
Miguel Ángel BARRERO DÍAZ

Adaptive traffic control system based on
genetic algorithms

FINAL MASTER’S PROJECT

Directed by Dr. Jordi DUCH GAVALDÁ

University Master’s Degree in Computer Security Engineering and Artificial
Intelligence

Tarragona

September 3, 2021

ii

“There is a driving force more powerful than steam, electricity and nuclear power: the will.”

Albert Einstein

iii

UNIVERSITAT ROVIRA I VIRGILI

Abstract
ETSE-School of Engineering

DEIM

University Master’s Degree in Computer Security Engineering and Artificial
Intelligence

Adaptive traffic control system based on genetic algorithms

by Miguel Ángel BARRERO DÍAZ

From the beginning of the road traffic, the infrastructures and regulations have
evolved with the objective of being adapted to the increasingly volume of vehicles
and its interaction with pedestrians. Traffic lights were developed aimed to auto-
mate the traffic regulation in road intersections and the police officers were replaced
by traffic lights geared by automated regulators. This solutions have evolved to-
wards complex systems where many parameters are taking into account and are ,in
general, managed from a control center. Usually, these kind of infrastructures has
large implementation costs and maintenance expenses and are not feasible in many
cases. This paper proposes a solution based on genetic algorithms were each traffic
light regulator has it own intelligent agent, which learns from traffic data and takes
time distribution decisions in a decentralized way, based only on its own parameters
taken from the environment.

HTTPS://WWW.URV.CAT
https://www.etse.urv.cat
http://deim.urv.cat

v

Acknowledgements
I will be eternally grateful to all my family, especially, my wife María, for her patient
along these years of sacrifice, many thanks to my master’s thesis supervisor Jordi
Duch, for his support in order to achieve the objectives of this work.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Historical notes on traffic lights . 1
1.2 Traffic congestion . 2

1.2.1 Causes of congestion . 2
Recurring congestion . 2
Non recurring congestion . 3

1.3 Measuring congestion . 3
1.3.1 Speed Reduction Index . 3
1.3.2 Speed Performance Index . 3
1.3.3 Travel Rate . 4
1.3.4 Delay Rate . 4
1.3.5 Delay Ratio . 4
1.3.6 Volume to Capacity Ratio . 4
1.3.7 Relative Congestion Index . 5
1.3.8 Road Segment Congestion Index 5

1.4 TL basic concepts . 6
1.5 Decentralization . 6
1.6 Genetic Algorithms (GA) . 6

2 State of the Art 9
2.1 Genetic Algorithm Solutions . 9

2.1.1 Optimal Control for Traffic Flows in the Urban Road Networks
and Its Solution by Variational Genetic Algorithm 9

2.1.2 Active control for traffic lights in regions and corridors: an ap-
proach based on evolutionary computation 9

2.2 Reinforcement Learning Solutions . 10
2.2.1 An Efficient Deep Reinforcement Learning Model for Urban

Traffic Control . 10
2.2.2 A Deep Reinforcement Learning Approach to Adaptive Traffic

Lights Management . 11
2.3 No AI Based Solutions . 12

2.3.1 The Job Scheduling Algorithm 12
2.3.2 The Max-Pressure Algorithm . 12

2.4 Limitations . 13

3 Genetic Algorithm Traffic Agent 15
3.1 Introduction . 15
3.2 Proposed Solution . 15

3.2.1 The traffic controller . 15

viii

3.2.2 The environment . 15
3.2.3 The optimization problem . 16
3.2.4 The simulator . 16
3.2.5 A traffic agent based on genetic algorithms 16

3.3 The architecture . 16
3.3.1 Traffic Light Controller . 17

Core . 17
Train environment . 17
Test Environment . 17
Connector . 18
Simulator . 18
Hall of fame (HOF) . 18

3.3.2 Real environment . 18
3.4 Definition of the problem . 18
3.5 Initial population . 19
3.6 The fitness function . 19
3.7 Hall of fame (HOF) logic . 20
3.8 Crossover . 21
3.9 Mutation . 21
3.10 Selection . 22
3.11 Algorithm . 23

4 Experimental Results 27
4.1 Introduction . 27
4.2 Traffic lights logic . 28
4.3 Simulation parameters . 29
4.4 Results . 31

4.4.1 Results in a simple scenario . 31
4.4.2 Results in an evolutionary scenario 35

5 Conclusions and future work 45
5.1 Conclusions . 45
5.2 Future research . 45

A Resources 47
A.1 Experimental Equipment . 47
A.2 Simulator . 47
A.3 Python Frameworks . 47

B Python Code 49
B.1 Repositories . 49
B.2 Files . 49

B.2.1 gatraffic.py . 49
B.2.2 tlenvironment.py . 49
B.2.3 paramstorage.py . 49
B.2.4 test-gatraffic.py . 50
B.2.5 trafficinteract.py . 56
B.2.6 gatraffictools . 56
B.2.7 sumoconnector.py . 57

ix

C Simulation Environment 59
C.1 Netedit . 59
C.2 Traffic light editor . 59
C.3 Sumo-gui . 59
C.4 Generated files . 60

C.4.1 sumo.sumocfg . 60
C.4.2 test-sumo.sumocfg . 61
C.4.3 net.net.xml . 61
C.4.4 demandpedestrian.rou.xm . 70
C.4.5 tls.xml . 72

xi

List of Figures

1.1 Modern V2V/V2I Infrastructure [2] . 2

2.1 Advantage Actor-Critic Model [8] . 11
2.2 Grid Architecture Proposed in[8] . 12

3.1 Traffic Agent Architecture [2] . 17
3.2 Pareto Front Plot [15] . 21
3.3 Cuboid Example[15] . 23
3.4 Selection Procedure in NSGA-II[15] . 23

4.1 Experimental Intersection . 27
4.2 Experimental Intersection . 28
4.3 Experimental Intersection with Flows 29
4.4 Intersection TL timing . 30
4.5 Experiment 1 for a simple scenario, upper row shows fitness evo-

lution for 5,25 and 40 generations, lower row shows the MA50 jam
length(meters) for Lane 1,Lane 2,Lane 3 and Lane 4 for 5,25 and 40
generations . 33

4.6 Experiment 2 for a simple scenario, upper row shows fitness evo-
lution for 5,25 and 40 generations, lower row shows the MA50 jam
length(meters) for Lane 1,Lane 2,Lane 3 and Lane 4 for 5,25 and 40
generations . 33

4.7 Plot from data collected in experiment 1 against train environment
(Plot 1 shows expected veh/h/lane, Plot2 shows green time allocat-
ed/stage, Plot 3 shows the fitness functions evolution) 38

4.8 Plot from data collected in experiment 1 against test environment(Plot
1 shows expected veh/h/lane, Plot2 shows green time allocated/stage,
Plot 3 shows the fitness functions evolution) 40

4.9 Mean fitness evolution [Ngen=3, Nexp=10, ProbChange=[-0.02,0.02]] . 41
4.10 Mean fitness evolution [Ngen=6, Nexp=10, ProbChange=[-0.02,0.02]] . 42
4.11 Mean fitness evolution [Ngen=6, Nexp=20, ProbChange=[-0.02,0.02]] . 42
4.12 Plot from data collected in experiment 2 against train environment

(Plot 1 shows expected veh/h/lane, Plot2 shows green time allocat-
ed/stage, Plot 3 shows the fitness functions evolution) 43

4.13 Plot from data collected in experiment 2 against test environment (Plot
1 shows expected veh/h/lane, Plot2 shows green time allocated/stage,
Plot 3 shows the fitness functions evolution) 43

4.14 Fitness evolution and MA50 Jam length with cycle adapted [Ngen=3,
Nexp=10, ProbChange=[-0.005,0.005], cycle=120] 44

4.15 Fitness evolution and MA50 Jam length with cycle adapted [Ngen=6,
Nexp=10, ProbChange=[-0.02,0.02], cycle=120] 44

4.16 Fitness evolution and MA50 Jam length with cycle adapted [Ngen=6,
Nexp=10, ProbChange=[-0.02,0.02], cycle=120] 44

xii

C.1 Netedit tool depicting the simulated environment 59
C.2 Traffic Light Editor . 60
C.3 SUMO GUI . 60

xiii

List of Tables

1.1 Congestion measurement indices [3] . 3
1.2 Speed performance index intervals [3] 4
1.3 Level of Service in traffic environments [3] 5

4.1 Stable Stages . 28
4.2 Vehicle flows . 31
4.3 Pedestrian flows . 32
4.4 Experiment 1 in simple scenario . 32
4.5 Vehicle flows . 34
4.6 Pedestrian flows . 34
4.7 Experiment 2 in simple scenario . 34
4.8 Data collected in experiment 1 against test environment (Gt=Green

Time, Os=Offset, Std=Standard deviation, SoG=Sum of gradients) . . . 36
4.9 Data collected in experiment 1 against test environment (Gt=Green

Time, Os=Offset, Std=Standard deviation, SoG=Sum of gradients) . . . 36
4.10 Volume to Capacity ratio in experiment 1 (Gt=Green time, Os=Offset) . 37
4.11 Data collected in experiment 2 against test environment (Gt=Green

Time, Os=Offset, Std=Standard deviation, SoG=Sum of gradients) . . . 39
4.12 Data collected in experiment 2 against test environment (Gt=Green

Time, Os=Offset, Std=Standard deviation, SoG=Sum of gradients) . . . 39
4.13 Volume to Capacity ratio in experiment 2 (Gt=Green time, Os=Offset) . 39

xv

List of Abbreviations

AI Artificial Intelligence
DNN Deep Neural Network
GA Genetic Algorithm
GNA Generative Adversarial Network
HOF Hall Of Fame
ITS Intelligent Transport System
LoS Lelvel Of Service
MA50 Moving Average 50
NN Neural Network
NSGA-II Non Dominated Sorting Genetic Algorithm
TL Traffic Lights
UK United Kingdom
UTC Urban Traffic Control
V2V Vehicle To Vehicle
V2I Vehicle To Infraestructure

xvii

Physical Constants

Vehicle Length Vl = 4.27 m
Safety distance Sd = 4.57 m

xix

List of Symbols

DRe Delay rate s m−1

DRo Delay ratio no units
Ls Segment length m
Lv Average vehicle length occupancy m
Nl Lanes quantity Number of lanes
Nv Spatial mean volume vehicles
Nmax Max number of vehicles allocatable vehicles
Ri Degree of road segment congestion
RNC Proportion of no congested state no units
SPI Speed Performance Index no units
SRI Speed Reduction Index no units
Tac Actual travel time s
Tf f Free flow travel time s
tNC Duration of no congested state s
tt Period of observation s
TRac Actual travel rate s m−1

TRap Acceptable travel rate s m−1

TR Travel rate s m−1

Tt Travel time s
vac Actual travel speed m s−1

vavg Average travel speed m s−1

vmax Maximum permissible road speed m s−1

v f f Free flow speed m s−1

VCr Volume to capacity ratio no units

xxi

To my land, Galicia, where nevertheless, the sun shines
everyday.

1

Chapter 1

Introduction

1.1 Historical notes on traffic lights

The importance of traffic management has increased proportionally to the number
of vehicles flowing on the roads, the importance of deliver goods in time, the coex-
istence of vehicles and pedestrians between many other factors has made the UTC a
very broad study field.

An important tool to manage the traffic along this years were the TL (Traffic
Lights). We are going to take a glance to the different phases during the evolution of
this kind of systems[1] :

• The first system of this class was deployed in 1868 and wasn’t automatic, it
needed to be manipulated by the police officer and was in operation only for a
month.

• Next, the former electric and automatic TL system were installed in the UK
during 1920s after the success of its implementation in other countries as United
States or Germany. During this period that last until the 1980s, the phase time
duration was fixed, this design limitation makes the TL not suitable for the
increasingly traffic demand.

• The next period to consider, overlaps the previous one, since may be consid-
ered to begin in 1970s and last to the present days. This type of system is
defined by the use of vehicle actuated isolated junctions. This technology was
geared by the use of induction loops, which are able to detect the presence of
vehicles, triggering in this way the green time per phase can be assigned in
function of the traffic demand.

• The same time that the previous milestone was achieved, the vehicle first ac-
tuated coordinated junctions were implemented. This systems, as the seen
before, run under the same operating concept, the difference stands in the
fact, that in this case, exists a coordination between the different TL controlled
junctions. This architectures are broadly used yet, although, this is changing
quickly.

• Around 1997 ushered the primitive ITS (Intelligent Transport Systems) solu-
tions merged with available UTC (Urban Traffic Control) architectures at that
moment. This infrastructures brought many advantages, as more safety, the in-
tegration of public transport in the system, environmentally sustainability, be-
tween others. The standardisation efforts of ITS by the authorities is bringing
a higher possibility of integration of new solutions, the UTMC (Urban Traffic

2 Chapter 1. Introduction

Management and Control) or the NTCIP (National Transportation Communi-
cations for ITS Protocol) from UK and United States, respectively, are examples
of this normalization attempts.

• Nowadays,there are arising promising technologies powered by the mobile
networks, the Internet of things or the AI, just to mention some of it. This solu-
tions can combine several infrastructures [2] ,bringing to us novel solutions,as
V2V (Vehicle to Vehicle) or V2I (Vehicle to Infraestructure), more sustainable
and efficient.

FIGURE 1.1: Modern V2V/V2I Infrastructure [2]

1.2 Traffic congestion

The traffic congestion is a direct consequence of the population rise, the greater
amount of vehicles and the proliferation of delivery services [3]. The congestion
state is reached when the number of vehicles surpasses the road capacity, interrupt-
ing in this way, the traffic flow. The traffic congestion has a great impact in populated
areas, causing an increase in the delay travel times and, as a consequence, high costs
and a severe environmental impact. Fighting against this problem requires great
efforts by the public and private actors. It is known that the first step in building
an effective system is the observation of the traffic congestion. The measurement of
traffic conditions is a key factor to carry out prevention measures in order to avoid
congestion [3].

1.2.1 Causes of congestion

Multiple reasons are begin the congestions, incidents, weather-related events, works
in the road, signals . . .
this leads to a differentiation between two types of congestion [3].

Recurring congestion

This happens primarily in urban areas or metropolitan areas at the peak hours, this
type of recurrent events causes the half of the hours that users spend in conges-
tions [3]. The main causes of recurrent congestion 1.1 are, the bottlenecks, when
the demand exceeds the road capacity, insufficient infrastructure with respect to the
population in a certain area 1.2, the variability in the traffic flows, which can change

1.3. Measuring congestion 3

TABLE 1.1: Congestion measurement indices [3]

Velocity Travel Time Delay Level of Congestion
Service Indices

Speed Reduction Volume to Relative
Index Travel Rate Delay Ratio Capacity Congestion

Speed Performance Delay Rate Ratio Index
Index

from day to day and wrong designed infrastructure, with bad time distribution in
the TL junctions, bad chosen stop signs etc... . . .

Non recurring congestion

This kind of congestion are caused by isolated events, as traffic accidents, that can
block some of several lanes causing the reduction of the capacity, weather condi-
tions, that affects the road conditions and the drivers behaviour, sometimes, due to
special events, as for example a football match, the traffic conditions differs from
usual, this occasional peaks could cause an overwhelming vehicle flow that the in-
frastructure is not able to manage.

1.3 Measuring congestion

As I have mentioned earlier, measuring the congestion is a key point in fighting
against it. The congestion measures are based in several parameters, they are the
velocity, the travel time, the delay, the level of service and the congestion indices [3].

1.3.1 Speed Reduction Index

This index is the ratio between of the relative speed change between congested and
free flow conditions as the defined in the equation below [3]:

SRI =
(

1− vac

v f f

)
× 10 (1.1)

The vac and v f f variables are measuring, respectively, the actual travel speed and
the free flow speed.

1.3.2 Speed Performance Index

This value goes from 0 to 100, using this parameter, the traffic can be viewed as
a linguistic variable,the set of instances classifies the traffic state level in four cat-
egories threshold at 25,50 and 75 percent [3]. The parameter is obtained using the
ratio between the average travel speed (vavg) and the maximum permissible road
speed (vmax).

SPI =
(

vavg

vmax

)
× 100 (1.2)

4 Chapter 1. Introduction

TABLE 1.2: Speed performance index intervals [3]

Speed Performance Index Traffic State Level

(0,25) Heavy congestion
(25,50) Mild congestion
(50,75) Smooth Higher
(75,100) Very smooth

1.3.3 Travel Rate

This parameter is the rate of motion, in other words, the necessary time to travel and
unit of distance.

TR =
Tt

Ls
(1.3)

Being Tt the travel time and Ls the segment length.

1.3.4 Delay Rate

With this parameter we can obtain the difference in time for a vehicle to travel a
certain road segment between the actual condition and the ideal one.

DRe = TRac − TRap (1.4)

1.3.5 Delay Ratio

The delay ratio is useful to compare the relative congestion levels in different roads,
and It is obtained with the equation below.

DRo =
DRe
TRac

(1.5)

1.3.6 Volume to Capacity Ratio

In order to measure the LoS (Level of Service), this parameter may be used. The LoS
classes can be obtained in function of this ratio,splitting it in several categories.

VCr =
Nv

Nmax
(1.6)

Where the spatial mean volume Nv is obtained as:

Nv =
Vcount

tt
(1.7)

Being Vcount the number of vehicles and tt the period of observation.

Where the max number of vehicles allocatable Nmax is:

Nmax =
Ls

Lv
× Nl (1.8)

Being Ls and Lv ,respectively, the segment length and the average length vehicle
occupancy and Nl the number of lanes in the road.

1.3. Measuring congestion 5

TABLE 1.3: Level of Service in traffic environments [3]

LoS Class VCr parameter value range

A→ Free flow (0,0.6)
B→ Stable flow with unaffected speed (0.61,0.7)
C→ Stable flow but speed is affected (0.71,0.8)
D→ High-density but the stable flow (0.81,0.9)
E→ Traffic volume near or at capacity level (0.91,1)
F→ Breakdown flow >1

And where Lv is obtained using:

Lv = Vl + Sd (1.9)

being Vl the vehicle length and Sd the security distance, which parameters are
stated as constant values 1.

In general, as we state in the previous equation, the vehicle length and the spatial
separation are taking into account to obtain the average lane vehicle occupancy. The
LoS values and ranges can be seen in table 1.3

1.3.7 Relative Congestion Index

A very low value of this index implies the absence of congestion ,conversely, values
greater than two are pointing a great congestion level,It is defined as:

RCI =
(

Tac − Tf f

Tf f

)
(1.10)

Where Tac is the actual travel time and Tf f is the free flow travel time, which can
be obtained as:

Tf f =
Ls

v f f
(1.11)

Being v f f the free flow speed

1.3.8 Road Segment Congestion Index

This measure is obtained taking as a reference the normal traffic conditions, the no-
congestion state is those where the speed performance index(SPI) is higher than 50.
The Ri index takes values between 0 and 1, values closed to 0 are related with higher
congestion levels, it is obtained using the average speed performance index SPIavg
and the proportion of the non congested state RNC.

Ri =
SPIavg

100
× RNC (1.12)

Where:

RNC =
tNC

tt
(1.13)

Being tNC the duration of no congested state.

6 Chapter 1. Introduction

1.4 TL basic concepts

At this point I will explain some basic concepts related with TL junctions which are
very important to lay the foundations for the upcoming sections.

• Group:A group is set of traffic lights which share the colors of its lights every
time.

• Stable stage:Also known as stable phase, is a stable combination of lights in
every groups of a TL junction. The stable stage determines the possible move-
ments of vehicles and pedestrian into the junction, the time duration may be
modified to achieve a better TL performance.

• Transitory stage:It corresponds with the light states when the TL is passing
from a stable stage to another, the transitory times are fixed by design and we
can’t change it.

• Structure: The structure defines the sequence in what the different stages are
placed.

• Cycle:It corresponds with the time that takes to complete full sequence, i.e. the
sum of all stable and transitory stage times

• Position:The position is each of the light combination in the groups in a tran-
sitory stage. This duration,as we stated earlier is fixed.

• Distribution:This concept is related with the available time of the cycle as-
signed to every stable phases.

• Offset:It is the delay of the begin of the cycle with respect to a reference.

• Plan:A plan is defined by a combination of a structure,a cycle and a distribu-
tion. This parameters are are kept while the TL is executing one plan.

1.5 Decentralization

Traditionally, centralized approaches were used to solve the congestion problems
and traffic management. Novel solutions are trying to use a decentralized model
where the decisions are taken at a local level, i.e. in the junction controller [4].

In [4] the performance of these algorithms have been tested against a centralised
one, the centralized approach have obtained better results during the performed
tests. Despite this results, looking for decentralized solutions is still interesting, the
decentralized solutions are good avoiding escalation problems that usually arise in
the centralized environments where high amounts of data must be managed. Be-
sides, these solutions may be useful at a fine grain level, improving in this way, the
network efficiency with a low investment [4]

1.6 Genetic Algorithms (GA)

GA have certain advantages in optimization problems such as the one I am facing
in this paper. GA were designed to resemble the way in that living beings evolves
in nature,furthermore, the genetic principles that rule the species evolution are com-
putationally mimicked. This approach has shown being very useful managing opti-
mization problems [5], some of these advantages are:

1.6. Genetic Algorithms (GA) 7

1. The great benefit of fitness function if we compare it against other optimiza-
tion solutions is that the fitness function is highly adaptive, It can be mathe-
matically defined to be what we want to be, this give us versatility in every
situation, basically, this means that we are using coded versions rather than
the parameters [5], then, we can tweak it in our benefit.

2. GA are also very good in finding the global optimum solution because they use
a population of solutions rather than a single solution,as other optimization
techniques do [5], in this way, We can explore solutions that other methods
couldn’t.

3. GA can be applied to either continuous or discrete problems because they use
fitness functions rather than derivatives, because of this, it is very important
defining correctly the function that interprets all this information [5].

4. GA doesn’t use deterministic rules, i.e the transitions are probabilistic, so they
are suitable for non-determinist environments, this is a major advantage, since
it provides versatility.

9

Chapter 2

State of the Art

This chapter is focused on taking a glance to novel proposals related with traffic
management. Most of them follow an IA approach, however, I have also included
other which don’t.

2.1 Genetic Algorithm Solutions

Along this section, I am going to show some solutions proposed in the field of traffic
management using genetic algorithms.

2.1.1 Optimal Control for Traffic Flows in the Urban Road Networks and
Its Solution by Variational Genetic Algorithm

In [6] the authors have proposed a solution using genetic algorithms yielding small
variations in the basic control schedule. An ordered set of small variations is imple-
mented at the beginning of the experiment. Each individual is a tuple containing, the
index of the intersection, the control time index an a third parameter that stands for
control program which can take boolean values. The whole population of variations
is applied to the basic solution and then a fitness parameter is computed.

Each variation set i:
Vi = [v1, v2, v3] (2.1)

Population of variations:
Wi = [V1, V2, · · · , Vi] (2.2)

Apply the set of variations to the basic control program

Wi ◦ P̂(·) = W1 ◦ P̂1(·), W2 ◦ P̂2(·), Wi ◦ P̂i(·) (2.3)

As usual, in order to guarantee a fair search into the solutions space, mutation is
used.

2.1.2 Active control for traffic lights in regions and corridors: an approach
based on evolutionary computation

In the case of [7], the solution is based on the utilization of an evolutionary algo-
rithm. The proposed algorithm takes parameters from the environment with the
objective of build a mathematical model which estimates the average delay time of
vehicles in the whole network. This information is used to feed an evolutionary
genetic algorithm, which is employed to update the green time in all the possible
movements into the network at a fine-grained level.
The proposed fitness function is:

10 Chapter 2. State of the Art

f f (0) =
1

−→x + kp · fp(
−→x)

(2.4)

Where−→x is the green time vector, kp is a penalty constant, fo and fp are the objective
and penalty function respectively.
The objective function is those that minimizes the average delay time and represents
the difference between the time taken by a vehicle to travel through a intersection
geared by TL whit respect to a situation of free flow. The delay time expression is:

fd(0) =
(c · (1− p(−→x))

2 · (1− p(−→x)) · s
(2.5)

Here the parameter c corresponds with the cycle length, p is the fraction of green
time with respect to the cycle, i.e. p(xi)

c , and s is the degree of saturation obtained
from divides the traffic demand by the capacity.
Several combinations os the selection method and mutation had been tested, with
low differences between them but obtaining a decrease of 47% with respect to the
actuated solution in use at that time in the network.

2.2 Reinforcement Learning Solutions

Along this section I am going to explore some solutions based on reinforcement
learning, which is an approach typically used to face these kind of problems.

2.2.1 An Efficient Deep Reinforcement Learning Model for Urban Traffic
Control

In the paper [8] an interesting approach is taken, the authors propose apply a deep
neural network, modelling the traffic agent as an Advantage Actor-Critic, as we see
in the image 2.1

In my opinion, the more interesting of this solution if that they leverage tech-
niques mainly used in other fields, as the DNN, largely used in computer vision.
They conceive each TL intersection as a matrix which is combined with every matri-
ces of the network, shaping a grid filled with parameters, each intersection is formed
by eight tensors monitoring the halting vehicles on each lane, where input and out-
put lanes are both considered 2.2. The reward function is obtained as an average of
the vehicles entering and leaving the grid, another reward function is computed at
a local intersection level and corresponds with negative difference between queue
length in the lanes with direction north-south, south-north and the lanes where di-
rection is east-west or west-east.
The function of the critic DNN is computing the value function, while the actor
DNN must update the policy taking into account the parameter returned by the
critic. In the current paper, another element is added to the model, in this case, a
the upper layer are shared between the actor and the critic, which seems to yield a
better performance.

Once trained, the network should be able to return a list which maximizes the
reward, following in this way an optimal policy, the parameter is a set of boolean
elements, and will be either keep the current stage or change it, this value is issued
for all the TL of the grid. The action space, that is to say, the state space is defined by
the stable phases that can be applied on each TL junction.

2.2. Reinforcement Learning Solutions 11

FIGURE 2.1: Advantage Actor-Critic Model [8]

2.2.2 A Deep Reinforcement Learning Approach to Adaptive Traffic Lights
Management

The authors of the paper [9] propose a solution where the state space is defined by
the position of the vehicles in an instant t ,to achieve such a definition of state spaces,
they have designed a mechanism where the approaches to the junction are divided
in cells, and its length is greater as we move away the junction. This is motivated to
avoid losing vehicles information and avoiding a excessively large state space. As
in the previous work the action space is a set of fixed plans. The algorithm are based
in two type of rewards, the total waiting time of the vehicles in the intersection, and
the accumulated total waiting time,measured both for an agent step, the different
between them stands in the fact the first reset the time of a vehicle for each step, the
second parameter , keep increasing its value until the vehicle crosses the intersection,
then, a reduction of these parameters must be the objective of the training process.

The training is performed using an experience replay buffer, where the training
data is delivered to the agent in form of a set of selected at random samples get from
the replay buffer. The data consists on a set of 80 cell values at a certain instant t
which are used to feed a NN with 5 hidden layers with 400 neurons each.

12 Chapter 2. State of the Art

FIGURE 2.2: Grid Architecture Proposed in[8]

2.3 No AI Based Solutions

2.3.1 The Job Scheduling Algorithm

In this algorithm the TL environment is considered as a scheduling problem, actu-
ally, it is. The vehicles are grouped into clusters, moving at constant speed toward
the stop line. The algorithms studies all possible combinations to obtain a schedule
suitable to serve the current clusters. Although this algorithm has obtained improve-
ments in real scenarios has also shown problem with respect to computation time
(in certain scenarios)[4] which increases exponentially when the number of vehicle
cluster grows.

2.3.2 The Max-Pressure Algorithm

The idea behind this algorithm is taken from the communications network control
and stems from the scheduling algorithms gearing it. The vehicles are considered
customers, in the same way are the data flows considered in a network infrastruc-
ture, or clients in client server distributed system. As we know, a network has
constrained resources and not all clients can be served simultaneously, in the same
way, a TL environment can not serve preference to all vehicles simultaneously. In a
junction, switching from a state to another (phase changing), introduces lost times,
these lost times comes from transition phase times, so, switching between phases
many times increases this accumulated lost time. In order to solve this problem,that
doesn’t exist in the network protocols, a solution has been explored, which consist in
defining minimum and maximum green times, also respecting the stage sequence,
avoiding in this way confusions in drivers [4]. The algorithm measures the pressure
of each approach to the junction, this is obtained using the waiting queue length
or the number of vehicles on each junction approach,the control decision consist on
a time extension, (2 sec for example) , always that doesn’t exceed the time bound-
ary limit, and at the same time, it is observed that the initial measured pressure has
not been reduced by more than defined percentage or it is the maximum-pressure
stage,if these conditions are not met the next phase in the sequence is activated.

2.4. Limitations 13

2.4 Limitations

All these proposed solutions, in my opinion, have some issues or constraints, for
example, the solutions based on GA, despite the fitness parameters selected seem
appropriate, both are centralized solutions, they are designed to train algorithms
for the whole network, this fact, in my opinion, reduces the resilience, because, if
a node losses communication with the control center, couldn’t receive orders from
there. Furthermore, they both loss the option to be deployed in those places where
building a centralized system was excessively expensive. Besides, I consider that
both are little scalable, the length of the chromosomes of the GA might become very
large in scenarios with many junctions, increasing the search space exponentially
and making both options impracticable.

On the other hand, the reinforcement learning solution based on actor critic, al-
though, I reckon that it is conceptually awesome but, has a problem of adaptability.
Training such a type of models is very slow but, it is true that, once trained, the
model could work fine, in the case of a change in the flows,due to, for example, a
street closed for repairs, or just a change in the drivers habits, might make the net-
work collapses . I believe that training the system to such a variety of situations is
not easy, and must be carefully studied in order to handle unexpected events. The
issues that I observe in [2] can be applied to the second reinforcement learning solu-
tion.

In the case of no IA based solutions, as I had commented, [4] has a scalability
problem due to exponential growth of computational costs. The max-pressure algo-
rithm, is in my opinion the most interesting algorithm from the studied here, for ex-
ample, it implements an upper and lower limit to the green light time and also look
for a fair distribution of cycle time, otherwise, I have doubts about its behaviour in
relaxed conditions where, even in this case , the performance might be optimized.

15

Chapter 3

Genetic Algorithm Traffic Agent

3.1 Introduction

In this chapter I am going to present the key aspects of the solution proposed. First,
I will explore the architecture of the system, then, step by step I am going to analyse
its different parts more in detail. This work is focused on the logic that gear the agent
solution, so the rest of the system is added merely to put the reader into context and
we will not do a deep study about it.

3.2 Proposed Solution

As we have seen, the decentralization in UTC has some strengths, by itself or merged
with a centralized approach,so, It would be interesting to look for solutions that
leverage an decentralized idea. We have also seen the advantages of using GA in
order to solve optimization problems in non-deterministic environments as the one.
That is why I am going to explore a combination of this two approaches, decentral-
ization and GA. Next, I will briefly speak about the elements in which my solution
will be based.

3.2.1 The traffic controller

The traffic controller is the "brain" of a TL controlled junction. It is an automated
system equipped with all the necessary electronic instrumentation to carry out its
mission. Today, these controllers are powerful computers with advanced technology
capable of perform highly demanding tasks.The actions taken by the controller are
used to activate the traffic lights in function of the parameters collected by it. My
proposed algorithm will "live" into a device of this type.

3.2.2 The environment

Sticking to the Cambridge digital dictionary definition says, we can see one of the
entries which I find very nice to illustrate my case, We can read that the environment
is: "the situation that you live or work in, and how it changes how you feel" [10]. If
we transfer this concept to our TL world, we can understand it as the place where
our controller works, that is to say, the junction where it is placed, doing its work,
i.e. changing the junction stages and changing the way in that it feels in function of
the measures that it obtains from the sensors,pedestrian buttons or other elements
installed in the proximity that act as its senses, or even, external information received
from other controllers or control room facilities.

16 Chapter 3. Genetic Algorithm Traffic Agent

3.2.3 The optimization problem

We know that GA are very good at solving optimization problems, we are aware of
the fact that the traffic load in a junction depends on many parameters and can vary
very fast. We also know that there is a certain risk of reaching a congestion state
when some conditions are met. To avoid the congestion state, and providing a fair
time distribution between approaches to the junction the green time assigned must
be balanced in a suitable way. Then, we can define an optimization problem where
we are going to find the best time distribution for the TL for the current traffic load.
The time assigned to each stage of the cycle will correspond to a gene value, and
the fitness function will depend on parameters taken from the junction environment
in a isolated way, the traffic controller taking decisions by its own strengthen the
decentralized nature of the solution.

3.2.4 The simulator

Since we are working in an environment where doing tests against the real one might
have serious implications (may cause congestion or even accidents), it is a good
idea to train and test our algorithm against a simulator. There are multiple traffic
simulators, some are free software, as the one I have chosen for my experiments. The
SUMO Simulator [11] is an open source traffic simulation solution quite powerful
and it is perfect for my purposes,furthermore, it is important to note that SUMO
provides a tool to get information from the simulation known as Traci, this solution
has an interface that let us connect with the simulation using python, this will be
very useful in connecting our GA with the simulation .

3.2.5 A traffic agent based on genetic algorithms

The solution consist on a traffic agent based on GA. The algorithm is built using the
DEAP python framework [12],which is published under the LGPL license and it is a
very versatile tool for testing purposes in relation with evolutionary algorithms. The
concept rest,as we have spoken, on the interaction between the GA,the environment
and the simulator. In the environment side I decided to use tensor-flow, specifically,
tf-agents [13], this framework is structured in a way that let us the deployment of
environments very quickly, although it was designed to be used along with rein-
forcement learning algorithms, it is easily adaptable and can be leveraged for the
concept presented in this work.

3.3 The architecture

The architecture 3.1 is built in two main parts, the traffic light controller and the
real environment. Into the traffic light controller resides all the program logic, the
simulation, the train/test environments and the GA. The real environment is used
to apply the solutions found by the algorithm and to collect real data, but this part
and its interconnection with the core algorithm , as I have previously stated, will not
be analysed.

3.3. The architecture 17

FIGURE 3.1: Traffic Agent Architecture [2]

3.3.1 Traffic Light Controller

The proposed solution should run into a traffic light controller device. This device
should have the computation power to run the mathematical computations as ef-
fective and fast as possible with a high degree of reliability. The different parts that
shape the algorithm are:

Core

The core part is subdivided in other two parts, the control and the genetic algorithm
parts. The control is the program logic that interacts with the hardware of the con-
troller and might eventually send and receive orders from it. The other part , much
more related with this work, is the GA logic which is in charge of the optimization
problem and must interact with the simulations and other elements of the architec-
ture.

Train environment

The train environment is an instance of the environment class used to evolve the
individuals into chromosome’s population towards the best possible. This element
must interact with the simulator and returns a reward in function of the performance
of each individual. The returned reward value is afterwards used by the fitness
function to obtain a suitable evaluation.

Test Environment

This environment instance is included to test the non dominated individuals ob-
tained after each training process. Hypothetically, the individual with the best per-
formance against the test environment might be applied to the real scenario. It is im-
portant to note that, both, test environment and train environment, must resemble

18 Chapter 3. Genetic Algorithm Traffic Agent

the most possible the real one, this has sense, because the obtained optimal solution
should be after, applied to a real scenario.

Connector

This code piece is used, as its name says, to connect the environments with the sim-
ulator, it is in charge of beginning a simulation, sending step orders and finishing
it.

Simulator

The simulator is in this paper an external tool used to simulate the real environ-
ment,as I said, it is SUMO simulator. SUMO allows parallel simulation execution
and provides a powerful interface that let us read or manipulate parameters online,
this is very interesting because we are going to test the performance of the popula-
tion, and we need to apply it to the simulation, and then measuring its response.

Hall of fame (HOF)

The HOF is a variable where the best individuals are stored, this list is mutable, since
the best individuals will change along time, this happens because the traffic evolves,
causing that the time distribution can’t be always the same. An individual can be
a very good solution when there is traffic congestion in a certain approach to the
junction and being a very bad solution when this same approach has a state of free
flow. Because of this the GA must actualize the HOF when needed.

3.3.2 Real environment

The real environment corresponds to the echo-system where the TL controller is
installed, it is divided in two parts the traffic light elements and the sensors. The
sensors are all the elements that lets the controller interact with the outside world,
as induction loops, cameras doted with artificial visions systems, pedestrian push
buttons, orders from a control center and so on, doing an analogy with the human
beings are the senses of the controller. On the other hand the traffic lights or signals
are the elements that translates the controller intentions toward the outside world,
following the former analogy are the limbs of the controller. As we said, actually, in
this stage, I am not very interested in this part of the system, for this research phase,
we won’t need to attach the algorithm to a real environment, since its changes are
emulated in the ad-hoc tool, which will let us avoid performing tests against a real
scenario, which may have serious implications. However, it is necessary locate it
into the architecture for hypothetical further research.

3.4 Definition of the problem

We must find the best plan for a TL junction, the plan will be defined by the dura-
tion of the stable stages and an offset parameter,which will be an action applied to
the simulation environment. The objective is mapping from a environment lecture
of parameters the best suited chromosome to that condition. The environmental pa-
rameter that I am using is the jam length, that is to say, the average length of the
queue in an approach to the junction. This is measured in SUMO using a lane area
detector, which mimics the way in that an artificial vision camera works. We can

3.5. Initial population 19

retrieve from the simulation interesting information, as the mentioned, that is to say,
the instant jam length, but we might eventually retrieve, for example, the instant
occupancy. Note that, this gauge infrastructure doesn’t have to be implemented in
the real environment,since the jam length is only necessary during the simulation
process,so, much simpler mechanisms would be enough.

The best plan will be a vector containing certain natural numbers in a range,
which will correspond with the time to apply to each stage and an offset parameter
which takes values in a range into the set of the integer numbers. So, we can define
the problem mathematically as finding the optimal solution for function:

g : Rn −→ (Yn, O) (3.1)

where:

n=number of stable stages

with:
Y ⊆ {N : [min stable stage time, max stable stage time]} (3.2)

O ⊆ {Z : [min o f f set time, max o f f set time]} (3.3)

The lower and upper duration stage limits are selected according to the scenario.
The minimum time must be enough to guarantee the time necessary to pedestri-
ans for crossing the street during the related stage, and the maximum value can’t
be excessively high, because, we don’t want the users spending unreasonable time
waiting on its approach.

3.5 Initial population

The initial chromosome’s population is created using a pseudorandom number gen-
erator, the obtained integer values are constrained to the lower and upper time
bounds established. The generator receives a set with the integers between the lower
and upper limits and returns a vector with length equals to the number of stable
stages, these values are randomly selected following a discrete and uniform prob-
ability distribution. This process is repeated until had been created the number of
individuals desired.

(low, low + 1, . . . , up− 1, up) U−→ (time1, time2, . . . , timei) (3.4)

Where (time1, time2, . . . , timei) is a multidimensional discrete random variable
and timei is a discrete random variable such that:

time ∼ U(low, up) (3.5)

3.6 The fitness function

The fitness function is used to evaluate the performance of an individual taken from
the population for the current environment state. For this problem, I have designed
a function which takes as input the jam length vector, and outputs another vector
with three elements, the first one is the mean value of the input vector of jams, the
second element is the standard deviation obtained from input vector and the third

20 Chapter 3. Genetic Algorithm Traffic Agent

one is the absolute value of the sum of the vector gradient elements obtained from
the input vector, the latter value is closer to zero if the jam length values are closer
one of another.

f : (Yn, O) −→ R3 (3.6)

f (x0, x1, · · · , xn−1) =

 1
n
·

n−1

∑
i=0

xi,

√√√√ 1
n
·

n−1

∑
i=0

(xi − µ)2,
∣∣∣∑−→∇−→x ∣∣∣

 (3.7)

The obejective is to find the chromosome that returns the min fitness vector, i.e.
those which returns the minimum combination of the rounded values from the three
functions.

fmin(x0, x1, · · · , xn−1) = min

 1
n
·

n−1

∑
i=0

xi,

√√√√ 1
n
·

n−1

∑
i=0

(xi − µ)2,
∣∣∣∑−→∇−→x ∣∣∣

 (3.8)

where:
−→∇−→x =

(
∂ f
∂x0

,
∂ f
∂x1

, · · · ,
∂ f

∂xn−1

)
(3.9)

Minimizing the mean I will try to reduce the queue on each approach. Mini-
mizing the standard deviation and the sum of the absolute value of sum of gradient
components I will favour a fair queue distribution between the approaches, the lat-
ter may be considered a balance parameter. This perspective should assure that the
time will be reduced in those approaches with less traffic,although the jam length
may increase. Actually, never mind, that the queue increases slightly in an approach
with scant traffic, because, if we focus only in the mean, we might reduce excessively
the jam in one approach where wasn’t necessary and don’t in other where actually it
is, getting a worse performance result, although, hypothetically, the mean might be
better.

3.7 Hall of fame (HOF) logic

In the hall of fame we are going to store the best individuals along the process.
Each iteration the non-dominated individuals are stored into it. The hall of fame
principle used is Pareto front,the front is formed by the non-dominated elements in
the analysis scope, the individuals which pertain to this group will fill the Pareto
set. This individuals, in my proposed algorithm, are stored in the HOF. The Pareto
front concept was defined to solve multi objective optimization problems [14] , here,
the objective, is finding the non dominated solutions into the functions space. A
solution is considered optimal and therefore belonging to Pareto front if no objective
function can be improved without sacrificing another objective function . On the
other hand, a solution is considered dominated by other if the other solution is as
good as,or better in all objective functions.

This is our case, we have three different functions and we are trying to find the
optimal solution for them, in our case, the non dominated optimal solutions which
minimizes the three functions will be stored in the HOF. After the completion of a
round all the chromosomes stored in the HOF are tested against the test environment

3.8. Crossover 21

and its fitness value is updated when the environment parameters are modified.
Doing that, I am trying to increase the population performance between the two
scenarios, this is very important because the optimal solution should be applied in a
third random environment, so we need individuals that perform well against all of
them.

FIGURE 3.2: Pareto Front Plot [15]

3.8 Crossover

The crossover is involved in the process by means a new population is derived from
the previous one. It consist on swapping the genes from one individual with other
and vice versa, in my design this happens from one point onwards. This action
assures that the algorithm explores a larger solutions space. The offspring obtained
by this method is given by a crossover probability.

I am going to show the crossover process with an example where are given the
parent individuals:

−→a = (a0, a1, a2, a3, a4) (3.10)
−→
b = (b0, b1, b2, b3, b4) (3.11)

The offspring obtained if we swap from point 2 is:

−→c = (a0, a1, b2, b3, b4) (3.12)
−→
d = (b0, b1, a2, a3, a4) (3.13)

Note that the swapping happens with a probcrossover and the crossover index
point,which in the case of our example is two, is selected with uniform probabil-
ity.

3.9 Mutation

It is also interesting increase the exploration space performing a mutation in some
individuals of the current generation. In my algorithm the mutation is carried out
with a certain probability probmutate . In the approach used in the current solution if
an individual is selected to be mutated each of its genes are mutated with probability

1
chromosome length , the mutation is performed generating random at uniform integer
value in the range [min stable stage time, max stable stage time]. As I did with the
crossover process i will try to illustrate the mutation with an example.

22 Chapter 3. Genetic Algorithm Traffic Agent

Given the individual selected to be mutated:

−→a = (a0, a1, b2, b3, b4) (3.14)

A possible mutation might be:

−→
b = (a0, c1, b2, b3, c4) (3.15)

Where the c1 and c4 are integers random uniformly selected respectively in the
range:
[min stable stage time, max stable stage time]&[min o f f set time, max o f f set time]

3.10 Selection

The selection process is performed on the population living in the current genera-
tion, its objective is selecting those individuals with a better fitness to be used for
breeding in the next generation. The algorithm used for the selection process is
NSGA-II [16].

This algorithm was developed to solve multi objective optimization problems,
this fact makes it suitable for selection in the current TL problem. NSGA-II works
following the next steps [16]:

• The algorithm takes the current parents population Pt.

• Then, generates a offspring Qt from the parents set Pt using crossover and
mutation.

• A new combined population Rt = Pt ∪Qt is generated.

• This just created population is sorted using a crowding distance sorting ap-
proach. This is done using a crowded comparison operator, this operator
leverages a density estimation, which build a cuboid surrounding each solu-
tion,created taking the points at each side, then, the crowding distance will be
the average of the sides of the former cuboid, that we can see in 3.3, this pro-
cess is repeated for all objective functions, the sum of all these values is the
overall crowding distance.

Then, the solutions with smaller overall distance are supposed to be more
crowded by other. So, selecting the less crowded solutions we can preserve
the diversity.

• The solutions are sorted in several tiers, that is to say, several Pareto front sets
are created, F1, F2,

• Now, if the size of F1 is less that the number N of elements in Qt the algorithm
selects all elements of F1 for the next Pt+1 parents generation.

• In that case, the remaining parents population are selected in order,with pref-
erence to elements in set F2 and so on, until the number N of elements is filled,
this process is illustrated in 3.4.

3.11. Algorithm 23

FIGURE 3.3: Cuboid Example[15]

FIGURE 3.4: Selection Procedure in NSGA-II[15]

3.11 Algorithm

All the previous techniques are combined in a single algorithm with the aim of solv-
ing the traffic problem supported by the TL architecture. The algorithm which sum-
marizes the operation is depicted in algorithm 1.

It is also interesting showing the score function algorithm used to compute the
individual score, this function is the core of the system since it is used to measure
the individual performance, we can see it in algorithm 2.

24 Chapter 3. Genetic Algorithm Traffic Agent

Algorithm 1: Genetic Algorithm Traffic Agent
Result: HOF With Optimal Plans
DefineParameters;
GetParameters(configuration files);
InitsimulationEnvironments;
CreateInitialRandomPopulation(population length, individual length,

bounds);
Define toolbox elements;
Init eaMuPlusAlgorithm;
for generation← 1 to number o f generations do

if generation==number of generations then
for i← 1 to population length do

score← Score(individual);
if score is non− dominated then

AddtoHof(individual);
end

end
newhalloffame← TestHofIndividuals(hall of fame);
bestIndividual← SelectNonDominated(newhalloffame);
ComputeVolumetoCapacityRatio(newhalloffame);
Continue to next round;

else
for i← 1 to population length do

score← Score(individual);
if individual is non− dominated then

AddtoHof(individual);
end

end
selected← Selection(number of individuals to select);
for i← 1 to number o f childrens do

Crossover(crossover probability, selected);
Mutation(mutation probability, selected);

end
end

end

3.11. Algorithm 25

Algorithm 2: Score Algorithm (Fitness Function)
Result: Individual Scores List
SetOffset(tra f f ic lights f ile, individual o f f set);
for counter ← 1 to simulation steps do

OrderSimulatorStep(individual);
timestep← GetTimeStepVariableFromEnvironment(individual);
if step is last step then

break;
end

end
mean← ComputeMean(timestep.reward);
std← ComputeStandardDeviation(timestep.reward);
divergence← ComputeDivergence(timestep.reward);
individualscoreslist← round(mean ,std ,divergence);

27

Chapter 4

Experimental Results

4.1 Introduction

Testing the performance of the solution will be the objective of the current section.
The solution will be simulated in an environment with four stable stages where all
the movements are allowed, i.e., at each approach to the junction the driver can drive
toward the left,toward the right or continue straight as we see in 4.1.

FIGURE 4.1: Experimental Intersection

This intersection structure was selected looking for a difficult scenario where was
hard to accommodate all the traffic flows. I have configured independent stages per
incoming lanes, so may be hard find an optimal solution. As we can see, there is a
single incoming lane to the junction per approach, where all movements are allowed.
Besides, there are four pedestrian crossing.

There are also included in the simulation four lane area detectors with 150 meters
length, used to measure the jam length. In the image 4.2 we can see in blue color the
detector, we can also see coloured in light green the allowed movements during the
first stage and in red the not allowed, this corresponds with the TL logic scheduled.
The dark green are allowed movements with no preference, in this case the driver
must yield at the pedestrians,and it works as an intermittent yellow light

28 Chapter 4. Experimental Results

FIGURE 4.2: Experimental Intersection

TABLE 4.1: Stable Stages

Stage Location Order

SP1 (Stable Stage 1) North Lane 1
SP2 (Stable Stage 2) West Lane 2
SP3 (Stable Stage 3) East Lane 3
SP4 (Stable Stage 4) South Lane 4

For each lane, one flow is simulated for each movement, as is depicted in 4.3,
I also simulate the pedestrian flows, both, vehicles and pedestrians are issued ran-
domly according to a certain probability per each step simulated, which would cor-
respond with a second.

The SUMO simulator is used to generate all the logic of the simulation, several
tools are provided along it which can be used to perform this tasks, the images 4.2
and 4.1 have been obtained using it, I delve into this tools in C. This tools generate
a bunch of xml files used afterwards by the designed software to interact with the
simulation,letting us getting measures and to change its parameters dynamically.

4.2 Traffic lights logic

The logic defines the structure of the TL sequence, i.e., where the stable stages and
the transitory stages are placed, in my design, the stable phases (stages) are num-
bered according to 4.1.

There are two positions for each transitory phase when changing between stable
phases. All the logic is resumed in 4.4. Each group controls the pass for a group
of movements, for example, in 4.2 we see the group 1, the group 6 and the group
7 showing green state, and the rest of groups are showing red state. When we are

4.3. Simulation parameters 29

FIGURE 4.3: Experimental Intersection with Flows

handling the timing we are changing the time allocated for each stable phase, this
let us control the number of cars passing the intersection on each cycle.

In 4.3 the vehicle flows are shown, there are three flows per lane, letting us define
different load parameters for each movement into the intersection.

4.3 Simulation parameters

The parameters have been selected following a empirical approach, the length of the
initial population, that is to say, the population size parameter, must be long enough
to guarantee a broad space exploration, the mu and lambda parameters selected
have shown good performance for this environment, this also applies for others,
as the crossover probability or mutation probability, in my experiments setting the
values as the depicted below have shown good performance. A very low value in
the crossover parameter have shown that the algorithm is slower in finding an opti-
mal solution with slight performance improvement, and a excessively high mutation
probability made it quite unstable. Parameter selection is highly tied to the scenario
where the algorithm is executed and must be selected accordingly.

All provided values below are fixed during the different experiments performed
but the number of generations which is tuned to different values in function of the
simulation type, being this, simple or evolutionary.

- Number of phases: 4
This value is get from the net configuration files, in this case the number of
phases is 4.

- Chromosome length: number o f phases + 1
This value is 5 in my experiment and corresponds with the number of stable
phases plus the offset parameter.

- Population size: 150
This value states the initial population set length.

30 Chapter 4. Experimental Results

FIGURE 4.4: Intersection TL timing

- Mu: 30
With mu I am defining the number of individuals to be selected for the next
generation.

- Lambda: 50
The offspring set must have a length equals to the lambda parameter.

- Crossover probability: 0.8
Probability of an individual being selected for crossover.

- Mutation probability: 0.2
Probability of an individual being selected for mutation.

- Max generations: 5
The number of generations computed.

- Number of steps: 450
The number of steps carried out by the simulator, a step corresponds with a
second and it is defined in the sumo configuration files.

- Cycle: 120
This parameter is used when we adapt the phases to a fixed cycle value and to
compute the maximum phase time.

- Minimum phase time: 15
Lower bound for phase time

- Maximum phase time: Cycle− (min phase time× number o f phases)
This value is obtained using the cycle defined and the number of phases

4.4. Results 31

TABLE 4.2: Vehicle flows

Probability From To

0.04 North East
0.04 North South
0.04 North West
0.01 West East
0.01 West North
0.01 West South
0.02 East North
0.02 East South
0.02 East West
0.03 South East
0.03 South North
0.03 South West

- Minimum offset time: 0
The minimum offset value is set to zero, in this case no offset is applied.

- Maximum offset time: 100
Max offset value parameter.

- Random seed: Integer randomly selected between 0 and 100
Changing this value guarantees randomness in our experiments.

- Number of experiments: 5
When the experiments are performed using the test file, that is to say,changing
the traffic flow vehicle loaded during the execution, this parameter states the
number of experiments to perform.

4.4 Results

4.4.1 Results in a simple scenario

The first experiment will be performed using the flow parameters reflected in tables
4.2 for vehicles and in 4.3 for pedestrians. In both cases the probability value defines
the probability to generate a car or a pedestrian in a certain second. Each flow has
a certain route defined as the from/to and origin/destiny parameters. Setting the
duration of the simulation in 450 steps we obtain the plan performance for the short
term. The random seed is renewed each time the script is executed, the sumo sim-
ulator is also initiated with different seed parameter each time is executed, this fact,
increases the difficulty.

The first execution is performed using the gatraffic.py program, where I sim-
ulate a single epoch of the algorithm,that is to say, a single experiment,therefore,
maintaining fixed the flow probability parameter. All the parameters are taken from
the values shown in section 4.3 obtaining the following results, summarized in table
4.4:

The train evolution is obtained for the mean of the fitness score parameters for
all the population along the 5 generations. I have repeated the experiment with
the previous parameters and changing the number of generations to 25 and 40. The

32 Chapter 4. Experimental Results

TABLE 4.3: Pedestrian flows

Probability Origin Destiny

0.1 East West
0.1 North South
0.1 South North
0.1 West East

TABLE 4.4: Experiment 1 in simple scenario

5 generations 25 generations 40 generations

Duration 450 450 450
Intensity [432,108, 216, 324] [432, 108, 216, 324] [432, 108, 216, 324]
Best Time Schedule [48, 31, 18, 50, 15] [40, 18, 25, 35, 27] [60, 18, 23, 38, 45]
Best v2c Time Schedule [50, 23, 33, 42, 17] [58, 17, 49, 45, 15] [57, 18, 25, 42, 41]
v2c value 0.657 0.645 0.654
Execution time 192 sec. 698 sec. 1208 sec.

results are shown in the panel plot 4.5 . With respect to the jam length, I am using the
Moving Average 50 (MA50) statistical tool, MA50 is broadly used in economics to
analyze the evolution of stock values. Its use in our scope will smooth the jam length
evolution and, in this way, we can appreciate more clearly the evolution, letting us
evaluate the jam length from generation to generation for the four lanes defined in
the experiment.

As we see in the results, although, the plots depict an evolution towards bet-
ter mean score values, when I increase the number of iterations (generations) the
mean volume to capacity ratio has a very similar value in all of them. This happens
because the algorithm is designed to split the jam between all the lanes, so when
this value is improved in a lane may be ,otherwise, worsened in other,besides, the
objective is keeping a good volume to capacity ratio possible in function of the envi-
ronment constraints, so, in many circumstances, reducing this parameter will not be
possible.

The volume to capacity ratio in a TL environment is computed as follows [17]:

VCr =
Np

Nmax
(4.1)

Nmax = S× V
T

(4.2)

In this equation S is the saturation intensity in veh/h, V is the duration of the
green phase for the lane and T is the cycle duration. This equation is slightly dif-
ferent to equation 1.6 ,although both are used to compute the same parameter,this
is because in the TL environment, the movements are not always allowed, so, this
regard, must be taken into account. The saturation parameter is obtained from the
following equation [17]

S = 1900× Nl × fw ftv fi fp fbb fa fLU fLS fRS fLpb fRpb (4.3)

4.4. Results 33

FIGURE 4.5: Experiment 1 for a simple scenario, upper row shows
fitness evolution for 5,25 and 40 generations, lower row shows the
MA50 jam length(meters) for Lane 1,Lane 2,Lane 3 and Lane 4 for

5,25 and 40 generations

All the correction parameters f are used to reduce the value of 1900, for example,
the number of vehicles turning right,the inclination, the intersection location etc. So
I have decided don’t use it, keeping the value unchanged, that is to say, a saturation
of 1900 veh/h (Nl = 1 , one lane).

For the second experiment We are using different flow probabilities, in this case
I am going to increase the load in two lanes with respect to the others, the pedes-
trians flow probability is also reduced by a factor of ten. We are going to repeat the
previously used number of generations 5,25 and 40 to compare the response of the
system, all the results are summarized in 4.7.

FIGURE 4.6: Experiment 2 for a simple scenario, upper row shows
fitness evolution for 5,25 and 40 generations, lower row shows the
MA50 jam length(meters) for Lane 1,Lane 2,Lane 3 and Lane 4 for

5,25 and 40 generations

34 Chapter 4. Experimental Results

TABLE 4.5: Vehicle flows

Probability From To

0.01 North East
0.01 North South
0.01 North West
0.06 West East
0.06 West North
0.06 West South
0.005 East North
0.025 East South
0.005 East West
0.01 South East
0.02 South North
0.01 South West

TABLE 4.6: Pedestrian flows

Probability Origin Destiny

0.01 East West
0.01 North South
0.01 South North
0.01 West East

TABLE 4.7: Experiment 2 in simple scenario

5 generations 25 generations 40 generations

Duartion 450 450 450
Intensity (veh/h) [108, 648, 450, 144] [108, 648, 450, 144] [108, 648, 450, 144]
Best Time Schedule [20, 54, 41, 15, 57] [15, 49, 41, 15, 25] [18, 57, 28, 17, 31]
Best v2c Time Schedule [28, 52, 55, 17, 56] [16, 57, 43, 22, 41] [16, 60, 50, 21, 53]
v2c value 0.562 0.577 0.586
Execution time 206 sec. 595 sec. 877 sec.

4.4. Results 35

In panel of plots 4.6 is shown the evolution of the second experiment execu-
tion.Looking at the data obtained and the plots, We can conclude that in a short
number of generations the algorithm is able to obtain quite good solutions in both
different flow scenarios. So, employing low execution time, We are able to find an
acceptable solutions in terms of fitness values to the optimization problem. We can
compare this results with the jam length behavior for all the individuals along the
simulation.

In this case, the convergence of all jam length is not possible, because of the
upper and lower time bounds, so the behavior is the expected, the closer approaches,
in terms of traffic load, converge minimizing its jam length, those approaches with
a low load remains quite stable. This simulations demonstrate that the system is
suitable for being used in real time scenarios as an adaptive control system.

4.4.2 Results in an evolutionary scenario

With the aim of testing the resilience and the suitability of the algorithm in a closer
to real environment, which can experiment abrupt changes along time, I have pro-
posed a script for testing purposes, which implements the discussed algorithm and
performs a random change in the flow probabilities along time,besides, as in the
simple experiment, the seed for the random number generator is changed for each
execution of the algorithm, so each time we run the program we get different ran-
dom values, and even each time an individual is tested, the sumo simulator will
behave different.

Each experiment execution corresponds with the computation of all generations
against certain flow values, then, the flow parameters, are changed randomly, being
updated accordingly with the time frame 4.5, that corresponds with the time to com-
pute 450 simulation steps or, in other words, the train time ttrain . The idea is that the
population would be checking its performance against the environment regularly,
getting in this way, the best suited individuals, plans, in our scope, for the current
environment state.

For this test, all the parameters are the same as the used previously, but a re-
duction in the number of generations, fixed to three in this case. The number of
experiments is a new value added in this script and it is set to ten and it states how
many times the complete algorithm is executed, other parameter named "bound" is
used to control how is randomized the change between the experiments.

The initial population is only computed the first time ,then, the solution for each
experiment round evolves from this original set of individuals. As I said before,
when a experiment finishes, the probability for a flow to be issued is randomly
changed, doing that, I am trying to emulate the changes that the traffic might ex-
periment in a real environment. After an experiment is performed the plans stored
in the HOF are tested against the test environment, then, once actualized its fitness
according to its performance, the non dominated plan is selected between them, this
one, should be finally the selected plan to apply to the real scenario.

The initial probabilities are the same as in the first experiment and can be seen
in 4.2 and 4.3. This values are changed adding or subtracting a value uniform at
random selected, in the range [−0.02, 0.02], this adjustment, apparently slight, is
actually quite abrupt in the support function boundaries,because, if we compute the
expected value for this binomial process, in the case of 0.02, for an hour, i.e. 3600
seconds, as we see in 4.4, would suppose increase the expected volume traffic in 72
vehicles/hour, in a short time.

36 Chapter 4. Experimental Results

TABLE 4.8: Data collected in experiment 1 against test environment
(Gt=Green Time, Os=Offset, Std=Standard deviation, SoG=Sum of

gradients)

Experiment (4t) Intensity (veh/h/lane) Gt (sec/stage),Os (sec) Mean Std SoG

1 [432, 108, 180, 324] [60, 15, 27, 49, 42] 14.0 5.0 4.0
2 [347, 273, 219, 360] [53, 16, 28, 34, 17] 14.0 8.0 6.0
3 [298, 362, 278, 305] [34, 26, 24, 53, 40] 14.0 5.0 10.0
4 [452, 517, 243, 177] [40, 16, 49, 59, 59] 15.0 13.0 20.0
5 [427, 628, 162, 204] [53, 16, 28, 26, 40] 18.0 7.0 12.0
6 [397, 681, 70, 297] [34, 31, 19, 59, 59] 20.0 6.0 14.0
7 [405, 578, 135, 381] [34, 27, 15, 28, 23] 22.0 15.0 19.0
8 [340, 699, 106, 349] [35, 47, 19, 34, 34] 28.0 10.0 39.0
9 [433, 688, 156, 357] [34, 47, 19, 34, 34] 29.0 19.0 57.0
10 [417, 828, 260, 377] [34, 47, 19, 34, 34] 26.0 22.0 32.0

TABLE 4.9: Data collected in experiment 1 against test environment
(Gt=Green Time, Os=Offset, Std=Standard deviation, SoG=Sum of

gradients)

Experiment (4t) Intensity (veh/h/lane) Gt (sec/stage), Os (sec) Mean Std SoG

1 [432, 108, 180, 324] [57, 26, 24, 53, 26] 21.0 10.0 11.0
2 [347, 273, 219, 360] [53, 16, 15, 45, 32] 33.0 11.0 24.0
3 [298, 362, 278, 305] [37, 27, 15, 23, 18] 32.0 17.0 22.0
4 [452, 517, 243, 177] [42, 27, 19, 34, 23] 52.0 19.0 54.0
5 [427, 628, 162, 204] [53, 16, 28, 26, 40] 43.0 40.0 31.0
6 [397, 681, 70, 297] [34, 31, 19, 28, 23] 39.0 30.0 2.0
7 [405, 578, 135, 381] [34, 27, 15, 28, 23] 37.0 32.0 63.0
8 [340, 699, 106, 349] [28, 47, 15, 23, 95] 54.0 29.0 51.0
9 [433, 688, 156, 357] [35, 47, 19, 34, 74] 67.0 19.0 15.0
10 [417, 828, 260, 377] [34, 47, 19, 34, 34] 66.0 18.0 19.0

In the tables 4.8, 4.12 and 4.10 are shown the result yielded by the execution of
ten simulation rounds, the first table shows the traffic intensity for this interval, the
best plan obtained tested against the reference environment and its fitness values,
the same apply for the second table, but in this case is shown the individual into the
HOF with the best performance tested in the test environment, finally, the third table
shows the volume to capacity ratio of the former individuals for each round.

E[X] = np = 3600 · 0.02 = 72 (4.4)

ti = ti−1 +4t = ti−1 + 450 steps ≡ ti−1 + ttrain (4.5)

In the plots 4.7 and 4.8 we can see the evolution of time allocation for each stage
along with number of vehicles evolution. The fitness valus are also depicted, this
give us an idea of its behavior from round to round.

Looking at the retrieved values, we see that, the green time values assigned to

4.4. Results 37

TABLE 4.10: Volume to Capacity ratio in experiment 1 (Gt=Green
time, Os=Offset)

Experiment (4t) Gt(sec/stage), Os (sec) Volume to Capacity Ratio

1 [57, 26, 24, 53, 26] 0.61
2 [47, 33, 19, 34, 57] 0.65
3 [42, 27, 32, 39, 52] 0.74
4 [46, 38, 32, 32, 25] 0.77
5 [35, 47, 27, 28, 34] 0.83
6 [46, 51, 26, 28, 34] 0.80
7 [35, 47, 19, 34, 34] 0.80
8 [42, 47, 19, 34, 34] 0.88
9 [35, 47, 19, 34, 74] 0.86
10 [35, 47, 19, 34, 34] 0.96

each lane are quite correlated with the expected value of vehicles/hour, I mean, the
green time increases with the traffic load in this lane and decreases conversely. At
this point, it is interesting to mention that this correlation might not be a very good
sign in many situations, in more complex scenarios, may exist traffic recirculation,
for example, people trying to find a parking place close to a social event. In this
cases, might be interesting reduce the time for a future better performance . This is
other advantage of using GA, which should be resilient in this situations, further-
more, in my case , the optimization function not only grant a reduction in the jam
length, it is also designed to spread the cars along the intersection approaches as
balanced as possible, this is the motivation of using the three objective functions, so
this correlation, is not as relevant as might seem.

Although, the number of generations is only three,for each experiment round,
the algorithm behaves quite well, even in a highly volatile environment, as this case,
where the changes are quite abrupt .We can note the effect taking a glance to the
fitness peaks in 4.9.

The HOF is updated for each experiment with its performance against the test
environment, this adds diversity to the population because must perform well in
two scenarios with random at uniform behaviors. If its performance is good enough
for the current conditions, some individuals, may survive into the HOF set between
experiment rounds.

At the light of the results obtained in the long term with only three generations
per experiment, might be interesting increase the number of generations to compare
with the current parameter,so I have doubled the number of generations per exper-
iment. The results are depicted in 4.10 .The plot shows that, in the long term, the
algorithm seems able to recover from the bad performance during the initial experi-
ments, although, this will also depend the way in that the probability evolves along
the experiment. Besides, the data suggest that, the fitness parameter behaves better
in the short term, using more generations.

In the next plot 4.11 we see the output obtained launching the same experiment,
setting the parameters as the former,but in this case, repeating 20 times, instead of 10
as previously did. This run of the process illustrates the difficult that can be keeping
a stable performance in a scenario as random as this one. At the beginning a optimal
solution with very low fitness values was reached very quickly, but then, a correction
had to be carried out. Despite, the population set was able to correct the performance

38 Chapter 4. Experimental Results

FIGURE 4.7: Plot from data collected in experiment 1 against train
environment (Plot 1 shows expected veh/h/lane, Plot2 shows green

time allocated/stage, Plot 3 shows the fitness functions evolution)

spikes, keeping very good fitness parameters along the training process.
The intermediate experiment execution time is very low,as low as roughly 75

seconds,with the resources listed in A. With this execution time find a solution can
become very quick .In the Linux machine used,I am obtained even lower execution
time applying a re-nice to the simulator process, giving in this way greater priority
execution.

Since, It would be difficult experiment such an exceptional change in the ex-
pected intensity traffic in only 75 seconds (unless and exceptional event happens),is
interesting repeat the experiment using a narrower random at uniform function sup-
port, in detail, [−0.005, 0.005], this suggests an expected intensity traffic change of
±18 vehicles/hour per iteration, at boundary values. This situation, in my opinion,
is closer to real traffic conditions of volatility in most of situations. I have retrieved
the results depicted in the tables 4.11, 4.12 and 4.13.

As in the previous experiment, for visualization purposes, two panel plots have
been generated, in 4.12 and 4.13 we can see a more soft variation with respect to the
previous experiment, and closer to zero fitness values.

Here the algorithm is ,obviously, much more stable. It is able to adapt very
quickly to this slighter traffic flow variations, and performs better in the long term,
being able to remain stable in quite low fitness values. Other interesting observa-
tion comes from the fact that, the offset parameter, i.e the fifth element that every
chromosome has, also seems to evolve taking in general low values, this might be
explained by the number of steps selected for the simulation, high offset values will
probably worsen the jam parameters.

In real traffic management infrastructures, many times, is mandatory by design,

4.4. Results 39

TABLE 4.11: Data collected in experiment 2 against test environment
(Gt=Green Time, Os=Offset, Std=Standard deviation, SoG=Sum of

gradients)

Experiment (4t) Intensity (veh/h/lane) Gt (sec/stage), Os (sec) Mean Std SoG

1 [432, 108, 180, 324] [35, 20, 20, 24, 33] 13.0 6.0 3.0
2 [390, 104, 159, 341] [43, 15, 19, 26, 56] 13.0 7.0 0.0
3 [377, 85, 176, 331] [51, 18, 18, 27, 25] 12.0 3.0 2.0
4 [361, 95, 153, 294] [51, 18, 18, 27, 34] 9.0 7.0 7.0
5 [344, 125, 174, 268] [51, 18, 18, 27, 34] 9.0 6.0 14.0
6 [344, 121, 146, 285] [36, 21, 18, 27, 25] 9.0 4.0 6.0
7 [337, 109, 137, 284] [43, 17, 26, 42, 33] 9.0 2.0 3.0
8 [338, 115, 143, 304] [45, 21, 18, 27, 25] 7.0 3.0 2.0
9 [338, 97, 163, 329] [45, 15, 26, 27, 33] 9.0 3.0 11.0
10 [327, 104, 188, 297] [43, 21, 18, 27, 33] 9.0 3.0 12.0

TABLE 4.12: Data collected in experiment 2 against test environment
(Gt=Green Time, Os=Offset, Std=Standard deviation, SoG=Sum of

gradients)

Experiment (4t) Intensity(veh/h/lane) Gt(sec/stage), Os(sec) Mean Std SoG

1 [432, 108, 180, 324] [46, 28, 20, 42, 56] 16.0 10.0 9.0
2 [390, 104, 159, 341] [43, 15, 19, 26, 56] 30.0 26.0 80.0
3 [377, 85, 176, 331] [51, 18, 18, 27, 25] 19.0 10.0 5.0
4 [361, 95, 153, 294] [45, 15, 18, 27, 25] 17.0 5.0 12.0
5 [344, 125, 174, 268] [35, 18, 26, 42, 33] 28.0 18.0 38.0
6 [344, 121, 146, 285] [39, 18, 36, 38, 7] 18.0 11.0 15.0
7 [337, 109, 137, 284] [36, 18, 18, 27, 33] 15.0 6.0 9.0
8 [338, 115, 143, 304] [45, 21, 18, 27, 25] 19.0 10.0 5.0
9 [338, 97, 163, 329] [45, 15, 26, 27, 33] 15.0 11.0 43.0
10 [327, 104, 188, 297] [43, 21, 18, 27, 33] 13.0 7.0 5.0

TABLE 4.13: Volume to Capacity ratio in experiment 2 (Gt=Green
time, Os=Offset)

Experiment (4t) Gt (sec/stage, Os (sec) Volume to Capacity Ratio

1 [53, 29, 37, 34, 15] 0.61
2 [46, 18, 26, 58, 33] 0.61
3 [45, 18, 19, 58, 25] 0.62
4 [51, 18, 20, 42, 33] 0.59
5 [45, 18, 26, 42, 33] 0.53
6 [39, 18, 36, 38, 7] 0.56
7 [43, 17, 26, 42, 33] 0.55
8 [43, 21, 18, 27, 42] 0.54
9 [41, 18, 26, 42, 33] 0.54
10 [35, 18, 18, 27, 33] 0.58

40 Chapter 4. Experimental Results

FIGURE 4.8: Plot from data collected in experiment 1 against test envi-
ronment(Plot 1 shows expected veh/h/lane, Plot2 shows green time

allocated/stage, Plot 3 shows the fitness functions evolution)

keep a fixed cycle value for a group of TL intersections. This is used to keep the dif-
ferent TL synchronized by means of the offset parameter, and in this way, allowing
a car that leaves an intersection find the next light in green state. This approach, is
useful in streets with a high traffic load and we want the flows moving across, enter
and leaving the route in as little steps as possible.

To measure the performance of the algorithm with this constraint, the test ap-
plication includes a function which adapt the cycle time of the individuals of our
population, returning its parameters adapted to this cycle, the function works re-
moving or adding, either the remaining or necessary time, using an approach that
stem from a mix between a random and a fairy distribution, the result of the extra
time is divided by the length of the plan an fairly added or subtracted, the remain-
der is assigned randomly, note that, the lower and upper bounds must be respected
because are limited by design, so, the remainder is used to tune the division in order
to respect this constraint.

In this scenario it is valuable see how the jam evolves during the execution along
with the fitness parameters, in the plots 4.14 we see the fitness evolution and the
jam behavior for the four approaches with the current probability parameters and
the adaptation cycle turned on for a cycle of 120 seconds, note that, the adaptation is
only performed with the individuals into the HOF set, because they would be those,
hypothetically used, to be applied in a real scenario.

In 4.15 I have repeated the study for the highly randomized scenario, keeping
the rest of parameters fixed, but the number of generation per experiment which
is changed to six. At the light of the graph, the results seems bad, because the jam
length increases for some lanes,but if we delve into the data, we can see that the sim-
ulation begins with a flow of F(0) = [432, 108, 180, 324] and finishes with a flow of

4.4. Results 41

FIGURE 4.9: Mean fitness evolution [Ngen=3, Nexp=10,
ProbChange=[-0.02,0.02]]

F(10) = [174, 255, 250, 585] , the best scored green time allocation for this experiment
in the first round was [60, 23, 24, 38, 31] and for the last round [15, 23, 27, 49, 52], the
green times are correlated with the flow parameters and evolve accordingly.

With this information in mind, actually, the results are not so bad, the fitness per-
formance depends, for example,on the mean of the jam length, and this parameter is
tied to constrains imposed by the environment and the intersection characteristics,
this fact limits the lower values that the fitness functions can take, we only can in-
crease the green time until a limit, so, the objective of the algorithm should be find
the best of the allowed solutions into this limited space of solutions, which vary with
time,so, may be broader or narrower that in the previous round of the experiment.
If we take a glance at the mean fitness evolution plot ?? we see that the fitness pa-
rameter is corrected very quickly,drawing a saw-tooth wave, modulated by the flow
change, this demonstrate resilience capacity.

In other try, depicted in 4.16, the random values tend toward lower values of
traffic volume, then, in this case, the fitness values can be greatly improved.

42 Chapter 4. Experimental Results

FIGURE 4.10: Mean fitness evolution [Ngen=6, Nexp=10,
ProbChange=[-0.02,0.02]]

FIGURE 4.11: Mean fitness evolution [Ngen=6, Nexp=20,
ProbChange=[-0.02,0.02]]

4.4. Results 43

FIGURE 4.12: Plot from data collected in experiment 2 against train
environment (Plot 1 shows expected veh/h/lane, Plot2 shows green

time allocated/stage, Plot 3 shows the fitness functions evolution)

FIGURE 4.13: Plot from data collected in experiment 2 against test
environment (Plot 1 shows expected veh/h/lane, Plot2 shows green

time allocated/stage, Plot 3 shows the fitness functions evolution)

44 Chapter 4. Experimental Results

FIGURE 4.14: Fitness evolution and MA50 Jam length with cycle
adapted [Ngen=3, Nexp=10, ProbChange=[-0.005,0.005], cycle=120]

FIGURE 4.15: Fitness evolution and MA50 Jam length with cycle
adapted [Ngen=6, Nexp=10, ProbChange=[-0.02,0.02], cycle=120]

FIGURE 4.16: Fitness evolution and MA50 Jam length with cycle
adapted [Ngen=6, Nexp=10, ProbChange=[-0.02,0.02], cycle=120]

45

Chapter 5

Conclusions and future work

5.1 Conclusions

The algorithm has shown during the experiments carried out quite good perfor-
mance .The execution of a single training process is able to reach optimal fitness
scores very quickly. On the other hand, launching the algorithm in a evolutionary
scenario has demonstrate its resilience using a short number of generations, even
in highly randomized scenarios. This behavior made it a suitable adaptive tool for
real time scenarios, due to its capability to recover from environment changes, even
when this changes are large, besides, the experiments have shown that, the more
time the agent is "on-line" the better its behavior tends to be.

5.2 Future research

Obviously, the algorithm is limited to achieve its objectives by physical conditions
which fall out of its scope, for example, the number of lanes per approach, the type of
vehicles crossing the intersection, the type of flows and its timing, the traffic volume,
between others. All this parameters are out of our control when only an agent is
present in the net, otherwise, the volume traffic, for example, might be indirectly
controlled if we implement the agent in all the intersections of the same area. In this
case, the net where the agent is running should be able to adapt the traffic using a
decentralized approach,where each agent is interacting, without being aware of the
existence one of each other. We couldn’t change the number of lanes, but we might
control the way in that the flows are issued.

This is the reason why, in my opinion,would be valuable testing the algorithm
capabilities in a scenario where several decentralized agents interact in an oblivious
way.

Study if the system is actually able to reach certain stability level would be an
interesting challenge. The automated parameter selection would be other feature to
be added, this would accelerate our possibilities to test the performance in a broader
range of different situations adding value to the solution.

The automated parameter selection might be carried out using a parallel envi-
ronment which simulates the current, this one, might be fully independent from the
former, working in a parallel process or even previous to the implementation using
former real data. This environment would be in charge of the exploration of the
parameters with better performance in different traffic situations for the environ-
ment. Either a supervised or an unsupervised learning approach, based on neural
networks might be a suitable solution, even a GAN algorithm where two networks,
one issuing flows trying to worsen the fitness scores and other changing the hyper-
parameters trying to improve the fitness outcome, could be fine.

46 Chapter 5. Conclusions and future work

Furthermore, we must be aware that, not always, we have at our disposal all the
desired hardware capabilities to perform the computations, besides, a reduction in
the execution time will led us to a reduction in training time per generation, allowing
us to increase the population length, breeding longer offspring and raise the number
of generations that we are able to execute in the time slot at our disposal between
queries, issuing better fitness performances. These are the reasons why it would
be very interesting find the way to execute the quickest algorithm possible. In our
case, the major limitation comes from the simulator, since we are using an external
solution, which might be difficult to adapt to our requirements, It would be great
explore the possibility of design a simulator ad-hoc able to be executed in a GPU,
which should improve the execution times. We do not need, actually, a very complex
simulator, we are using a very little part of the sumo capabilities, so, this is also an
interesting field of study.

47

Appendix A

Resources

A.1 Experimental Equipment

The experiments have been performed in a laptop with the following software and
hardware characteristics:

• SO: Ubuntu 20.04.2 LTS

• Linux Kernel: 5.4.0-77-generic

• Processor: Intel® Core™ i7-6500U CPU @ 2.50GHz × 4 64 bits

• RAM Memory: 15,6 GiB

• Graphics Card: Intel Corporation Skylake GT2

• Programming Language: Python 3.8.10

• IDE: PyCharm 2021.1.3 (Community Edition)

A.2 Simulator

Eclipse SUMO Version 1.4.0
Build features: x8664− pc− linux− gnuGDALGUI
Copyright (C) 2001-2019 German Aerospace Center (DLR) and others; https://sumo.dlr.de
Eclipse SUMO Version 1.4.0 is part of SUMO.
http://www.eclipse.org/legal/epl-v20.html
SPDX-License-Identifier: EPL-2.0

A.3 Python Frameworks

The python frameworks used are:

• Name: deap
Version: 1.3.1
º Summary: Distributed Evolutionary Algorithms in Python
Home-page: https://www.github.com/deap
Author: deap Development Team
Author-email: deap-users@googlegroups.com
License: LGPL

48 Appendix A. Resources

• Name: tensorflow
Version: 2.4.1
Summary: TensorFlow is an open source machine learning framework for ev-
eryone.
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: packages@tensorflow.org
License: Apache 2.0

• Name: tf-agents
Version: 0.7.1
Summary: TF-Agents: A Reinforcement Learning Library for TensorFlow
Home-page: https://github.com/tensorflow/agents
Author: Google LLC
Author-email: no-reply@google.com
License: Apache 2.0

• Name: sumolib
Version: 1.8.0
Summary: Python helper modules to read networks, parse output data and do
other useful stuff related to the traffic simulation SUMO
Home-page: https://sumo.dlr.de/docs/Tools/Sumolib.html
Author: DLR and contributors
Author-email: sumo@dlr.de
License: EPL-2.0

• Name: traci
Version: 1.8.0
Summary: The pure python version of the TraCI API to communicate with the
traffic simulation SUMO
Home-page: https://sumo.dlr.de/docs/TraCI/InterfacingTraCIfromPython.html
Author: DLR and contributors
Author-email: sumo@dlr.de
License: EPL-2.0

49

Appendix B

Python Code

B.1 Repositories

The code is served in two repositories, github and docker. The code was designed
to work in Linux machines, and has several dependencies that could be difficult to
accomplish, this fact was the motivation to implement a docker image built on the
top of a docker ubuntu image, with all the dependencies satisfied. The instructions
to run the software are in the github repository , I am sharing here the different links
to access the repositories:

Github Repository Project
Docker Project Repository
Registry to download the docker image: suarna/gatraffic:latest

B.2 Files

Here i give a breaf explanaiton of the python files and its function.

B.2.1 gatraffic.py

This file is one of the main script functions of the genetic algorithm traffic imple-
mentation, so we can consider it the core of the proposed solution. The simulation
parameters are also defined here. This script carry out a single execution of the al-
gorithm according to the configured. parameters.

B.2.2 tlenvironment.py

The tensor flow environment is created here. The class contained in this file is used to
interact with sumoconnector interface,and in this way,controlling the init,finish and
stepping of simulation and the retrieval of information from it. Each step returns a
reward, which is always zero until the last step, where the jam length value for each
lane is returned as the final reward. This solution stems from reinforcement learning
approaches.

B.2.3 paramstorage.py

Into this file several static methods are defined. They are tools used to manipulate
the content of xml config files used by the sumo simulator.

https://github.com/suarna/gatraffic
https://hub.docker.com/r/suarna/gatraffic

50 Appendix B. Python Code

B.2.4 test-gatraffic.py

This file is quite similar to gatraffic.py. In this case, instead of performing a single
execution of the algorithm, the process is repeated several rounds. The aim of this
approach is emulate real conditions where the environment changes from time to
time, and in this way, study the resiliency of the solution when the traffic vehicle
flows are evolving randomly over time,below is the code of this script.

import random as rd
from datetime import datetime
import matplotlib.pyplot as plot
import copy

import numpy as np
import traci
import csv
from deap import algorithms
from deap import base
from deap import creator
from deap import tools

import gatraffictoolbox
import paramstorage
import sumoconnector
import trafficinteract

initial_time = datetime.now()
init_state, n_phases, np_phases, n_steps, det_ids_list, offset =

trafficinteract.getinfo(
"Nets/SimpleNet/tls.xml",
"Nets/SimpleNet/net.net.xml",
"Nets/SimpleNet/additional.add.xml",
"Nets/SimpleNet/testdemandpedestrian.rou.xml")

LOAD HYPER-PARAMETERS FROM FILE
hyper_params = params(’@param_test.txt’)
print("Loaded parameters are: {}".format(hyper_params))
print(hyper_params)
for key, val in hyper_params.items():

exec(key + ’=val’)

DECLARE MORE PARAMETERS
CHROMOSOME_LENGTH = np_phases + 1
MAX_PH_TIME = CYCLE - (MIN_PH_TIME * np_phases)

Define seed
rd.seed(RANDOM_SEED)

intensity =
paramstorage.get_flow("Nets/SimpleNet/testdemandpedestrian.rou.xml")

Store a tmp file of demand data file
xml_copy =

paramstorage.temp_xml("Nets/SimpleNet/testdemandpedestrian.rou.xml")
print("\033[93mThe flow in vehicles/h is: {}\033[0m".format(intensity))

if SINGLE:

B.2. Files 51

weights = (-1.0,)
creator.create("FitnessSingle", base.Fitness, weights=weights)
creator.create("Individual", list, fitness=creator.FitnessSingle)

else:
(divergence, mean, std)
weights = (-1.0, -1.0, -1.0)
Define creator
Define minimize strategy
creator.create("FitnessMulti", base.Fitness, weights=weights)
Gen class
creator.create("Individual", list, fitness=creator.FitnessMulti)

#

Define score function
def score(individual, env):

return sim.get_score(env, individual)

Define hof similarity function to limit the hof length if genotype is the
same

def pareto_eq(ind1, ind2):
return np.any(ind1.fitness.values == ind2.fitness.values)

#

Define toolbox & register register operators
toolbox = base.Toolbox()
toolbox.register("Action", rd.randint, MIN_PH_TIME, MAX_PH_TIME)
toolbox.register("individualCreator", tools.initRepeat, creator.Individual,

toolbox.Action, CHROMOSOME_LENGTH)
toolbox.register("populationCreator", tools.initRepeat, list,

toolbox.individualCreator)

Define statistics
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("mean", np.mean)
stats.register("max", np.max)
stats.register("min", np.min)
stats.register("std", np.std)

if SINGLE:
hof = tools.HallOfFame(maxsize=HOF_SIZE)

else:
hof = tools.ParetoFront(similar=pareto_eq)
hof = tools.ParetoFront(similar=pareto_eq)

Run simulation
fit_list = list()
sim = trafficinteract.TrafficEnv(CONFIG_FILE_ROUTE, N_STEPS,

CHROMOSOME_LENGTH, det_ids_list, SINGLE, fit_list)
sim.runs()

52 Appendix B. Python Code

Running original environment
ref_env = sim.rune("Reference")
Running test environment
test_env = sim.rune("Test")

Upper and lower sequences with limits for genes generation
lower_bound = []
upper_bound = []
Boundaries for phases
for n in range(0, np_phases):

lower_bound.append(MIN_PH_TIME)
upper_bound.append(MAX_PH_TIME)

Adding the offset limits
lower_bound.append(MIN_OFFS_TIME)
upper_bound.append(MAX_OFFS_TIME)

toolbox.register("evaluate", score, ref_env)

if SEL_AL1:
toolbox.register("select", tools.selSPEA2)

elif SEL_AL2:
ref_points = tools.uniform_reference_points(2, np_phases + 1)
toolbox.register("select", tools.selNSGA3, ref_points=ref_points)

elif SINGLE:
toolbox.register("select", tools.selBest)

else:
toolbox.register("select", tools.selNSGA2)

toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutUniformInt, low=lower_bound,

up=upper_bound, indpb=1.0 / CHROMOSOME_LENGTH)

Creating population
population = toolbox.populationCreator(n=POPULATION_SIZE)

v2c_list = []
lb_list = []
best_list = []
best_test_list = []
intensity_list = [intensity]

def main():
try:

for i in range(0, N_EXPERIMENTS):
print("---")
print("EXPERIMENT NUMBER {} INITIATED".format(i + 1))
print("---")
if i != 0:

Update HOF fitness for new environment conditions
for _ in range(len(hof)):

result = sim.get_score(hof.items[_], ref_env)
hof.items[_].fitness.values = result
if hof.items[_] in pop:

pop[pop.index(hof.items[_])].fitness.values = result
pop, lb = algorithms.eaMuPlusLambda(population,

toolbox,
MU,

B.2. Files 53

LAMBDA,
P_CROSSOVER,
P_MUTATION,
MAX_GENERATIONS,
stats,
hof,
True)

lb_list.append(lb)
Get a copy of the best hof item
best = copy.deepcopy(hof.items[0])
best_list.append(best)
print("\n\033[0;31;40mHOF content is: ", hof)
print("Best Plan = {}\033[0m".format(best))

Apply plan to test env and read result
test_result = []
for _ in range(len(hof)):

if ADAPT:
Adapt to cycle
plan = gatraffictoolbox.adapt(hof.items[_], CYCLE,

MIN_PH_TIME, MAX_PH_TIME)
result = sim.get_score(plan, test_env)
Update fitness value of hof item
hof.items[_].fitness.values = result
test_result.append(hof.items[_])
print("The test score for individual {} adapted from {}

is : {}".format(plan, hof.items[_], result))

else:
result = sim.get_score(hof.items[_], test_env)
Update fitness value of hof item
hof.items[_].fitness.values = result
test_result.append(hof.items[_])
print("The test fitness score for individual {} is :

{}".format(hof.items[_], result))

Get volume to capacity values
v2c = []
new_intensity =

paramstorage.get_flow("Nets/SimpleNet/testdemandpedestrian.rou.xml")
for _ in range(len(hof)):

if i == 0:
v2c.append(np.mean(sim.v2c(hof.items[_], intensity)))

else:
v2c.append(np.mean(sim.v2c(hof.items[_], new_intensity)))

min_idx = np.argmin(v2c)
v2c_list.append([hof.items[min_idx], v2c[min_idx]])

Select non dominated from the test set
best_test = tools.selNSGA2(test_result, 1)
best_test_list.append(hof.items[hof.items.index(best_test[0])])

Set best test offset value in the traffic light logic
paramstorage.set_offset("Nets/SimpleNet/tls.xml",

best_test[len(best_test) - 1])

54 Appendix B. Python Code

Tuning prob flow adding or subtracting a (random(-bound,bound))
paramstorage.set_flow("Nets/SimpleNet/testdemandpedestrian.rou.xml",

BOUND)
if i != 0:

intensity_list.append(paramstorage.get_flow("Nets/SimpleNet/testdemandpedestrian.rou.xml"))
print("\033[93mThe new flow is:

{}\033[0m".format(paramstorage.get_flow(
"Nets/SimpleNet/testdemandpedestrian.rou.xml")))

print("---")
print("EXPERIMENT FINISHED")
print("---")

Close environments
traci.switch("Test")
sumoconnector.close()
traci.switch("Reference")
sumoconnector.close()
traci.switch("default")
sumoconnector.close()

print("Evolution:")
for lb in lb_list:

print(lb)
lb_dict = lb_list[0][0]
keys = lb_dict.keys()
lb_url = ’data/logbook_’ +

datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’) + ’.csv’
with open(lb_url, ’w’, newline=’’) as f:

dw = csv.DictWriter(f, keys)
dw.writeheader()
for l in lb_list:

dw.writerows(l)

best_csv = []
print("Best individual per experiment:")
idx = 0
for best in best_list:

print("Experiment: {} # Best: {} # Fitness value: {}".
format(idx+1, best, best.fitness.values))

best_csv.append([idx+1, intensity_list[idx], best,
best.fitness.values])

idx += 1
with open(’data/best_’ +

datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’) + ’.csv’, ’w’,
newline=’’) as f:
writer = csv.writer(f)
writer.writerow(["Experiment", "Intensity", "Best Plan", "Best

Fitness"])
writer.writerows(best_csv)

best_test_csv = []
print("Best test individual per experiment:")
idx = 0
for best_test in best_test_list:

print("Experiment: {} # Best test: {} # Fitness test value: {}".
format(idx+1, best_test, best_test.fitness.values))

B.2. Files 55

best_test_csv.append([idx+1, intensity_list[idx], best_test,
best_test.fitness.values])

idx += 1
with open(’data/best_test_’ +

datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’) + ’.csv’, ’w’,
newline=’’) as f:
writer = csv.writer(f)
writer.writerow(["Experiment", "Intensity", "Best Test Plan",

"Best Fitness"])
writer.writerows(best_test_csv)

v2c_csv = []
print("Best mean value of volume two capacity ratio:")
idx = 0
for v2c in v2c_list:

print("Experiment: {} # Individual: {} # Best volume to capacity:
{}".
format(idx+1, v2c[0], v2c[1]))

v2c_csv.append([idx+1, v2c[0], v2c[1]])
idx += 1

with open(’data/v2c_’ + datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’)
+ ’.csv’, ’w’, newline=’’) as f:
writer = csv.writer(f)
writer.writerow(["Experiment", "Individual", "V2C Ratio"])
writer.writerows(v2c_csv)

Plotting
data = np.genfromtxt(lb_url, delimiter=",", names=["gen", "nevals",

"mean"])
x = np.arange(0, len(data["gen"]), 1)
plot.figure(0)
plot.plot(x, data["mean"], color=’blue’)
plot.xlabel("Generations")
plot.ylabel("Mean of Fitness")
plot.savefig(’Nets/SimpleNet/plots/test-’ +

datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’) + ’.png’)

plot.figure(1)
plot.xlabel("Individuals tested")
plot.ylabel("MA50 of jam length values")
for lane in range(0, len(det_ids_list)):

Compute the moving average per 50 plans
jam_ma = gatraffictoolbox.ma(list(zip(*fit_list))[lane], 50)
plot.plot(np.arange(0, len(jam_ma), 1), jam_ma,

color="C{}".format(lane))
plot.savefig(’Nets/SimpleNet/plots/jam_test-’ +

datetime.now().strftime(’%m_%d_%Y-%H:%M:%S’) + ’.png’)

print("\nThe initial time was: {}".format(initial_time))
print("The final time is: {}".format(datetime.now()))

finally:
Restore original xml demand data file
with open("Nets/SimpleNet/testdemandpedestrian.rou.xml", ’w’) as

original:
tmp = open(xml_copy.name, ’r’)
original.write(str(tmp.read()))

56 Appendix B. Python Code

if __name__ == "__main__":
main()

B.2.5 trafficinteract.py

This is the script used to create the traffic environments, and it is the an impor-
tant part of the implementation because is in charge of interact with the environ-
ment,retrieving the jam length reawrds an computing the fitness for each individual
sent to the simulation, below is depicted the code of the getscore function, which
acts as the fitness function, this function is a method of the class TrafficEnv.

def get_score(self, individual, env: tlenvironment.SimulationEnv):
verbose = True
ctr = 0
ts = env.reset()
array = np.array((self.n_phases,), dtype=np.float32)
paramstorage.set_offset("Nets/SimpleNet/tls.xml",

individual[len(individual) - 1])
Always sends the same individual to the simulation for all steps

of the episode
for ctr in range(self.n_steps):

ts = env.step(individual)
if ts.step_type is array:

break
ctr += 1

scores = list()
mean = np.mean(ts.reward)
std = np.std(ts.reward)
div = np.abs(np.sum(np.gradient(ts.reward)))
if self.single:

scores.append(np.mean([mean, std, div]))
else:

scores.append(np.round(mean))
scores.append(np.round(std))
scores.append(np.round(div))

tuple(scores)
if verbose:

print("\n\033[92mThe individual for this iteration is: ",
individual)

print("The jam length for this individual is:
{}".format(ts.reward))

print(’The score for this individual is:
{}\033[0m’.format(scores))

return scores

B.2.6 gatraffictools

Into this file we find the MA50 calculator function and the function used to adapt the
individuals to a fixed cycle length value. The code of the former function is shown
below.

def adapt(individual, cycle, lower_limit, upper_limit):
length = len(individual)-1

B.2. Files 57

div = []
arr = individual[0:length]
for n in range(0, length):

div.append(np.floor(np.abs(cycle-np.sum(arr)) / length))
remainder = np.abs(cycle-np.sum(arr)) % length
if cycle-np.sum(arr) > 0:

for n in range(0, length):
while arr[n]+div[n] > upper_limit:

div[n] -= 1
remainder += 1

arr[n] += div[n]
minimum = np.min(arr)
indices = [i for i, x in enumerate(arr) if x == minimum]
idx = random.randint(0, len(indices)-1)
arr[indices[idx]] += remainder

elif cycle - np.sum(arr) < 0:
for n in range(0, length):

while arr[n]-div[n] < lower_limit:
div[n] -= 1
remainder += 1

arr[n] -= div[n]
maximum = np.max(arr)
indices = [i for i, x in enumerate(arr) if x == maximum]
idx = random.randint(0, len(indices) - 1)
arr[indices[idx]] -= remainder

arr.append(individual[length])
return arr

B.2.7 sumoconnector.py

Sumo connector act as an interface between the gatraffic application scripts and the
sumo simulator, it is in charge of run the sumo program, control the simulation and
query it.

59

Appendix C

Simulation Environment

C.1 Netedit

The netedit tool included in the sumo package is used to create the simulation envi-
ronment. It is a GUI to easily create traffic networks. The environment configuration
files in this work have been created using this tool.

FIGURE C.1: Netedit tool depicting the simulated environment

C.2 Traffic light editor

Into the netedit tool we also have a editor to create the TL logic, its use is very simple,
letting us add new phases and delete it defining the colors of the lights along with
other features.

C.3 Sumo-gui

SUMO simulator provides a powerful graphic simulator that let us see interactively
the simulation evolution. It is useful when we are performing a single simulation
execution, in our case, the overload caused by the repeated executions discourage
its use.

60 Appendix C. Simulation Environment

FIGURE C.2: Traffic Light Editor

FIGURE C.3: SUMO GUI

C.4 Generated files

Using the SUMO tools we generate several XML files with the configuration content,
along this section I am going to show its content.

C.4.1 sumo.sumocfg

This is the file provided when the sumo command is invoked, the files to be loaded
are entered into this file, as we see in the xml code below, the network, the demand
and the tls file absolute routes are added.

<?xml version="1.0" encoding="UTF-8"?>

<!-- generated on sat 27 feb 2021 22:17:59 by Eclipse SUMO GUI Version 1.4.0
-->

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">

C.4. Generated files 61

<input>
<net-file

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/net.net.xml"/>
<route-files

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/demand_w_ped.rou.xml"/>
<additional-files

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/additional.add.xml"/>
</input>

<gui_only>
<registry-viewport value="true"/>
<start value="true"/>

</gui_only>

</configuration>

C.4.2 test-sumo.sumocfg

This is the config file used when the test program is used, in this case the difference
comes from the fact that I use a different demand file.

<?xml version="1.0" encoding="UTF-8"?>

<!-- generated on sat 27 feb 2021 22:17:59 by Eclipse SUMO GUI Version 1.4.0
-->

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">

<input>
<net-file

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/net.net.xml"/>
<route-files

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/testdemandpedestrian.rou.xml"/>
<additional-files

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/additional.add.xml"/>
</input>

<gui_only>
<registry-viewport value="true"/>
<start value="true"/>

</gui_only>

</configuration>

C.4.3 net.net.xml

The net file is used to define the structure of the whole network, here the roads,the
lanes and many other parameters are defined, the generation process, as has stated
before, is automated using the netedit program.

<?xml version="1.0" encoding="UTF-8"?>

62 Appendix C. Simulation Environment

<!-- generated on vie 23 jul 2021 19:48:49 by Eclipse SUMO netedit Version
1.4.0

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/netconvertConfiguration.xsd">

<input>
<sumo-net-file

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/net.net.xml"/>
</input>

<output>
<output-file

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/net.net.xml"/>
</output>

<processing>
<geometry.min-radius.fix.railways value="false"/>
<geometry.max-grade.fix value="false"/>
<offset.disable-normalization value="true"/>
<lefthand value="false"/>

</processing>

<junctions>
<no-internal-links value="false"/>
<no-turnarounds value="true"/>
<junctions.corner-detail value="5"/>
<junctions.limit-turn-speed value="5.5"/>
<rectangular-lane-cut value="false"/>

</junctions>

<pedestrian>
<walkingareas value="false"/>

</pedestrian>

<netedit>
<TLSPrograms-output

value="/home/miguel/PycharmProjects/GA_Traffic/Nets/SimpleNet/tls.xml"/>
</netedit>

<report>
<aggregate-warnings value="5"/>

</report>

</configuration>
-->

<net version="1.3" junctionCornerDetail="5" limitTurnSpeed="5.50"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/net_file.xsd">

<location netOffset="0.00,0.00"
convBoundary="-200.00,-100.00,200.00,300.00"
origBoundary="-10000000000.00,-10000000000.00,10000000000.00,10000000000.00"
projParameter="!"/>

<edge id=":east_w0" function="walkingarea">

C.4. Generated files 63

<lane id=":east_w0_0" index="0" allow="pedestrian" speed="1.00"
length="8.40" width="2.00" shape="200.00,103.20 200.00,105.20
200.00,94.80 200.00,96.80"/>

</edge>
<edge id=":intersection_0" function="internal">

<lane id=":intersection_0_0" index="0" disallow="pedestrian"
speed="6.51" length="4.75" shape="-1.60,107.20 -1.95,104.75
-3.00,103.00 -3.20,102.88"/>

</edge>
<edge id=":intersection_1" function="internal">

<lane id=":intersection_1_0" index="0" disallow="pedestrian"
speed="13.89" length="14.40" shape="-1.60,107.20 -1.60,92.80"/>

</edge>
<edge id=":intersection_2" function="internal">

<lane id=":intersection_2_0" index="0" disallow="pedestrian"
speed="8.00" length="10.13" shape="-1.60,107.20 -1.05,103.35
0.60,100.60 3.20,99.04"/>

</edge>
<edge id=":intersection_12" function="internal">

<lane id=":intersection_12_0" index="0" disallow="pedestrian"
speed="6.51" length="4.28" shape="-3.20,102.88 -4.75,101.95
-7.20,101.60"/>

</edge>
<edge id=":intersection_13" function="internal">

<lane id=":intersection_13_0" index="0" disallow="pedestrian"
speed="8.00" length="4.06" shape="3.20,99.04 3.35,98.95
7.20,98.40"/>

</edge>
<edge id=":intersection_3" function="internal">

<lane id=":intersection_3_0" index="0" disallow="pedestrian"
speed="6.51" length="4.75" shape="7.20,101.60 4.75,101.95
3.00,103.00 2.88,103.20"/>

</edge>
<edge id=":intersection_4" function="internal">

<lane id=":intersection_4_0" index="0" disallow="pedestrian"
speed="13.89" length="14.40" shape="7.20,101.60 -7.20,101.60"/>

</edge>
<edge id=":intersection_5" function="internal">

<lane id=":intersection_5_0" index="0" disallow="pedestrian"
speed="8.00" length="10.13" shape="7.20,101.60 3.35,101.05
0.60,99.40 -0.96,96.80"/>

</edge>
<edge id=":intersection_14" function="internal">

<lane id=":intersection_14_0" index="0" disallow="pedestrian"
speed="6.51" length="4.28" shape="2.88,103.20 1.95,104.75
1.60,107.20"/>

</edge>
<edge id=":intersection_15" function="internal">

<lane id=":intersection_15_0" index="0" disallow="pedestrian"
speed="8.00" length="4.06" shape="-0.96,96.80 -1.05,96.65
-1.60,92.80"/>

</edge>
<edge id=":intersection_6" function="internal">

<lane id=":intersection_6_0" index="0" disallow="pedestrian"
speed="6.51" length="4.75" shape="1.60,92.80 1.95,95.25
3.00,97.00 3.20,97.12"/>

</edge>

64 Appendix C. Simulation Environment

<edge id=":intersection_7" function="internal">
<lane id=":intersection_7_0" index="0" disallow="pedestrian"

speed="13.89" length="14.40" shape="1.60,92.80 1.60,107.20"/>
</edge>
<edge id=":intersection_8" function="internal">

<lane id=":intersection_8_0" index="0" disallow="pedestrian"
speed="8.00" length="10.13" shape="1.60,92.80 1.05,96.65
-0.60,99.40 -3.20,100.96"/>

</edge>
<edge id=":intersection_16" function="internal">

<lane id=":intersection_16_0" index="0" disallow="pedestrian"
speed="6.51" length="4.28" shape="3.20,97.12 4.75,98.05
7.20,98.40"/>

</edge>
<edge id=":intersection_17" function="internal">

<lane id=":intersection_17_0" index="0" disallow="pedestrian"
speed="8.00" length="4.06" shape="-3.20,100.96 -3.35,101.05
-7.20,101.60"/>

</edge>
<edge id=":intersection_9" function="internal">

<lane id=":intersection_9_0" index="0" disallow="pedestrian"
speed="6.51" length="4.75" shape="-7.20,98.40 -4.75,98.05
-3.00,97.00 -2.88,96.80"/>

</edge>
<edge id=":intersection_10" function="internal">

<lane id=":intersection_10_0" index="0" disallow="pedestrian"
speed="13.89" length="14.40" shape="-7.20,98.40 7.20,98.40"/>

</edge>
<edge id=":intersection_11" function="internal">

<lane id=":intersection_11_0" index="0" disallow="pedestrian"
speed="8.00" length="10.13" shape="-7.20,98.40 -3.35,98.95
-0.60,100.60 0.96,103.20"/>

</edge>
<edge id=":intersection_18" function="internal">

<lane id=":intersection_18_0" index="0" disallow="pedestrian"
speed="6.51" length="4.28" shape="-2.88,96.80 -1.95,95.25
-1.60,92.80"/>

</edge>
<edge id=":intersection_19" function="internal">

<lane id=":intersection_19_0" index="0" disallow="pedestrian"
speed="8.00" length="4.06" shape="0.96,103.20 1.05,103.35
1.60,107.20"/>

</edge>
<edge id=":intersection_c0" function="crossing" crossingEdges="IN NI">

<lane id=":intersection_c0_0" index="0" allow="pedestrian"
speed="1.00" length="6.40" width="4.00" shape="3.20,105.20
-3.20,105.20"/>

</edge>
<edge id=":intersection_c1" function="crossing" crossingEdges="IE EI">

<lane id=":intersection_c1_0" index="0" allow="pedestrian"
speed="1.00" length="6.40" width="4.00" shape="5.20,96.80
5.20,103.20"/>

</edge>
<edge id=":intersection_c2" function="crossing" crossingEdges="IS SI">

<lane id=":intersection_c2_0" index="0" allow="pedestrian"
speed="1.00" length="6.40" width="4.00" shape="-3.20,94.80
3.20,94.80"/>

C.4. Generated files 65

</edge>
<edge id=":intersection_c3" function="crossing" crossingEdges="IW WI">

<lane id=":intersection_c3_0" index="0" allow="pedestrian"
speed="1.00" length="6.40" width="4.00" shape="-5.20,103.20
-5.20,96.80"/>

</edge>
<edge id=":intersection_w0" function="walkingarea">

<lane id=":intersection_w0_0" index="0" allow="pedestrian"
speed="1.00" length="3.30" width="4.00" shape="-7.20,103.20
-7.20,105.20 -5.20,107.20 -3.20,107.20 -3.31,105.98 -3.64,104.98
-4.20,104.20 -4.98,103.64 -5.98,103.31"/>

</edge>
<edge id=":intersection_w1" function="walkingarea">

<lane id=":intersection_w1_0" index="0" allow="pedestrian"
speed="1.00" length="3.30" width="4.00" shape="3.20,107.20
5.20,107.20 7.20,105.20 7.20,103.20 5.98,103.31 4.98,103.64
4.20,104.20 3.64,104.98 3.31,105.98"/>

</edge>
<edge id=":intersection_w2" function="walkingarea">

<lane id=":intersection_w2_0" index="0" allow="pedestrian"
speed="1.00" length="3.30" width="4.00" shape="7.20,96.80
7.20,94.80 5.20,92.80 3.20,92.80 3.31,94.02 3.64,95.02
4.20,95.80 4.98,96.36 5.98,96.69"/>

</edge>
<edge id=":intersection_w3" function="walkingarea">

<lane id=":intersection_w3_0" index="0" allow="pedestrian"
speed="1.00" length="3.30" width="4.00" shape="-3.20,92.80
-5.20,92.80 -7.20,94.80 -7.20,96.80 -5.98,96.69 -4.98,96.36
-4.20,95.80 -3.64,95.02 -3.31,94.02"/>

</edge>
<edge id=":north_w0" function="walkingarea">

<lane id=":north_w0_0" index="0" allow="pedestrian" speed="1.00"
length="8.40" width="2.00" shape="-3.20,300.00 -5.20,300.00
5.20,300.00 3.20,300.00"/>

</edge>
<edge id=":south_w0" function="walkingarea">

<lane id=":south_w0_0" index="0" allow="pedestrian" speed="1.00"
length="8.40" width="2.00" shape="3.20,-100.00 5.20,-100.00
-5.20,-100.00 -3.20,-100.00"/>

</edge>
<edge id=":west_w0" function="walkingarea">

<lane id=":west_w0_0" index="0" allow="pedestrian" speed="1.00"
length="8.40" width="2.00" shape="-200.00,96.80 -200.00,94.80
-200.00,105.20 -200.00,103.20"/>

</edge>

<edge id="EI" from="east" to="intersection" priority="-1">
<lane id="EI_0" index="0" allow="pedestrian" speed="13.89"

length="192.80" width="2.00" shape="200.00,104.20 7.20,104.20"/>
<lane id="EI_1" index="1" disallow="pedestrian" speed="13.89"

length="192.80" shape="200.00,101.60 7.20,101.60"/>
</edge>
<edge id="IE" from="intersection" to="east" priority="-1">

<lane id="IE_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="7.20,95.80 200.00,95.80"/>

<lane id="IE_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="7.20,98.40 200.00,98.40"/>

66 Appendix C. Simulation Environment

</edge>
<edge id="IN" from="intersection" to="north" priority="-1">

<lane id="IN_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="4.20,107.20 4.20,300.00"/>

<lane id="IN_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="1.60,107.20 1.60,300.00"/>

</edge>
<edge id="IS" from="intersection" to="south" priority="-1">

<lane id="IS_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="-4.20,92.80 -4.20,-100.00"/>

<lane id="IS_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="-1.60,92.80 -1.60,-100.00"/>

</edge>
<edge id="IW" from="intersection" to="west" priority="-1">

<lane id="IW_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="-7.20,104.20
-200.00,104.20"/>

<lane id="IW_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="-7.20,101.60 -200.00,101.60"/>

</edge>
<edge id="NI" from="north" to="intersection" priority="-1">

<lane id="NI_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="-4.20,300.00 -4.20,107.20"/>

<lane id="NI_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="-1.60,300.00 -1.60,107.20"/>

</edge>
<edge id="SI" from="south" to="intersection" priority="-1">

<lane id="SI_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="4.20,-100.00 4.20,92.80"/>

<lane id="SI_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="1.60,-100.00 1.60,92.80"/>

</edge>
<edge id="WI" from="west" to="intersection" priority="-1">

<lane id="WI_0" index="0" allow="pedestrian" speed="13.89"
length="192.80" width="2.00" shape="-200.00,95.80 -7.20,95.80"/>

<lane id="WI_1" index="1" disallow="pedestrian" speed="13.89"
length="192.80" shape="-200.00,98.40 -7.20,98.40"/>

</edge>

<tlLogic id="intersection" type="static" programID="0" offset="38">
<phase duration="30" state="gGgrrrrrrrrrrGrG"/>
<phase duration="3" state="yyyrrrrrrrrrrgrg"/>
<phase duration="30" state="rrrrrrrrrgGgGrGr"/>
<phase duration="3" state="rrrrrrrrryyyGrGr"/>
<phase duration="30" state="rrrgGgrrrrrrGrGr"/>
<phase duration="3" state="rrryyyrrrrrrgrgr"/>
<phase duration="30" state="rrrrrrgGgrrrrGrG"/>
<phase duration="3" state="rrrrrryyyrrrrGrG"/>

</tlLogic>

<junction id="east" type="dead_end" x="200.00" y="100.00" incLanes="IE_0
IE_1" intLanes="" shape="200.00,100.00 200.00,94.80 200.00,100.00"/>

C.4. Generated files 67

<junction id="intersection" type="traffic_light" x="0.00" y="100.00"
incLanes="NI_0 NI_1 EI_0 EI_1 SI_0 SI_1 WI_0 WI_1 :intersection_w1_0
:intersection_w2_0 :intersection_w3_0 :intersection_w0_0"
intLanes=":intersection_12_0 :intersection_1_0 :intersection_13_0
:intersection_14_0 :intersection_4_0 :intersection_15_0
:intersection_16_0 :intersection_7_0 :intersection_17_0
:intersection_18_0 :intersection_10_0 :intersection_19_0
:intersection_c0_0 :intersection_c1_0 :intersection_c2_0
:intersection_c3_0" shape="-5.20,107.20 5.20,107.20 5.42,106.09
5.70,105.70 6.09,105.42 6.59,105.26 7.20,105.20 7.20,94.80
6.09,94.58 5.70,94.30 5.42,93.91 5.26,93.41 5.20,92.80 -5.20,92.80
-5.42,93.91 -5.70,94.30 -6.09,94.58 -6.59,94.74 -7.20,94.80
-7.20,105.20 -6.09,105.42 -5.70,105.70 -5.42,106.09 -5.26,106.59">
<request index="0" response="1001000100000000"

foes="1001000100010000" cont="1"/>
<request index="1" response="0101101100100000"

foes="0101111100110000" cont="0"/>
<request index="2" response="0011100011100000"

foes="0011110011110000" cont="1"/>
<request index="3" response="0011100010000000"

foes="0011100010000000" cont="1"/>
<request index="4" response="1010100110000111"

foes="1010100110000111" cont="0"/>
<request index="5" response="0110011110000110"

foes="0110011110000110" cont="1"/>
<request index="6" response="0110000000000100"

foes="0110010000000100" cont="1"/>
<request index="7" response="0101100000101100"

foes="0101110000111100" cont="0"/>
<request index="8" response="1100100000100011"

foes="1100110000110011" cont="1"/>
<request index="9" response="1100000000100010"

foes="1100000000100010" cont="1"/>
<request index="10" response="1010000111100110"

foes="1010000111100110" cont="0"/>
<request index="11" response="1001000110011110"

foes="1001000110011110" cont="1"/>
<request index="12" response="0000000000000000"

foes="0000100010001111" cont="0"/>
<request index="13" response="0000000000000000"

foes="0000010001111100" cont="0"/>
<request index="14" response="0000000000000000"

foes="0000001111100010" cont="0"/>
<request index="15" response="0000000000000000"

foes="0000111100010001" cont="0"/>
</junction>
<junction id="north" type="dead_end" x="0.00" y="300.00" incLanes="IN_0

IN_1" intLanes="" shape="0.00,300.00 5.20,300.00 0.00,300.00"/>
<junction id="south" type="dead_end" x="0.00" y="-100.00" incLanes="IS_0

IS_1" intLanes="" shape="0.00,-100.00 -5.20,-100.00 0.00,-100.00"/>
<junction id="west" type="dead_end" x="-200.00" y="100.00"

incLanes="IW_0 IW_1" intLanes="" shape="-200.00,100.00
-200.00,105.20 -200.00,100.00"/>

<junction id=":intersection_12_0" type="internal" x="-3.20" y="102.88"
incLanes=":intersection_0_0" intLanes=":intersection_4_0
:intersection_8_0 :intersection_c0_0 :intersection_c3_0"/>

68 Appendix C. Simulation Environment

<junction id=":intersection_13_0" type="internal" x="3.20" y="99.04"
incLanes=":intersection_2_0" intLanes=":intersection_4_0
:intersection_5_0 :intersection_6_0 :intersection_7_0
:intersection_10_0 :intersection_11_0 :intersection_c0_0
:intersection_c1_0"/>

<junction id=":intersection_14_0" type="internal" x="2.88" y="103.20"
incLanes=":intersection_3_0" intLanes=":intersection_7_0
:intersection_11_0 :intersection_c0_0 :intersection_c1_0"/>

<junction id=":intersection_15_0" type="internal" x="-0.96" y="96.80"
incLanes=":intersection_5_0" intLanes=":intersection_1_0
:intersection_2_0 :intersection_7_0 :intersection_8_0
:intersection_9_0 :intersection_10_0 :intersection_c1_0
:intersection_c2_0"/>

<junction id=":intersection_16_0" type="internal" x="3.20" y="97.12"
incLanes=":intersection_6_0" intLanes=":intersection_2_0
:intersection_10_0 :intersection_c1_0 :intersection_c2_0"/>

<junction id=":intersection_17_0" type="internal" x="-3.20" y="100.96"
incLanes=":intersection_8_0" intLanes=":intersection_0_0
:intersection_1_0 :intersection_4_0 :intersection_5_0
:intersection_10_0 :intersection_11_0 :intersection_c2_0
:intersection_c3_0"/>

<junction id=":intersection_18_0" type="internal" x="-2.88" y="96.80"
incLanes=":intersection_9_0" intLanes=":intersection_1_0
:intersection_5_0 :intersection_c2_0 :intersection_c3_0"/>

<junction id=":intersection_19_0" type="internal" x="0.96" y="103.20"
incLanes=":intersection_11_0" intLanes=":intersection_1_0
:intersection_2_0 :intersection_3_0 :intersection_4_0
:intersection_7_0 :intersection_8_0 :intersection_c0_0
:intersection_c3_0"/>

<connection from="EI" to="IN" fromLane="1" toLane="1"
via=":intersection_3_0" tl="intersection" linkIndex="3" dir="r"
state="o"/>

<connection from="EI" to="IW" fromLane="1" toLane="1"
via=":intersection_4_0" tl="intersection" linkIndex="4" dir="s"
state="o"/>

<connection from="EI" to="IS" fromLane="1" toLane="1"
via=":intersection_5_0" tl="intersection" linkIndex="5" dir="l"
state="o"/>

<connection from="NI" to="IW" fromLane="1" toLane="1"
via=":intersection_0_0" tl="intersection" linkIndex="0" dir="r"
state="o"/>

<connection from="NI" to="IS" fromLane="1" toLane="1"
via=":intersection_1_0" tl="intersection" linkIndex="1" dir="s"
state="o"/>

<connection from="NI" to="IE" fromLane="1" toLane="1"
via=":intersection_2_0" tl="intersection" linkIndex="2" dir="l"
state="o"/>

<connection from="SI" to="IE" fromLane="1" toLane="1"
via=":intersection_6_0" tl="intersection" linkIndex="6" dir="r"
state="o"/>

<connection from="SI" to="IN" fromLane="1" toLane="1"
via=":intersection_7_0" tl="intersection" linkIndex="7" dir="s"
state="o"/>

<connection from="SI" to="IW" fromLane="1" toLane="1"
via=":intersection_8_0" tl="intersection" linkIndex="8" dir="l"
state="o"/>

C.4. Generated files 69

<connection from="WI" to="IS" fromLane="1" toLane="1"
via=":intersection_9_0" tl="intersection" linkIndex="9" dir="r"
state="o"/>

<connection from="WI" to="IE" fromLane="1" toLane="1"
via=":intersection_10_0" tl="intersection" linkIndex="10" dir="s"
state="o"/>

<connection from="WI" to="IN" fromLane="1" toLane="1"
via=":intersection_11_0" tl="intersection" linkIndex="11" dir="l"
state="o"/>

<connection from=":intersection_0" to="IW" fromLane="0" toLane="1"
via=":intersection_12_0" dir="r" state="m"/>

<connection from=":intersection_12" to="IW" fromLane="0" toLane="1"
dir="r" state="M"/>

<connection from=":intersection_1" to="IS" fromLane="0" toLane="1"
dir="s" state="M"/>

<connection from=":intersection_2" to="IE" fromLane="0" toLane="1"
via=":intersection_13_0" dir="l" state="m"/>

<connection from=":intersection_13" to="IE" fromLane="0" toLane="1"
dir="l" state="M"/>

<connection from=":intersection_3" to="IN" fromLane="0" toLane="1"
via=":intersection_14_0" dir="r" state="m"/>

<connection from=":intersection_14" to="IN" fromLane="0" toLane="1"
dir="r" state="M"/>

<connection from=":intersection_4" to="IW" fromLane="0" toLane="1"
dir="s" state="M"/>

<connection from=":intersection_5" to="IS" fromLane="0" toLane="1"
via=":intersection_15_0" dir="l" state="m"/>

<connection from=":intersection_15" to="IS" fromLane="0" toLane="1"
dir="l" state="M"/>

<connection from=":intersection_6" to="IE" fromLane="0" toLane="1"
via=":intersection_16_0" dir="r" state="m"/>

<connection from=":intersection_16" to="IE" fromLane="0" toLane="1"
dir="r" state="M"/>

<connection from=":intersection_7" to="IN" fromLane="0" toLane="1"
dir="s" state="M"/>

<connection from=":intersection_8" to="IW" fromLane="0" toLane="1"
via=":intersection_17_0" dir="l" state="m"/>

<connection from=":intersection_17" to="IW" fromLane="0" toLane="1"
dir="l" state="M"/>

<connection from=":intersection_9" to="IS" fromLane="0" toLane="1"
via=":intersection_18_0" dir="r" state="m"/>

<connection from=":intersection_18" to="IS" fromLane="0" toLane="1"
dir="r" state="M"/>

<connection from=":intersection_10" to="IE" fromLane="0" toLane="1"
dir="s" state="M"/>

<connection from=":intersection_11" to="IN" fromLane="0" toLane="1"
via=":intersection_19_0" dir="l" state="m"/>

<connection from=":intersection_19" to="IN" fromLane="0" toLane="1"
dir="l" state="M"/>

<connection from=":east_w0" to="EI" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from="IE" to=":east_w0" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from=":intersection_c0" to=":intersection_w0" fromLane="0"
toLane="0" dir="s" state="M"/>

70 Appendix C. Simulation Environment

<connection from=":intersection_c1" to=":intersection_w1" fromLane="0"
toLane="0" dir="s" state="M"/>

<connection from=":intersection_c2" to=":intersection_w2" fromLane="0"
toLane="0" dir="s" state="M"/>

<connection from=":intersection_c3" to=":intersection_w3" fromLane="0"
toLane="0" dir="s" state="M"/>

<connection from=":intersection_w0" to=":intersection_c3" fromLane="0"
toLane="0" tl="intersection" linkIndex="15" dir="s" state="M"/>

<connection from=":intersection_w0" to="IW" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from="NI" to=":intersection_w0" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from=":intersection_w1" to=":intersection_c0" fromLane="0"
toLane="0" tl="intersection" linkIndex="12" dir="s" state="M"/>

<connection from=":intersection_w1" to="IN" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from="EI" to=":intersection_w1" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from=":intersection_w2" to=":intersection_c1" fromLane="0"
toLane="0" tl="intersection" linkIndex="13" dir="s" state="M"/>

<connection from=":intersection_w2" to="IE" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from="SI" to=":intersection_w2" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from=":intersection_w3" to=":intersection_c2" fromLane="0"
toLane="0" tl="intersection" linkIndex="14" dir="s" state="M"/>

<connection from=":intersection_w3" to="IS" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from="WI" to=":intersection_w3" fromLane="0" toLane="0"
dir="s" state="M"/>

<connection from=":north_w0" to="NI" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from="IN" to=":north_w0" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from=":south_w0" to="SI" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from="IS" to=":south_w0" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from=":west_w0" to="WI" fromLane="0" toLane="0" dir="s"
state="M"/>

<connection from="IW" to=":west_w0" fromLane="0" toLane="0" dir="s"
state="M"/>

</net>

C.4.4 demandpedestrian.rou.xm

The demand file is important since we define the flows into it, I have created two
types of flows, vehicles and persons. Here we also define the time the simulation
lasts, since it depends the time the flows exists.

<?xml version="1.0" encoding="UTF-8"?>

<!-- generated on lun 29 mar 2021 21:09:47 by Eclipse SUMO netedit Version
1.4.0

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/netconvertConfiguration.xsd">

C.4. Generated files 71

<input>
<sumo-net-file

value="/home/miguel/PycharmProjects/DRL_Traffic/Nets/SimpleNet/net.net.xml"/>
</input>

<output>
<output-file

value="/home/miguel/PycharmProjects/DRL_Traffic/Nets/SimpleNet/net.net.xml"/>
</output>

<processing>
<geometry.min-radius.fix.railways value="false"/>
<geometry.max-grade.fix value="false"/>
<offset.disable-normalization value="true"/>
<lefthand value="false"/>

</processing>

<junctions>
<no-internal-links value="false"/>
<no-turnarounds value="true"/>
<junctions.corner-detail value="5"/>
<junctions.limit-turn-speed value="5.5"/>
<rectangular-lane-cut value="false"/>

</junctions>

<pedestrian>
<walkingareas value="false"/>

</pedestrian>

<netedit>
<route-files

value="/home/miguel/PycharmProjects/DRL_Traffic/Nets/SimpleNet/demand_w_ped.rou.xml"/>
</netedit>

<report>
<aggregate-warnings value="5"/>

</report>

</configuration>
-->

<routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd">
<route edges="EI IN" color="green" id="route_EN"/>
<route edges="EI IS" color="green" id="route_ES"/>
<route edges="EI IW" color="green" id="route_EW"/>
<route edges="NI IE" color="red" id="route_NE"/>
<route edges="NI IS" color="red" id="route_NS"/>
<route edges="NI IW" color="red" id="route_NW"/>
<route edges="SI IE" color="blue" id="route_SE"/>
<route edges="SI IN" color="blue" id="route_SN"/>
<route edges="SI IW" color="blue" id="route_SW"/>
<route edges="WI IE" color="yellow" id="route_WE"/>
<route edges="WI IN" color="yellow" id="route_WN"/>
<route edges="WI IS" color="yellow" id="route_WS"/>

72 Appendix C. Simulation Environment

<flow id="flow_NE" begin="0.00" color="red" from="NI" to="IE"
end="450.00" probability="0.05"/>

<flow id="flow_NS" begin="0.00" color="red" from="NI" to="IS"
end="450.00" probability="0.05"/>

<flow id="flow_NW" begin="0.00" color="red" from="NI" to="IW"
end="450.00" probability="0.05"/>

<flow id="flow_WE" begin="0.00" color="yellow" from="WI" to="IE"
end="450.00" probability="0.01"/>

<flow id="flow_WN" begin="0.00" color="yellow" from="WI" to="IN"
end="450.00" probability="0.06"/>

<flow id="flow_WS" begin="0.00" color="yellow" from="WI" to="IS"
end="450.00" probability="0.03"/>

<flow id="flow_EN" begin="0.00" color="green" from="EI" to="IN"
end="450.00" probability="0.025"/>

<flow id="flow_ES" begin="0.00" color="green" from="EI" to="IS"
end="450.00" probability="0.01"/>

<flow id="flow_EW" begin="0.00" color="green" from="EI" to="IW"
end="450.00" probability="0.08"/>

<flow id="flow_SE" begin="0.00" color="blue" from="SI" to="IE"
end="450.00" probability="0.05"/>

<flow id="flow_SN" begin="0.00" color="blue" from="SI" to="IN"
end="450.00" probability="0.04"/>

<flow id="flow_SW" begin="0.00" color="blue" from="SI" to="IW"
end="450.00" probability="0.01"/>

<personFlow id="personFlow_E" begin="0.00" end="450.00"
probability="0.10">
<personTrip from="EI" to="IW"/>

</personFlow>
<personFlow id="personFlow_N" begin="0.00" end="450.00"

probability="0.10">
<personTrip from="NI" to="IS"/>

</personFlow>
<personFlow id="personFlow_S" begin="0.00" end="450.00"

probability="0.10">
<personTrip from="SI" to="IN"/>

</personFlow>
<personFlow id="personFlow_W" begin="0.00" end="450.00"

probability="0.10">
<personTrip from="WI" to="IE"/>

</personFlow>
</routes>

C.4.5 tls.xml

The traffic lights logic is into this file, the letters G and g define, respectively, pass
with and without preference,the r symbolize not allowed passing, the y indicates a
yellow light.

<additionals>
<tlLogic id="intersection" type="static" programID="0" offset="28">

<phase duration="30" state="gGgrrrrrrrrrrGrG" />
<phase duration="3" state="yyyrrrrrrrrrrgrg" />
<phase duration="3" state="rrrrrrrrrrrrrrrr" />
<phase duration="30" state="rrrrrrrrrgGgGrGr" />
<phase duration="3" state="rrrrrrrrryyyGrGr" />

C.4. Generated files 73

<phase duration="3" state="rrrrrrrrrrrrGrGr" />
<phase duration="30" state="rrrgGgrrrrrrGrGr" />
<phase duration="3" state="rrryyyrrrrrrgrgr" />
<phase duration="3" state="rrrrrrrrrrrrrrrr" />
<phase duration="30" state="rrrrrrgGgrrrrGrG" />
<phase duration="3" state="rrrrrryyyrrrrGrG" />
<phase duration="3" state="rrrrrrrrrrrrrGrG" />

</tlLogic>

</additionals>

75

References

[1] Andrew Hamilton et al. The evolution of urban traffic control: changing policy and
technology. Feb. 2013. DOI: 10.1080/03081060.2012.745318.

[2] Julio Sanguesa et al. Sensing Traffic Density Combining V2V and V2I Wireless
Communications. Dec. 2015. DOI: 10.3390/s151229889.

[3] Tanzina Afrin and Nita Yodo. A Survey of Road Traffic Congestion Measures to-
wards a Sustainable and Resilient Transportation System. June 2020. DOI: 10.3390/
su12114660.

[4] Diamantis Manolis et al. “Centralised vs decentralised signal control of large-
scale urban road networks in real time: A simulation study”. In: IET Intelligent
Transport Systems 12 (May 2018). DOI: 10.1049/iet-its.2018.0112.

[5] Deepa S. Sivanandam S. “Genetic Algorithms”. In: Introduction to Genetic Al-
gorithms. Berlin: Springer, 2018. Chap. Genetic Algorithms, pp. 15–37. ISBN:
978-3-540-73189-4. DOI: 10.1007/978-3-540-73190-0.

[6] Elena Sofronova, A.A. Belyakov, and D.B. Khamadiyarov. “Optimal Control
for Traffic Flows in the Urban Road Networks and Its Solution by Variational
Genetic Algorithm”. In: Procedia Computer Science 150 (Jan. 2019), pp. 302–308.
DOI: 10.1016/j.procs.2019.02.056.

[7] Samara Soares Leal, Paulo Eduardo Maciel de Almeida, and Edward Chung.
“Active control for traffic lights in regions and corridors: an approach based
on evolutionary computation”. In: Transportation Research Procedia 25 (2017).
World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July
2016, pp. 1769–1780. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.
trpro . 2017 . 05 . 140. URL: https : / / www . sciencedirect . com / science /
article/pii/S2352146517304313.

[8] Lin Yilun, Xingyuan Dai, and Li Li. An Efficient Deep Reinforcement Learning
Model for Urban Traffic Control. Aug. 2018.

[9] A. Vidali et al. “A Deep Reinforcement Learning Approach to Adaptive Traffic
Lights Management”. In: WOA. 2019.

[10] Cambridge. Dictionary. 2021. URL: https : / / dictionary . cambridge . org /
dictionary/english-spanish/environment.

[11] Eclipse. Simulation of Urban MObility. 2021. URL: https://www.eclipse.org/
sumo/.

[12] DEAP. Distributed Evolutionary Algorithms in Python. 2021. URL: https://deap.
readthedocs.io/en/master/.

[13] Tensor Flow. Tf-Agents. 2021. URL: https://www.tensorflow.org/agents.

[14] Ioannis Giagkiozis and Peter Fleming. “Pareto Front Estimation for Decision
Making”. In: Evolutionary computation 22 (Apr. 2014). DOI: 10.1162/EVCO_a_
00128.

https://doi.org/10.1080/03081060.2012.745318
https://doi.org/10.3390/s151229889
https://doi.org/10.3390/su12114660
https://doi.org/10.3390/su12114660
https://doi.org/10.1049/iet-its.2018.0112
https://doi.org/10.1007/978-3-540-73190-0
https://doi.org/10.1016/j.procs.2019.02.056
https://doi.org/https://doi.org/10.1016/j.trpro.2017.05.140
https://doi.org/https://doi.org/10.1016/j.trpro.2017.05.140
https://www.sciencedirect.com/science/article/pii/S2352146517304313
https://www.sciencedirect.com/science/article/pii/S2352146517304313
https://dictionary.cambridge.org/dictionary/english-spanish/environment
https://dictionary.cambridge.org/dictionary/english-spanish/environment
https://www.eclipse.org/sumo/
https://www.eclipse.org/sumo/
https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://www.tensorflow.org/agents
https://doi.org/10.1162/EVCO_a_00128
https://doi.org/10.1162/EVCO_a_00128

76 References

[15] Mahesh Kumar, Perumal Nallagownden, and Irraivan Elamvazuthi. “Advanced
Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Opti-
mization for Optimal Placement and Sizing of Distributed Generation”. In:
Energies 9 (Nov. 2016), p. 982. DOI: 10.3390/en9120982.

[16] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”.
In: IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197. DOI:
10.1109/4235.996017.

[17] Ivana Nedevska, Slobodan Ognjenović, and Elena Gusakova. “Methodology
for analysing capacity and level of service for signalized intersections (HCM
2000)”. In: MATEC Web of Conferences 86 (2016), p. 05026. DOI: 10.1051/matecconf/
20168605026.

https://doi.org/10.3390/en9120982
https://doi.org/10.1109/4235.996017
https://doi.org/10.1051/matecconf/20168605026
https://doi.org/10.1051/matecconf/20168605026

	Abstract
	Acknowledgements
	Introduction
	Historical notes on traffic lights
	Traffic congestion
	Causes of congestion
	Recurring congestion
	Non recurring congestion

	Measuring congestion
	Speed Reduction Index
	Speed Performance Index
	Travel Rate
	Delay Rate
	Delay Ratio
	Volume to Capacity Ratio
	Relative Congestion Index
	Road Segment Congestion Index

	TL basic concepts
	Decentralization
	Genetic Algorithms (GA)

	State of the Art
	Genetic Algorithm Solutions
	Optimal Control for Traffic Flows in the Urban Road Networks and Its Solution by Variational Genetic Algorithm
	Active control for traffic lights in regions and corridors: an approach based on evolutionary computation

	Reinforcement Learning Solutions
	An Efficient Deep Reinforcement Learning Model for Urban Traffic Control
	A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management

	No AI Based Solutions
	The Job Scheduling Algorithm
	The Max-Pressure Algorithm

	Limitations

	Genetic Algorithm Traffic Agent
	Introduction
	Proposed Solution
	The traffic controller
	The environment
	The optimization problem
	The simulator
	A traffic agent based on genetic algorithms

	The architecture
	Traffic Light Controller
	Core
	Train environment
	Test Environment
	Connector
	Simulator
	Hall of fame (HOF)

	Real environment

	Definition of the problem
	Initial population
	The fitness function
	Hall of fame (HOF) logic
	Crossover
	Mutation
	Selection
	Algorithm

	Experimental Results
	Introduction
	Traffic lights logic
	Simulation parameters
	Results
	Results in a simple scenario
	Results in an evolutionary scenario

	Conclusions and future work
	Conclusions
	Future research

	Resources
	Experimental Equipment
	Simulator
	Python Frameworks

	Python Code
	Repositories
	Files
	gatraffic.py
	tlenvironment.py
	paramstorage.py
	test-gatraffic.py
	trafficinteract.py
	gatraffictools
	sumoconnector.py

	Simulation Environment
	Netedit
	Traffic light editor
	Sumo-gui
	Generated files
	sumo.sumocfg
	test-sumo.sumocfg
	net.net.xml
	demandpedestrian.rou.xm
	tls.xml

