

transferring data access rights can ultimately be reduced to hold a private key of an Ethereum account. 

Efficiency 

Data owners can sell data without needing to move it. This favourable for large datasets that are 

expensive or slow to transfer. 

 

Data auditability 

Because data access is tied to data tokens, data auditability and provenance is enabled by design. Any 

transaction metadata, from registration, sales, transfer, access to remote computation and results are 

logged on an immutable ledger. Therefore, blockchain explorers become data audit trail explorers. When 

using Ocean Protocol for data exchange, companies, auditors, and regulators can rely on a tamper-proof 

source of truth.  

 

Explainability 

Data auditability closely relates to the property of ‘explainability’. Explainable AI refers to a principle 

in AI application, that results can be understood and comprehended by humans. It is the opposite of the 

black-box approach in machine learning, where researchers cannot explain how and why an AI came to 

a specific decision.  

GDPR mandates the explainability of models. “The data subject shall have the right not to be subject to 

a decision based solely on automated processing, including profiling, which produces legal effects 

concerning him or her or similarly significantly affects him or her.” “The data controller shall implement 

suitable measures to safeguard the data subject's rights and freedoms and legitimate interests, at least 

the right to obtain human intervention on the part of the controller, to express his or her point of view 

and to contest the decision.” [GDPR Article 22.1, 3] “The data subject shall have the right to obtain 

from the controller confirmation as to whether or not personal data concerning him or her are being 

processed, and, where that is the case, access to the personal data and the following information: […] 

the existence of automated decision-making, including profiling, referred to in Article 22 […], at least 

in those cases, meaningful information about the logic involved, as well as the significance and the 

envisaged consequences of such processing for the data subject.” [GDPR Article 15.1h] Both human 

intervention in automated decision making and meaningful information about the logic involved is only 

possible if a prediction model is explainable. 

  



- 42 - 

 

Ocean Protocol improves AI explainability because, with compute-to-data, a detailed tamper-proof audit 

trail is available by design. It includes not only which datasets were used for training of a model, but 

also the algorithm, timestamp and final state (successful, error, cancelled) of the computation. It 

promotes trust by ensuring that algorithms were correctly executed so that AI developers can be 

confident with the resulting models. 

 

Data flow between jurisdictions 

GDPR enforces strict rules when data containing PII should be transferred outside the European 

Economic Area. “Any transfer of personal data which are undergoing processing or are intended for 

processing after transfer to a third country or to an international organisation shall take place only if […] 

the conditions laid down in this Chapter are complied with by the Controller and processor.” [GDPR 

Art. 44] “A transfer of personal data to a third country or an international organisation may take place 

where the Commission has decided that the third country, a territory or one or more specified sectors 

within that third country, or the international organisation in question ensures an adequate level of 

protection. Such a transfer shall not require any specific authorisation.” [GDPR Art. 45] Consequently, 

personal data cannot be transferred to non-EEA entities, unless there is an agreement issued by the EU 

Commission that testifies an adequate level of protection.  

With data marketplaces on Ocean Protocol, this is of no concern, as with compute-to-data, the data never 

leaves the premises of the seller. Implied that algorithms do not leak PII or the underlying data, compute 

access can be sold globally while being GDPR compliant. The physical location of a marketplace built 

on Ocean Protocol is not relevant either. 

 

 

  



- 43 - 

 

7.1 Risks 
As described before, Ocean Protocol offers GDPR compliance by design. It is permissionless and 

operates in a trustless environment. On the one hand, the design choice enables a diverse data supply, 

equalizes data access and ultimately strengthens data sovereignty. By using a blockchain, many attacks 

relevant to centralized systems are prevented by design. Hence, many risks applicable to traditional 

businesses are mitigated by design.  

However, the design choice introduces novel risks because anyone can participate in Ocean Protocol 

and trade data assets, regardless of their reputability or intent. From a business perspective, the setting 

is uncommon because traditional business models are often based on trust. If a participant is untrusted, 

at least a trusted entity in the middle manages identities, authentication, and payment. In traditional 

web2.0 business models like marketplaces, trust is guaranteed by 

- Payment providers: Trust in consumers is often ensured by payment providers (PayPal, 

Amazon|Apple|Google – Pay), banks, postal services and others, verifying identity (KYC, 

‘know-your-customer’), creditworthiness and confirming delivery.  

- Certificate Authorities: Trust in the providers' identity is ensured by certificate authorities 

(CA).  A certificate authority is a trusted entity that attests providers' identity by issuing digital 

certificates that certify the ownership of a public key.  

Over the last decade, businesses have adapted to web2.0 risks and established processes to monitor and 

manage risks. As web3.0 protocols, applications, and business models arise, many established processes 

are likely to become obsolete while novel risks are introduced simultaneously. In order to continually 

ensure the confidentiality, integrity and availability of company resources, it is necessary to adapt the 

risk management when deploying web3.0 solutions like Ocean Protocol.  

In general, it must be noted that registering sensitive data on Ocean Protocol to be consumed via 

compute-to-data is a trade-off between risk and reward. It adds a non-zero probability to the risk of data 

leakage, potentially resulting in financial or reputational loss because it requires additional components, 

complexity and connectivity to be added to the internal infrastructure. Therefore, this section is 

dedicated to an Ocean Protocol risk assessment. Risks are identified and evaluated from a business 

perspective concerning their severity towards security and privacy, ordered from most to least critical. 

 

  



- 44 - 

 

7.1.1 Malicious algorithms 

 

Risk 

With compute-to-data, it is essential that algorithms do not act maliciously. Algorithms returning 

the data itself, instead of sufficiently aggregating it, defeat the purpose of compute-to-data and pose 

a critical risk. Given the trustless environment, anyone can buy compute access to data assets. 

Therefore, the selection, vetting and approval of algorithms need to be managed and restricted 

effectively. According to GDPR, the data owner is ultimately responsible for ensuring the 

confidentiality of PII, so he is responsible for governing which algorithms to trust, no matter who is 

operating the compute container. In addition to losing the data, a publisher faces a financial risk 

because GDPR specifies fines up to 4% of a company's annual turnover when losing PII at scale. 

 

In a practical attack, an attacker could provide an algorithm that echoes the data. More sophisticated 

attacks could include code obfuscation or rogue software library imports to disguise their intent. 

 

Severity 

The resulting risk of malicious algorithms is critical. It can possibly lead to uncontrolled leakage of 

sensitive data. Consequently, financial loss (GDPR fines, compensation) and reputational loss are to 

be expected. 

 

Mitigation strategy:  

The execution of algorithms must be restricted effectively 

Algorithms must be inspected, vetted and approved before execution. A narrow 

implementation of vetted algorithms on the Ocean Protocol reference marketplace (GUI) is 

currently in development by the Ocean Protocol Foundation. Data providers will be able to 

whitelist and only allow trusted algorithms for remote computation.  

 

However, the functionality is not available as of January 2021. To mitigate the risk, the 

publisher can restrict the supported algorithms to pre-published known (and vetted) ones. He 

or she needs to inspect the algorithm and register it as a data assets itself to ensure its integrity. 

Following that, the algorithm can be allowed for compute-to-data by referencing its DID 

inside the compute Service Execution Agreement (SEA). Once registered as a trusted 

algorithm, it can be included in trusted repositories and used by anyone. This workaround is 

feasible for common use cases and simple computations like in federated analytics. However, 

the profound vetting of more complicated algorithms remains a challenge. A professional 

software audit is recommended when dealing with complex algorithms on critical data assets. 

 

Output checking 

Before returning, the computation result needs to be inspected concerning data leakage. 

Output checking requires human experts and manual labour. It cannot be automated 

effectively as of today [61] [62]. Depending on the complexity of algorithms, the sensitivity 

of the data and the size of the dataset, the task of manual output checking can occupy a lot of 

resources. 

 

Residual risk: 

Very low, if algorithms are vetted, audited and approved by data owners, then registered as an 

immutable data asset on the blockchain and output checking is done by human experts. 

 

 

 

  



- 45 - 

 

7.1.2 Data asset integrity 

 

Risk 

The integrity of data assets is guaranteed by hashing the asset, storing its hash in the DDO and 

referencing the DDO with an identifier (DID). Data integrity is critical when trusted algorithms to be 

used with compute-to-data are registered on-chain, like proposed before. It is essential that the 

algorithms cannot be altered. However, Ocean Protocol does not enforce data integrity. This is 

because data providers can continuously update their data assets, which is desired for assets like 

weather and financial data, which can be updated daily or hourly without always interacting with on-

chain metadata. If an integrity check is required, the data provider is responsible for providing a 

checksum to be written into the DDO and stored on-chain.  

 

In case the checksum is missing, an attacker might be able to alter the data asset. Because the integrity 

cannot be checked automatically, there exists a risk that a malicious compute-to-data algorithm hides 

behind a trusted DID and DDO and is executed on sensitive data.  

 

Severity 

The resulting risk of malicious algorithms, as a consequence of missing integrity checks of data assets, 

is critical. It can possibly lead to uncontrolled leakage of sensitive data. Consequently, financial loss 

(GDPR fines, compensation) and reputational loss are to be expected. 

 

Mitigation strategy 

The integrity of a data asset can be guaranteed by setting the ‘integrity’ DDO file attribute.  

 

The data provider is responsible for taking care of the integrity check when first registering the data 

asset. The checksum is then stored on-chain as part of the DDO.  

Moreover, when consuming a compute service with compute-to-data, the integrity check needs to be 

performed again once the algorithm arrives at the compute provider.  

 

Residual risk 

None, if a checksum was provided at the time of publishing and integrity is rechecked before data 

consumption. 

 

 

  



- 46 - 

 

7.1.3 Data token leaks, theft and misuse 

Risk 

Anyone who owns a data token can access the corresponding data assets. Because of the 

permissionless approach, data tokens can be traded anywhere. If tokens are stolen, leaked, sold on a 

black market, or simply sent to a wrong address, the new token holder can consume the data asset. 

Depending on the data and related regulation (i.e. health data, personal data), this circumstance can 

pose a critical risk. For those use cases, it is essential to be able to restrict access to authorized groups; 

for example, only registered medical personnel is allowed to access patient data. 

 

Severity 

The resulting risk of data token leaks, theft and misuse can be high to critical, depending on the grade 

of data sensitivity. When compute-to-data access tokens are affected, it can possibly lead to 

uncontrolled leakage of sensitive data. Consequently, financial loss (GDPR fines, compensation) and 

reputational loss are to be expected. 

 

Mitigation strategy 

To mitigate the risk, group-restricted access to marketplaces is needed to limit who can consume data. 

The restriction might be needed at the level of organizations, companies, departments or roles.  

 

Possible ways to restrict access to authorized groups are:  

(1) Restrict at ERC20 contracts level 

(2) restrict access to the marketplace 

(3) restrict the ability to buy in the marketplace 

(4) restrict at the point of consumption.  

 

Option 2 and 3 are insecure because they do not prevent misuse of leaked or stolen data tokens.  

 

Restrictions in the ERC20 data token smart contract can restrict the transfer and use of data tokens to 

authorized groups. The restriction can be implemented by referencing authorized addresses in the 

immutable contract. The contract only accepts transactions from these addresses and to transfer a data 

token, authorized users need to sign the respective transaction with their private key. Given the smart 

contract properties discussed before, the solution offers the highest security of the four approaches. 

On the other hand, it requires a custom implementation which modifies the data token contract’s 

transfer(), approve() and transferFrom() functions. This needs to be done for every contract by 

revising the contract template, which is always instantiated at the time of token generation through 

an ERC-1167 proxy contract. The change requires a security audit. It might be appropriate for 

organizations who desire maximum control, have the resources to implement and maintain custom 

contracts and whose data is sensitive or regulations are strict enough to justify the effort.  

 

Option 4 restricts at the point of consumption. This could be implemented by introducing credentials 

that are checked by Ocean Provider. A possibility is to use Verifiable Credentials (VC), where the 

issuing authority signs an attestation that a DID belongs to a credential. Using this approach 

significantly lowers the consequences and the resulting risk of data token leaks or theft because tokens 

can only be consumed if the consumer holds a Verifiable Credential. 

 

All in all, restrictions at ERC20 contract level can be considered most secure but require a custom 

implementation. It could be appropriate for specific use cases where the criticality of data assets 

justifies the expenditure. For standard use cases and depending on the criticality of data assets, a 

restriction can be sufficient at the point of consumption. It is less complex to develop, implement and 

maintain and effectively restricts access to authorized groups if the VC is not compromised. 

 

Residual risk 

None, if restrictions at contract level are correctly implemented.  

Very low, if data assets are bound to Verifiable Credentials. 

 



- 47 - 

 

7.1.4 Model leaks, overfitting, unintended memorization 

 

Risk 

With compute-to-data, it is essential that algorithms do not act maliciously.  

However, algorithms do not necessarily be intentionally malicious to pose a risk. In some cases, 

algorithms can exfiltrate PII without the data consumers intent. Possible ways are model leaks, 

training set inferences, overfitting or unintended memorization. 

 

- Model leaks: Federated learning and related techniques might leak unintended information 

about the data providers datasets. Inference attacks can exploit this leakage. [63] “A curious 

party can infer the distribution of sensitive attributes in other parties’ data with high accuracy. 

This raises concerns regarding the confidentiality of properties pertaining to the whole dataset 

as opposed to individual data records. […] Leakage occurs even if the sensitive attribute is 

not included in the training data.” [64] 

 

- Overfitting: With overfitting, a model corresponds too closely or exactly to the training set. 

It is also referred to as ‘overtraining’. The model unknowingly extracted and remembered 

some of the training examples instead of learning to generalize [65]. If the model was trained 

on PII, it could unknowingly exfiltrate personal data. 

 

- Unintended memorization appeals to some types of machine learning models, that “have a 

tendency to memorize rare or unique sentences in the training data.” […] The prediction 

model can leak information about the underlying training data in unexpected ways. […] 

“Since useful models are often trained on sensitive data, to ensure the privacy of the training 

data, it is critical to identify and mitigate such unintended memorization” [66] 

 

The risks are fundamental to federated learning and not specific to Ocean Protocol. Still, they can be 

relevant when remotely training machine learning models with compute-to-data. 

 

Severity 

The resulting risk of model leaks, overfitting and unintended memorization, can be high to critical, 

depending on the sensitivity of the training data. When training on personal data, it can possibly lead 

to uncontrolled leakage of PII. If the leak affects a large number of individuals, financial loss (GDPR 

fines, compensation) and reputational loss are to be expected. 

 

Mitigation strategy 

Mitigation is a challenging task because the risks are fundamental to federated learning and not 

specific to Ocean Protocol or dependent on a particular implementation. Moreover, as risks might 

even be realized without the presence of an attacker, as an unintended by-product of the computation, 

detection and prevention is challenging.  

 

Residual risk 

The unknown exfiltration of PII remains a possibly critical risk, that demands further consideration 

and research. Depending on data sensitivity (especially “special categories of personal data” 

according to GDPR Art. 9) the risk can be critical. Viewed on a timeline, the risk is minimally 

lower in the short-term because of the absence of an immediate attacker. 

 

 

  



- 48 - 

 

7.1.5 Model poisoning 

 

Risk 

With model poisoning, a malicious data provider aims to attack a data consumer by injecting bad data 

into the training set, so that the machine learning model learns something unintended. Poisoning 

attacks can be differentiated in targeted and untargeted attacks. [67] 

 

- Untargeted attacks have the goal to corrupt a model by injecting bad data, such that the 

accuracy drops until the model becomes useless. 

- Targeted attacks, also known as backdoor attacks, aim to preserve the models' accuracy 

except for one exception, which is the backdoor. “The objective of the attacker is to create a 

backdoor that allows the input instances created by the attacker using the backdoor key to be 

predicted as a target label of the attacker’s choice. For example, performing backdoor attacks 

against face recognition systems enables the attacker to impersonate another person. Thus the 

attacker can mislead the authentication system into identifying him as a person that has access 

to a building or a device so that the attacker can get into a place or a system that he originally 

cannot access.“ [68] 

 

Model poisoning attacks are a fundamental risk of federated learning and not specific to Ocean 

Protocol. However, because of the trustless environment, everyone can provide training data, and 

Ocean Protocol does not provide any protection. It does not check the integrity of data assets offered 

for remote computation with compute-to-data. Even if such a feature existed, an attacker could easily 

circumvent it by registering malicious datasets in the first place. Furthermore, a malicious data 

provider does not necessarily need to provide bad data. He also could just replace the model with its 

own backdoored one before returning it. [69] 

 

Severity 

Untargeted attacks are easy to detect because the model does not work as intended. They mainly 

result in a financial loss because they waste computational and data resources. 

 

However, targeted attacks are hard to detect, because the model provides the intended accuracy in 

all cases, except for the backdoor, which is only known to the attacker. The attack can remain 

unrecognized for a long time. Besides financial loss, an attack could lead to safety issues and 

reputation loss. 

 

Mitigation strategy 

Existing mitigation strategies against backdoor attacks require examination of the training data or 

full control of the training procedure [70, 71]. Both are not possible with compute-to-data.  

To mitigate the risk and when training models where safety is critical, data consumers should rely 

on trusted data providers. 

 

Technically, the most common defence strategy to model poisoning is outlier/anomaly detection. 

Because adversarial input is often very different from genuine input, it can be detected in theory. 

Nevertheless, in practice, the approach is problematic. If the poisoning already happens during the 

first iterations, or the adversarial inputs are very similar to genuine input, outlier detection is 

defeated. 

 

Residual risk 

Low, if data consumers only rely on trusted data providers. 

 

 

  



- 49 - 

 

7.1.6 Profiling  

 

Risk 

Full transparency is a fundamental property of permissionless blockchains. Hence, smart contracts, 

token transfers and applications based on blockchain inherit those properties. While transparency has 

advantages with respect to auditability and explainability, it introduces risks. An organization’s 

transactions can be monitored and analyzed, enabling profiling by competitors. Applied to Ocean 

Protocol, data token transfers which relate to data sales and consumes are publicly recorded on-chain. 

Moreover, the transactions can be matched to specific data assets and consumes. As compute-to-data 

is mainly used to train machine learning models, competitors might infer information about internal 

research and development projects. 

 

Furthermore, it has to be noted that Ethereum smart contracts, their state and logic, and inputs and 

outputs are public and logged on-chain. 

 

Severity 

The resulting risk of blockchain profiling can vary from none to medium risk, depending on the use 

case. It does affect metadata, from which competitors might infer information about internal research 

and development projects. 

 

Mitigation strategy 

Full transparency is a fundamental property of Ocean Protocol. Market participants can try to 

obfuscate their identity and actions, but the transactions will always be recorded on a public ledger. 

A basic workaround to hinder profiling is to generate a new private/public key-pair for a transaction 

like each data consume. However, the shuffling approach can be considered as ‘security by obscurity’ 

and only raises the outlay of profiling but does not mitigate the risk, especially with respect to 

blockchain forensics. 

 

When sharing data within a branch or group of companies and confidentiality on the transaction layer 

is needed, deployment on a private blockchain (‘consortia blockchain’) is possible. It could be bridged 

to the main Ethereum network to allow for interoperability. 

 

Besides, there exists technology to ensure confidentiality of smart contract input, logic and states. 

One possibility is “Secret Network” [72], which can be combined with Ocean Protocol to enable 

secret on-chain computation and storage to be used for metadata, SEAs and similar functionality. 

Secret Network (former known as “Enigma” [73]) aims to encrypt smart contract input and output 

data as well as state, ensuring confidentiality, also towards node operators executing contracts. The 

feature is implemented by encapsulating smart contracts into Trusted Execution Environments (TEE). 

More information is available here [74]. 

 

Residual risk 

The residual risk of blockchain profiling and forensics, when applying obfuscation methods, can vary 

from none to medium risk, depending on the use case.  

It can possibly be lowered in future releases that leverage “Secret Network” to conceal smart contract 

input, output and state. 

 

 

 

  



- 50 - 

 

7.1.7 URL disclosure 

 

Risk 

URLs to data assets are encrypted before they are stored on-chain. The Ocean Provider component 

carries out the encryption. Hence, Ocean Provider also has access to plain text URLs. There exists a 

risk that a malicious Ocean Provider operator misuses his position to gain access to data asset URLs. 

An attacker who operates his own marketplace and Ocean Provider can consume data assets 

(download, stream) without interacting with smart contracts because the URL is known. The attack 

does not apply to compute-to-data, as a valid SEA is needed to initiate remote compute jobs. 

 

In general, operating Ocean Provider or relying on a third-party Provider is a trade-off between 

trustlessness and convenience. Data publishers can either have a fully trustless operation (by 

deploying and operating their own Ocean Provider) or convenience (by just publishing on a third-

party Provider), but not both at the same time. 

 

Severity 

The risk is low because an attacker only gets access to data that is intended to be sold and accessed 

by download or stream. Consequently, it cannot contain PII. The attack circumvents the payment and 

is limited to the entity who controls Ocean Provider. In the worst case, the attacker gets access to data 

intended to be shared but does not need to pay.  

The attack results in a financial loss, but no risk of data leakage. 

 

Mitigation strategy 

For now, organizations that want to sell valuable data at scale should consider deploying their own 

marketplace and Ocean Provider. The risk does not apply when Ocean Provider is not operated by a 

third party. If deploying a dedicated market is not an option, data providers should sell their data on 

trusted marketplaces, like the Ocean Protocol Foundations reference marketplace or other 

marketplaces operated by reputable entities. 

 

In the future, Secret Network can be leveraged to encrypt URLs. It offers a practical solution to 

encrypt URLs in a decentralized way without relying on Ocean Provider. The URL can be provided 

as an encrypted input into a secret smart contract, stored in its state, and the URL can only be 

decrypted by the data token of the corresponding data asset. This eliminates the need for a trusted 

entity. The solution is currently under development [75]. 

 

Residual risk 

None, if running a self-owned marketplace and Ocean Provider. 

Very low, if relying on trusted third-party marketplaces. 

 

 

  



- 51 - 

 

7.1.8 Smart contract upgradeability 

 

Risk 

Smart contracts are immutable by default. However, they can be designed to be upgradeable. 

Upgradeable smart contracts pose a risk because a malicious contract owner could abuse his power 

to upgrade a contract. The contracts could grant access to data assets on the malicious owners’ 

conditions, for example, without requiring payment or data tokens. 

 

Technically, updates can be made upgradeable by using proxy contracts. Relevant contracts within 

Ocean Protocol (metadata, fixed-rate exchange, liquidity pool contracts) are immutable. However, an 

attacker could deploy his own market based on proxy contracts, regularly operate the market for some 

time and upgrade the contracts once enough data assets are registered on his market. In this case, the 

risk exists that the attacker and other market participants can consume data assets (download, stream 

or compute) without needing to pay. 

 

The proxy setting should not be confused with the ERC1167 proxy contracts used for data token 

generation. In contrast, they increase security because the contract does nothing but proxying to its 

hard-coded immutable reference.  

 

Severity 

The risk is low to medium. In case of a successful attack, the attacker and any market participant get 

access to data assets intended to be sold and accessed by download or stream. Hence, they do not 

contain PII. The attack circumvents the payment or data token transfer. In the worst case, data that is 

intended to be shared can be accessed for free.  

The attack results in financial loss, but no risk of data leakage. 

 

Mitigation strategy 

Before publishing data on third-party marketplaces, data providers should check if smart contracts 

were designed to be upgradeable. If they are not, the risk does not apply. 

 

Residual risk 

None. 

 

  



- 52 - 

 

 

7.2 Usability, scalability and costs 
 

Scalability 

Ocean Protocol is currently only deployed on the Ethereum blockchain. Hence, it is limited to 

Ethereum’s capabilities. Ethereum in its current state scales to 15 transactions per second [76] and the 

transaction capacity is shared between all applications building on top. Moreover, as transactions are 

chained since its inception, every node needs to store the full blockchain history. The ledger had reached 

a size of 195GB as of late 2020 since its genesis block in July 2015. [77]   

Cost 

Storage on the Ethereum blockchain is expensive. In late 2020, persistent storage of one megabyte costs 

several thousand Euros.7 To lower gas expenditures, Ocean Protocol stores minimal data on-chain. 

Storage and transaction capacity are kept to a minimum by leveraging proxy contracts, off-chain 

metadata for non-DDO attributes and metadata caching. Moreover, gas fees are volatile, as pricing in 

Ethereum depends on the utilization of the network. Prices usually fluctuate with user activity. Average 

prices to publish a data asset have been between 20 and 30 EUR in late 2020. To give a practical 

example, the publication of a data asset on the Ethereum main-net8 as of late 2020 resulted in gas fees 

of about 30 EUR. As described before, it is paid once by the data publisher. A consume of the same data 

asset did cost the buyer 2.30 EUR.9   

Transaction Price in EUR 

Create token 6.84    10 

Publish metadata 3.53    11 

Create liquidity pool: 3.81    12 

Approve 1.10    13 

Setup liquidity pool 14.70  14  

Total 29.98 

 

Usability 

While the Ethereum blockchain is sufficient to demonstrate the concept of decentralized data sharing, it 

is presumably not capable enough to power a larger decentralized data economy with its throughout of 

15 transactions per second. Besides Ocean Protocol, Ethereum currently hosts another 1700 active 

decentralized applications. [78] In addition, the publication costs of up to 30 EUR per data asset are 

ineligible for micro-assets like IoT data and exclude many use cases relevant to the data sovereignty of 

individuals, especially in countries of low income. For large and valuable data assets, the throughput is 

sufficient for now. However, Ocean Protocol does consider itself blockchain agnostic. It can be deployed 

to any chain supporting ERC20 contracts. Despite their name, ERC20 contracts became a de-facto smart 

contract standard and are now being implemented on many distributed ledgers. The goal for Ocean 

Protocol is to become “multi-chain” and to support many blockchains with respect to different use cases. 

[79] Data assets that require the security of Ethereum because of their value or sensitivity can reside on 

Ethereum, while use cases like IoT streaming data can in the future migrate to a chain with lower fees 

and level of security but more throughput.  

 
7 To store a 256 bit word on the Ethereum blockchain costs 20.000 gas fees [33]. A megabyte is thus 655,360,000 gas. The average gas price 

as of late 2020 is about 20 gwei (0.00000002 ETH), so a megabyte of storage costs about 13 ETH which is circa 6.000 EUR (at 470 EUR per 

ETH in December 2020). It must be noted that prices are volatile. Gas prices change continually depending on blockchain utilization. ETH 
prices are subject to market volatility. 
8  https://market.oceanprotocol.com/asset/did:op:7Bce67697eD2858d0683c631DdE7Af823b7eea38 
9  https://etherscan.io/tx/0x9625709e4bf4f51991a9e9bc3e95c9338e942c0ce075e9323b75603e65f2c4af 
10 https://etherscan.io/tx/0x8471e70e590fc2863ff9c403371658198f89e991e1220592460f36fd7ec03092 
11 https://etherscan.io/tx/0xf20705123c2907c5f07981a7a8f78f018c0e04d4be73fcafc30866c2eec48f71 
12 https://etherscan.io/tx/0x3290f70b3cc6e7889a7e3be009ae5a1d7c54823ac4114ff18d45bd456665e513 
13 https://etherscan.io/tx/0x757a1eea326d061475c32ed4d4dc5074928bf3f902caf2ec5267fc3658a69b3e 
14 https://etherscan.io/tx/0x23ad38f4a8dfc0598c659044404e328124835868c8309b61357835fda4526544 



- 53 - 

 

7.3 Limitations 
Given the risks and usability/scalability issues for specific use cases, Ocean Protocol has limitations that 

prevent its unlimited large-scale use today. Compared to the state-of-the-art data marketplaces presented 

in Section 2.2, most risks are not unique to Ocean Protocol, but a fundamental issue with privacy-

preserving data marketplaces. While the decentralized approach solves many issues the centralized 

competition faces, it indeed introduces novel difficulties with regard to scaling, cost and (too much) 

transparency.  

All in all, the major limitations of all privacy-preserving data marketplaces are: 

- Malicious algorithms 

Algorithms returning the data itself, instead of sufficiently aggregating it, pose a critical risk. It 

can possibly lead to uncontrolled leakage of sensitive data. The issue can be solved if algorithms 

are vetted, audited and approved by data owners. 

 

- Output checking 

Before returning, the results of remote computations need to be inspected concerning data 

leakage. Output checking requires human experts and manual labour. It cannot be automated 

effectively as of today, and mistakes can possibly lead to uncontrolled leakage of sensitive data. 

 

- Model poisoning 

By injecting bad data into a training set, a malicious data provider can sabotage machine 

learning models of consumers. Targeted attacks are hard to detect and can remain unrecognized 

for a long time. Besides financial loss, an attack could lead to safety issues and reputation loss. 

 

Unique to Ocean Protocol are the limitations of  

- Full transparency 

Blockchain transactions can be monitored and analyzed, enabling profiling by competitors. 

With Ocean Protocol, data token transfers which relate to data sales and consumes are publicly 

recorded on-chain. Competitors might be able to infer information about an organization's 

internal research and development projects. 

 

- Costs 

Blockchain storage is expensive. Despite being as lightweight as possible, the publication of 

data assets costs up to 30 EUR per asset. This does not qualify Ocean Protocol for use cases 

related to micro-data, IoT and mass exchange of smaller assets. 

 

- Scalability 

Ethereum scales to 15 transactions per seconds while hosting another 1700 decentralized 

applications. The scalability is presumably not sufficient for a mature decentralized data 

economy.  

But, to our best estimate, the remaining problems of Ocean Protocol that prevent mass-usage can be 

solved with further developed distributed ledger technology, that enables scalability, lower fees, and 

confidential distributed computation. With the blockchain-agnostic approach, Ocean Protocol can be 

ported with little effort to whichever distributed ledger offers the best solution in the future. 

On the other hand, the state-of-the-art centralized privacy-preserving marketplaces remain 

fundamentally flawed because of their underlying principle of custodial data repositories, where data 

owners lose control over their data. They need to move and pseudonymize their assets and are reliant on 

a third party to keep their data safe if they want to use such a marketplace.  



- 54 - 

 

8. Conclusion 
 

Compared to the state-of-the-art data marketplaces presented in Section 2.2, Ocean Protocol is the first 

technology to enable the possibility of trading and exchanging data and corresponding access rights in 

an open, permissionless and trustless environment while preserving privacy. The technology 

theoretically enables individuals and institutions around the globe to participate in a global data economy 

while complying with privacy regulations. Hence, Ocean Protocol offers the tools to strengthen the data 

sovereignty of data market participants. 

To our best knowledge, it is the first solution which brings the conjunct properties of permissionless-

ness, trustlessness, immutability, accountability, token-based access control, token-based non-custodial 

data ownership, censorship resistance and GDPR-compliance to the world of data sharing.  

The deployment of our prototype confirmed the fundamental functionality in practice. We detected no 

drawbacks that considerably hinder the utilization of Ocean Protocol in practice to build privacy-

preserving data sharing solutions on top. Especially when used with large and valuable data assets, 

Ocean Protocol is a suitable and, compared to the state-of-the-art data marketplaces presented in chapter 

2.2, superior solution. 

 

Opportunities 

Ocean Protocol with compute-to-data appears to be a promising toolset, especially for data scientists 

and AI researchers: 

- It opens access to data which was previously inaccessible. 

- Data owners retain control of their data. It never leaves their premises. 

- Data owners can sell data access without moving it, which is convenient and inexpensive when 

dealing with large datasets. 

- It ensures compliance with privacy regulations like GDPR because data containing PII is not 

moved or copied internally, nor accessed by third parties. 

- It promotes trust by ensuring that algorithms were correctly executed so that AI researchers can 

be confident with the resulting models. 

- It ensures auditability and provenance because all transactions are recorded on-chain, forming 

a tamper-proof audit trail. 

- It improves the explainability of models (which is also mandated by GDPR). 

- It allows for selling trained AI models or synthetic data obtained by using compute-to-data. 

 

The concept enables privacy-preserving data sharing across organizations. To give an example, this is 

especially useful when applied to verticals like the health sector, where Ocean Protocol enables the 

possibility to train machine learning models across patient data residing at different hospitals. Because 

the data never leaves its location, the administrative and regulative overhead remains low. 

  



- 55 - 

 

Moreover, the decentralized approach enables unique features that centralized marketplaces cannot offer 

by design: 

- Token-based access control on an immutable ledger 

- Automated decentralized price discovery for data assets 

- Data curation where curators are incentivized to find quality data assets 

- Censorship-resistance 

- Non-custodial data exchange 

- No single point of failure 

- Provenance 

- Auditability 

 

The security and privacy characteristics of Ocean Protocol mainly depend on the trustfulness of 

compute-to-data algorithms which is the most crucial property to monitor when used in practice. 

Because the inspection of computing output remains a fundamental problem, we advise restricting the 

remote execution by following a whitelist approach to only allow vetted and trusted algorithms. When 

dealing with complex algorithms, we recommend a professional audit. Afterwards, trusted algorithms 

can be registered as a data asset on-chain while their integrity is ensured by design.  

Furthermore, it must be noted that profiling of transactions is generally possible because of the reliance 

on a public blockchain layer. It can be contained to a certain extent by shuffling addresses and moving 

sensitive interactions onto “Secret Network” based smart contracts. For highly sensitive data, we advise 

that the compute provider himself/herself publish and stores his/her trusted algorithms to prevent attacks 

that go beyond the functional capabilities of Ocean Protocol.  

When following said recommendations, we conclude that Ocean Protocol enables secure privacy-

preserving data sharing of large and valuable data assets at scale and is a suitable tool to sell latent 

but sensitive data assets. 

However, it must be noted that selling compute access adds a small but non-zero probability to the risk 

of data leakage because it requires additional components, complexity and connectivity to be added to 

the internal infrastructure. If the resulting risk of allowing connectivity from internal storage systems to 

DMZ is not acceptable, data can be replicated to DMZ. If both options are considered inappropriate, 

compute-to-data cannot be used because the compute cluster (which needs to have read access to the 

private data) needs to communicate with Ocean Operator components which relay information to and 

from the internet. When in doubt, we recommend a risk assessment, including regulatory risk, to 

evaluate if the risk-reward-tradeoff is justified. 

 

 

  



- 56 - 

 

9. Future research  
 

Future work and research are mainly related to the risk of remote computation. The appropriate vetting, 

audit and standardization of trusted algorithms need to be analyzed with the overall goal to automate as 

much as possible while keeping the risks to an acceptable level. Because manual output checking 

remains as a fundamental problem and human task within any privacy-preserving data exchange, minor 

additional human work with respect to the quality control of algorithms can be accepted. 

As the main technical limitations of the Ocean Protocol toolset today are scalability, cost, and being 

overly transparent, those are the most urgent to work on to enable a broad and diverse data economy on 

top. However, the limitations are resulting from the underlying blockchain layer and not from the Ocean 

Protocol implementation. Hence, if we consider a permissioned blockchain inappropriate and do not 

want to develop one ourselves, we must wait for blockchain developments to catch up with real-world 

requirements. Whenever a scaling solution with lower or no fees appears, Ocean Protocol is ready to be 

deployed in production and at scale for every type of data asset. 

  



- 57 - 

 

10. Bibliography 
 

References 

[1] Ocean Protocol, Roadmap. [Online]. Available: https://oceanprotocol.com/technology/roadmap 

(accessed: Nov. 29 2020). 

[2] BigchainDB GmbH. [Online]. Available: https://www.bigchaindb.com/ (accessed: Dec. 13 2020). 

[3] Ocean Protocol Foundation. [Online]. Available: oceanprotocol.com/about (accessed: Dec. 13 

2020). 

[4] Ocean Protocol, Github. [Online]. Available: github.com/oceanprotocol (accessed: Dec. 13 

2020). 

[5] ISO 25237:2017, Health informatics - Pseudonymization. [Online]. Available: https://

www.iso.org/standard/63553.html (accessed: Dec. 29 2020). 

[6] Data Republic. [Online]. Available: https://www.datarepublic.com/ (accessed: Dec. 30 2020). 

[7] OPAL Project. [Online]. Available: https://www.opalproject.org/ (accessed: Dec. 30 2020). 

[8] X-Road Data Exchange. [Online]. Available: https://x-road.global/ (accessed: Dec. 30 2020). 

[9] TensorFlow Federated. [Online]. Available: https://www.tensorflow.org/federated (accessed: 

Dec. 12 2020). 

[10] OpenMined. [Online]. Available: https://www.openmined.org/ (accessed: Dec. 12 2020). 

[11] F. M. Bencic and I. Podnar Zarko, “Distributed Ledger Technology: Blockchain Compared to 

Directed Acyclic Graph,” pp. 1569–1570, doi: 10.1109/ICDCS.2018.00171. 

[12] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2009. [Online]. Available: 

https://bitcoin.org/bitcoin.pdf 

[13] D. Tapscott and A. Tapscott, Blockchain revolution: How the technology behind bitcoin is 

changing money, business, and the world. New York: Portfolio / Penguin, 2016. 

[14] Ethereum Foundation, Introduction to smart contracts. [Online]. Available: https://ethereum.org/

en/developers/docs/smart-contracts/ (accessed: Nov. 17 2020). 

[15] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-Enabled Smart 

Contracts: Architecture, Applications, and Future Trends,” IEEE Trans. Syst. Man Cybern, Syst., 

vol. 49, no. 11, pp. 2266–2277, 2019, doi: 10.1109/TSMC.2019.2895123. 

[16] Ethereum Foundation, Solidity. [Online]. Available: https://github.com/ethereum/solidity 

(accessed: Nov. 17 2020). 

[17] Ethereum Foundation, Solidity 0.7.4 documentation. [Online]. Available: https://

docs.soliditylang.org/en/v0.7.4/ (accessed: Nov. 17 2020). 

[18] Ethereum Foundation, “EIP-20: ERC-20 Token Standard,” 19 Nov., 2015. https://

eips.ethereum.org/EIPS/eip-20 (accessed: Nov. 17 2020). 

[19] Ethereum Foundation, “EIP-721: ERC-721 Non-Fungible Token Standard,” 24 Jan., 2018. 

https://eips.ethereum.org/EIPS/eip-721 (accessed: Nov. 17 2020). 

[20] National Institute of Standards and Technology, “Digital Signature Standard (DSS),” U.S. 

Department of Commerce, 2013, doi: 10.6028/NIST.FIPS.186-4. 

[21] Ocean Protocol, Data Tokens. [Online]. Available: oceanprotocol.com/technology/data-tokens 

(accessed: Oct. 27 2020). 

[22] OAuth 2.0 — OAuth. [Online]. Available: https://oauth.net/2/ (accessed: Nov. 27 2020). 

[23] MetaMask Wallet. [Online]. Available: https://metamask.io/ (accessed: Dec. 9 2020). 

[24] MyEtherWallet. [Online]. Available: myetherwallet.com/ (accessed: Oct. 12 2020). 

[25] Trezor Hardware Wallet. [Online]. Available: https://trezor.io/ (accessed: Oct. 12 2020). 

[26] Ledger Hardware Wallet. [Online]. Available: https://www.ledger.com/ (accessed: Oct. 12 

2020). 

[27] Uniswap. [Online]. Available: uniswap.org (accessed: Nov. 18 2020). 

[28] Balancer Labs, Balancer Finance. [Online]. Available: https://balancer.finance/ (accessed: Nov. 

18 2020). 



- 58 - 

 

[29] Ocean Protocol, Ocean Market. [Online]. Available: github.com/oceanprotocol/market (accessed: 

Nov. 27 2020). 

[30] B. Pon, “Ocean V3 Is Now Live - Ocean Protocol,” Ocean Protocol, 27 Oct., 2020. https://

blog.oceanprotocol.com/ocean-v3-is-now-live-b47c0e73f52a (accessed: Dec. 13 2020). 

[31] T. Mcconaghy, “Ocean Protocol V3 Architecture Overview - Ocean Protocol,” Ocean Protocol, 

10 Dec., 2020. https://blog.oceanprotocol.com/ocean-protocol-v3-architecture-overview-

9f2fab60f9a7 (accessed: Oct. 26 2020). 

[32] Ethereum Foundation, “EIP-1167: Minimal Proxy Contract,” 22 Jun., 2018. https://

eips.ethereum.org/EIPS/eip-1167 (accessed: Nov. 27 2020). 

[33] Dr. Gavin Wood, “Ethereum: A secure decentralised generalised transaction ledger - EIP 150 

Revision,” [Online]. Available: http://gavwood.com/paper.pdf 

[34] Ocean Protocol, Ocean Protocol Enhancement Proposals - OEPs 8: Assets Metadata Ontology. 

[Online]. Available: github.com/oceanprotocol/OEPs/tree/master/8/v0.5 (accessed: Nov. 27 

2020). 

[35] W3C, Decentralized Identifiers (DIDs) v1.0. [Online]. Available: https://w3c.github.io/did-core/ 

(accessed: Nov. 27 2020). 

[36] Ocean Protocol, Ocean Protocol Enhancement Proposals - OEPs 7: Decentralized Identifiers. 

[Online]. Available: github.com/oceanprotocol/OEPs/blob/master/7/v0.3/ (accessed: Nov. 27 

2020). 

[37] Balancer Labs, Balancer Finance. [Online]. Available: https://balancer.finance/ (accessed: Dec. 

12 2020). 

[38] Ocean Protocol, “Compute-to-Data,” oceanprotocol.com/technology/compute-to-data (accessed: 

Nov. 29 2020). 

[39] VMware, What is a Kubernetes Cluster? [Online]. Available: https://www.vmware.com/topics/

glossary/content/kubernetes-cluster (accessed: Nov. 28 2020). 

[40] D. de Jonghe, “Exploring the SEA: Service Execution Agreements - Ocean Protocol,” Ocean 

Protocol, 30 Nov., 2018. blog.oceanprotocol.com/exploring-the-sea-service-execution-

agreements-65f7523d85e2 (accessed: Dec. 14 2020). 

[41] Ocean Protocol, Ocean Protocol Enhancement Proposals - OEPs 12: Execution of Compute 

Services. [Online]. Available: github.com/oceanprotocol/OEPs/tree/master/12 (accessed: Nov. 28 

2020). 

[42] Ocean Protocol, Smart contract ontract addresses for Rinkeby, Ropsten, Mainnet (accessed: Jan. 

8 2021). 

[43] Ocean Protocol, Aquarius. [Online]. Available: https://github.com/oceanprotocol/aquarius 

(accessed: Jan. 8 2021). 

[44] Elastic Stack: Elasticsearch. [Online]. Available: https://www.elastic.co/de/elastic-stack 

(accessed: Nov. 12 2020). 

[45] Ocean Protocol, Ocean Market. [Online]. Available: github.com/oceanprotocol/market (accessed: 

Oct. 12 2020). 

[46] Ocean Protocol, ocean.js. [Online]. Available: https://github.com/oceanprotocol/ocean.js 

(accessed: Jan. 8 2021). 

[47] Ocean Protocol, React. [Online]. Available: https://github.com/oceanprotocol/react (accessed: 

Jan. 8 2021). 

[48] Ocean Protocol, Provider. [Online]. Available: https://github.com/oceanprotocol/provider 

(accessed: Jan. 8 2021). 

[49] Ocean Protocol, Operator-Service. [Online]. Available: https://github.com/oceanprotocol/

operator-service (accessed: Jan. 8 2021). 

[50] Ocean Protocol, Operator-Engine. [Online]. Available: https://github.com/oceanprotocol/

operator-engine (accessed: Jan. 8 2021). 

[51] Rinkeby: Authenticated Faucet. [Online]. Available: https://faucet.rinkeby.io/ (accessed: Oct. 12 

2020). 



- 59 - 

 

[52] Ocean Rinkeby Token Faucet. [Online]. Available: faucet.rinkeby.oceanprotocol.com (accessed: 

Oct. 12 2020). 

[53] ETH Blockchain Explorer - Etherscan. [Online]. Available: https://rinkeby.etherscan.io/ 

(accessed: Nov. 12 2020). 

[54] Ocean Protocol, Contracts. [Online]. Available: https://github.com/oceanprotocol/contracts 

(accessed: Jan. 8 2021). 

[55] Infura, Ethereum API. [Online]. Available: https://infura.io/ (accessed: Oct. 12 2020). 

[56] Kubernetes, Installation of Minikube. [Online]. Available: https://kubernetes.io/de/docs/tasks/

tools/install-minikube/ (accessed: Oct. 12 2020). 

[57] Kubernetes, Install and Set Up kubectl. [Online]. Available: https://kubernetes.io/docs/tasks/

tools/install-kubectl/ (accessed: Oct. 12 2020). 

[58] Docker Documentation, Install Docker Engine. [Online]. Available: https://docs.docker.com/

engine/install/ (accessed: Oct. 12 2020). 

[59] Docker Documentation, Install Docker Compose. [Online]. Available: https://docs.docker.com/

compose/install/ (accessed: Oct. 12 2020). 

[60] MetaMask – Firefox Extension. [Online]. Available: https://addons.mozilla.org/de/firefox/addon/

ether-metamask/ (accessed: Nov. 12 2020). 

[61] Steve Bond, Maurice Brandt, Peter-Paul de Wolf - DwB (Data without Boundaries), “Guidelines 

for Output Checking: Improved Methodologies for Managing Risks of Access to Detailed OS 

Data,” [Online]. Available: https://ec.europa.eu/eurostat/cros/system/files/dwb_standalone-

document_output-checking-guidelines.pdf 

[62] Safe Data Access Professionals Working Group (SDAP), “Handbook on Statistical Disclosure 

Control for Outputs,” [Online]. Available: https://ukdataservice.ac.uk/media/622521/thf_

datareport_aw_web.pdf 

[63] Luca Melis and Congzheng Song, Emiliano De Cristofaro, Exploiting Unintended Feature 

Leakage in Collaborative Learning. [Online]. Available: https://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=8835269 (accessed: Dec. 30 2020). 

[64] W. Zhang, S. Tople, and O. Ohrimenko, “Dataset-Level Attribute Leakage in Collaborative 

Learning,” Dec. 2020. [Online]. Available: https://arxiv.org/pdf/2006.07267.pdf 

[65] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting in Deep Reinforcement 

Learning,” 2018. [Online]. Available: https://arxiv.org/pdf/1804.06893 

[66] O. Thakkar, S. Ramaswamy, R. Mathews, and F. Beaufays, “Understanding Unintended 

Memorization in Federated Learning,” Jun. 2020. Accessed: Oct. 27 2020. [Online]. Available: 

https://arxiv.org/pdf/2006.07490.pdf 

[67] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can You Really Backdoor Federated 

Learning?,” Nov. 2019. Accessed: Oct. 27 2020. [Online]. Available: https://arxiv.org/pdf/

1911.07963.pdf 

[68] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted Backdoor Attacks on Deep Learning 

Systems Using Data Poisoning,” 12/15/2017. [Online]. Available: https://arxiv.org/pdf/

1712.05526.pdf 

[69] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To Backdoor Federated 

Learning,” Feb. 2018. [Online]. Available: https://arxiv.org/pdf/1807.00459.pdf 

[70] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified Defenses for Data Poisoning Attacks,” 

Advances in Neural Information Processing Systems, vol. 30, pp. 3517–3529, 6755. 

[71] Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks (accessed: 

Dec. 30 2020). 

[72] Secret Network. [Online]. Available: https://scrt.network/about/about-secret-network (accessed: 

Jan. 8 2021). 

[73] Secret Foundation, Enigma. [Online]. Available: https://www.enigma.co/ (accessed: Jan. 8 2021). 

[74] Secret Foundation, Network Wiki: How Secret Works (accessed: Jan. 8 2021). 

[75] Ocean Protocol, “Ocean and Secret: Collaborating on Access Control and Private Compute for 

datatokens,” Ocean Protocol, 19 Nov., 2020 (accessed: Jan. 8 2021). 



- 60 - 

 

[76] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of ethereum: An initial 

quantitative analysis,” in 2019 IEEE International Conference on Service-Oriented System 

Engineering (SOSE), San Francisco East Bay, CA, USA, Apr. 2019 - Sep. 2019, pp. 167–176. 

[77] Ethereum blockchain size chart — Blockchair. [Online]. Available: https://blockchair.com/

ethereum/charts/blockchain-size (accessed: Jan. 6 2021). 

[78] State of the DApps — DApp Statistics. [Online]. Available: https://www.stateofthedapps.com/de/

stats (accessed: Jan. 6 2021). 

[79] T. Mcconaghy, “Ocean on PoA vs. Ethereum Mainnet? - Ocean Protocol,” Ocean Protocol, 12 

Feb., 2019 (accessed: Jan. 6 2021). 

  



- 61 - 

 

11. List of Figures 
 

Figure 1: Data Republic Architecture .................................................................................................. - 7 - 
Figure 2: Ocean Protocol Architecture .............................................................................................. - 15 - 
Figure 3: Ocean Protocol data token exchange overview ................................................................. - 25 - 
Figure 4: Compute-to-data ................................................................................................................ - 27 - 
Figure 5: Starting compute-to-data remote compute jobs ................................................................. - 29 - 
Figure 6: Consume a data asset ......................................................................................................... - 34 - 
Figure 7: Prototype architecture ........................................................................................................ - 35 - 
Figure 8: Ocean Market web interface .............................................................................................. - 38 - 
Figure 9: VM1 - Infrastructure .......................................................................................................... - 38 - 
Figure 10: VM2 - Data Provider ....................................................................................................... - 39 - 
Figure 11: VM3 - Data Consumer ..................................................................................................... - 39 - 
Figure 12: Web Interface - Publish ................................................................................................... - 40 - 
Figure 13: Web Interface - Consume ................................................................................................ - 40 - 
 

 

 

  

file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952751
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952752
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952753
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952754
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952758
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952759
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952760
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952761
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952762
file:///C:/Users/fschw/Desktop/DRIVE/SynologyDrive/!FRED/THESIS/THESIS.docx%23_Toc60952763


- 62 - 

 

12. Appendix 
Instruction to set up a full Ocean Protocol stack with default configuration on Ubuntu. 

 

12.1 Prerequisites 
 

 sudo apt-get install git 
sudo apt-get install python3-dev 
sudo apt-get install python3-venv (or) python3-virtualenv 

 
 
 

12.2 Ocean provider 
 

git clone git@github.com:oceanprotocol/provider.git 
cd provider/ 
python3 -m venv venv 
source venv/bin/activate  
pip install Cython 
pip install -r requirements_dev.txt 

 

edit /provider/config.ini with respective parameters 
 

network = wss://<network>.infura.io/ws/v3/<id> 
dtfactory.address = <address> 
aquarius.url = http://127.0.0.1:5000 
ocean_provider.url = http://localhost:8030 
provider.address = <address> 
provider.key = <key> 

 

export FLASK_APP=ocean_provider/run.py 
export CONFIG_FILE=config.ini 
export PROVIDER_ADDRESS= <address> 
export PROVIDER_KEY= <key> 
 
flask run --port=8030  //make sure to be in virtual environment 
 

  

mailto:git@github.com:oceanprotocol/provider.git


- 63 - 

 

12.3 Aquarius metadata storage 
 

git clone https://github.com/oceanprotocol/aquarius.git 
cd aquarius/ 

 

1. Install requirements 
 
sudo apt update 
sudo apt install python3-dev python3.7-dev 
sudo apt install openjdk-11-jre-headless 

 

2. Set up an elasticsearch database 

export ES_VERSION=6.6.2  
export 
ES_DOWNLOAD_URL=https://artifacts.elastic.co/downloads/elasticsearch/elasti
csearch-${ES_VERSION}.tar.gz 
wget ${ES_DOWNLOAD_URL} 
tar -xzf elasticsearch-${ES_VERSION}.tar.gz 
sudo chown -R $USER /aquarius/elasticsearch 

 
3. Install aquarius server 

 
python3 -m venv venv 
source venv/bin/activate  
pip install -r requirements.txt 
export FLASK_APP=aquarius/run.py 
export CONFIG_FILE=config.ini 
 
export EVENTS_RPC=wss://rinkeby.infura.io/ws/v3/<id> 
export LOG_LEVEL=DEBUG 
export RUN_EVENTS_MONITOR=’1’ 
 
edit /aquarius/venv/artifacts/address.json and insert own addresses 
 

4. Run 

./elasticsearch-${ES_VERSION}/bin/elasticsearch & (don’t run as root!) 
flask run 
 

 

 

 

 
 

12.4 Ocean.js 
 

git clone https://github.com/oceanprotocol/ocean.js 
cd ocean.js 
npm install -g install-peerdeps 
install-peerdeps eslint-config-airbnb --dev 
npm install lib  
 
edit ocean.js/src/utils/ConfigHelper.ts 
npm start 

 

 



- 64 - 

 

12.5 React 
 

git clone https://github.com/oceanprotocol/react.git 
cd react 
npm install 
npm start 

 
 

12.6 Compute cluster 
 

1. Activate VT-x or AMD-v.  

Test if  ‘egrep --color 'vmx|svm' /proc/cpuinfo’  is not empty, else retry 

 

2. Install Docker, Kvm or Virtualbox 

 

3. Install Kubernetes cluster: Minikube15 

curl -Lo minikube 
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-
amd64 \ && chmod +x minikube 

 
 sudo cp minikube /usr/local/bin && rm minikube 

 

4. Install kubect116 command-line tools and connect it to the cluster 

 
curl -LO "https://storage.googleapis.com/kubernetes-release/release/$(curl 
-s https://storage.googleapis.com/kubernetes-
release/release/stable.txt)/bin/linux/amd64/kubectl" 
 
chmod +x ./kubectl 
sudo mv ./kubectl /usr/local/bin/kubectl 
kubectl version --client 
 
minikube start  
kubectl cluster-info 

 

  

 
15 https://kubernetes.io/de/docs/tasks/tools/install-minikube/ 
16 https://kubernetes.io/docs/tasks/tools/install-kubectl/ 



- 65 - 

 

5. Configure compute-to-data17 

 

mkdir /ocean/operator-service 

Copy config files to /ocean/operator-service 

postgres-configmap.yaml 
postgres-storage.yaml 
postgres-deployment.yaml 
postgres-service.yaml 
deployment.yaml 
role_binding.yaml 
service_account.yaml 

 

mkdir /ocean/operator-engine 

Copy config files to /ocean/operator-engine 

sa.yaml 
binding.yaml 
operator.yaml 
computejob-crd.yaml 
workflow-crd.yaml 

 

Create namespaces 

kubectl create ns ocean-operator 
kubectl create ns ocean-compute 

 

Deploy Operator Service 

kubectl config set-context --current --namespace ocean-operator 
kubectl create -f /ocean/operator-service/postgres-configmap.yaml 
kubectl create -f /ocean/operator-service/postgres-storage.yaml 
kubectl create -f /ocean/operator-service/postgres-deployment.yaml 
kubectl create -f /ocean/operator-service/postgres-service.yaml 
kubectl apply -f /ocean/operator-service/deployment.yaml 
kubectl apply -f /ocean/operator-service/role_binding.yaml 
kubectl apply -f /ocean/operator-service/service_account.yaml 

 

Deploy Operator 

kubectl config set-context --current --namespace ocean-compute 
kubectl apply -f /ocean/operator-engine/sa.yml 
kubectl apply -f /ocean/operator-engine/binding.yml 
kubectl apply -f /ocean/operator-engine/operator.yml 
kubectl apply -f /ocean/operator-engine/computejob-crd.yaml 
kubectl apply -f /ocean/operator-engine/workflow-crd.yaml 
kubectl create -f /ocean/operator-service/postgres-configmap.yaml 

 

 

 
17 https://docs.oceanprotocol.com/tutorials/compute-to-data/ 

 

 



- 66 - 

 

Expose Operator Service 

kubectl expose deployment operator-api --namespace=ocean-operator --
port=8050 
 
kubectl -n ocean-operator port-forward svc/operator-api 8050 
 
curl -X POST "http://example.com:8050/api/v1/operator/pgsqlinit" -H  
"accept: application/json" 

 

 

 

12.7 Ocean market 
git clone https://github.com/oceanprotocol/market.git 
cd market 
npm install -g npm 
sudo chown -R $USER /home/ocean/market/ 
// switch to non-root user 
npm install 
npm start 

 

 

12.8 Ocean smart contracts 
 

1. Register at Infura18 to get an Infura ID 

2. Deploy contracts 

git clone https://github.com/oceanprotocol/contracts.git 
cd contracts 
sudo chown -R $USER /home/ocean/contracts/node_modules… 
npm i 
 
sudo export MNEMONIC='YOUR MNEMONIC HERE' 
sudo export INFURA_TOKEN='YOUR INFURA ID HERE’ 
 

edit /contracts/truffle.js and insert the first address of the mnemonic of the network to 

deploy to 

make sure the address has sufficient funds! 

sudo npm run deploy:<network> 

  

 
18 www.infura.io 



- 67 - 

 

12.8 Barge 
To test on a local environment first, one can use Barge. It incorporates the full Ocean Protocol stack 

with a local Ethereum test-net based on Truffle Suite19. 

1. Install Docker20 

sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ 
    gnupg-agent \software-properties-common 
 
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add 
– 
sudo apt-key fingerprint 0EBFCD88 
 
pub   rsa4096 2017-02-22 [SCEA] 
      9DC8 5822 9FC7 DD38 854A  E2D8 8D81 803C 0EBF CD88 
uid           [ unknown] Docker Release (CE deb) <docker@docker.com> 
sub   rsa4096 2017-02-22 [S]          // check if fingerprints match 

 

sudo add-apt-repository \ 
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ 
   $(lsb_release -cs) \stable" 
 
sudo apt-get update 
sudo apt-get install docker-ce docker-ce-cli containerd.io 
sudo docker run hello-world 

 
 

2. Install Docker Compose21 

 

sudo curl -L 
"https://github.com/docker/compose/releases/download/1.27.4/docker-compose-
$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose 
 
sudo chmod +x /usr/local/bin/docker-compose 
$ docker-compose –version 

 

 

3. Install Barge 

 

git clone https://github.com/oceanprotocol/barge.git 
cd barge 
 
cp .env.example .env 
./start_ocean.sh 

 
19 https://www.trufflesuite.com/ 
20 https://docs.docker.com/engine/install/ubuntu/ 
21 https://docs.docker.com/compose/install/ 

 


