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Chapter 1 

Introduction 

Materials with improved characteristics such as non-toxicity, biocompatibility, stability 

under varying environmental conditions and the possibility of being patterned with 

simplicity and low-cost are of great value in the fields of biology and biotechnology. 

Wide range of both organic and inorganic materials such as silicon, porous silica, 

porous alumina, and various nanoparticles have proved to be biocompatible and they 

have been widely used for various biological and biotechnological applications. 

Similarly, lately, polymers have been gaining much interest as a valuable structural 

material in biotechnology due to their biocompatibility and ease of structuring with 

sizes down to few nanometers. Among various polymers, SU-8 is an epoxy based 

negative photoresist which has found a broad range of biomedical and biotechnological 

applications due to their biocompatibility and high thermal, mechanical, and chemical 

resistance [Voskerician 2003, Liu 2007]. Since its invention in the nineties, SU-8 has 

been extensively used in micro- and nanotechnologies and in microelectromechanical 

systems for fabricating scaled-down components and devices such as micro- and 

nanochannels, membranes, microfluidic devices, cantilevers, biosensors and more.  
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The fabrication of devices and components becomes challenging when the features are 

miniaturized. Ease of structuring into any desired shapes and dimensions using 

conventional lithographic techniques such as photolithography, laser lithography, or soft 

lithography is one of the advantages of using SU-8 for micro- and nanofabrication. 

Briefly, lithography is referred as a method for patterning planar or rough surfaces with 

geometrical shapes and patterns either by selective exposure of radiations (ex: UV light, 

X-ray, or e-beam) or using molds and stamps (ex: PDMS stamps, Si molds). SU-8 

structures with dimensions down to few nanometers and high aspect ratio structures can 

be fabricated using these low-cost lithographic techniques. 

1.1. Objectives 

The main objectives of this Ph. D. dissertation are to develop new techniques to pattern 

SU-8 surfaces and to explore their possible biotechnological applications. Thus, 

different lithographic techniques such as photolithography, soft lithography, and hybrid 

lithography will be applied and combined to reach such objective. 

Using photolithographic and soft lithographic techniques we aimed to produce three-

dimensional SU-8 pillar and porous surfaces at the micro- and nano-scale. Furthermore, 

using hybrid lithographic technique, a newly developed lithographic technique where 

photolithographic and soft lithographic methods were combined, we intended to 

produce SU-8 macropillar surfaces decorated with micrometric and nanometric pores 

and pillars. All the produced SU-8 surfaces were then tested for immunosensing. 
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One of the factors that limit the use of SU-8 for biotechnological applications, mainly 

for fluorescence based biosensing, is the photoluminescence SU-8 has in the near UV 

and visible wavelength ranges. However, in this study we aimed to exploit the 

photoluminescence property of SU-8 to fabricate a cost-effective and reliable tool for 

immunosensing, where the reduction of photoluminescence of SU-8 with its surface 

modification functions as the sensing transduction parameter. The application of SU-8 

for immunosensing is demonstrated by immobilizing a model antigen-antibody (aIgG-

IgG) pair on to SU-8 surfaces.  

1.2. Document structure 

This Ph.D. dissertation is organized as follows: 

Chapter 2 introduces the fundamentals of SU-8, and reviews the state-of-the-art on the 

photolithographic and soft lithographic structuring of SU-8. Finally, a survey on some 

of the biotechnological applications of SU-8 is presented. 

Chapter 3 initially addresses the concepts on lithographic techniques, and 

instrumentations that were employed in our experimental work. Following this, a 

detailed description on the methods and parameters of photolithography, soft 

lithography and hybrid lithography, which were used for the SU-8 structuring, and 

obtained SU-8 structured are presented in this chapter. 

Chapter 4 describes the experimental procedures followed to demonstrate the 

applicability of the structured SU-8 surfaces as an immunosensor on the basis of its 

UNIVERSITAT ROVIRA I VIRGILI 
LITHOGRAPHIC MICRO- AND NANOSTRUCTURING OF SU-8 FOR BIOTECHNOLOGICAL APPLICATIONS 
Pinkie Jacob Eravuchira 
Dipòsit Legal: T 773-2015 



 

4 | Chapter 1  

 

photoluminescence. The methodology followed to demonstrate such applicability, the 

results of the experiments and the discussion on the results are presented here. 

Chapter 5 is devoted to introduce other works related to lithographic patterning that has 

been carried out in the framework of this Ph. D. The laser lithographic structuring of 

silicon wafer to produce interdigital electrodes for gas sensing application, and inverted 

micropyramid arrays for biotechnological applications, are presented in this chapter. 

The works discussed in this chapter were done in collaboration with two of the research 

groups (Minos and Nephos) among EMaS.  

Finally, chapter 6 presents the major conclusions obtained from this Ph.D. work.
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Chapter 2 

State of the Art 

Lithography is a process of patterning geometrical shapes of desired dimensions and 

patterns on substrate surfaces such as silicon, crystals, glass, and more. It is one of the 

conventional modes of creating structures and patterns in micro- and nanofabrication 

technology. Photolithography, electron beam lithography, direct laser lithography, X-

ray lithography, and interference lithography are some examples of the lithographic 

techniques for patterning substrate surfaces. Referring to the optical lithography, the 

custom shapes are initially transferred to a thin film of light-sensitive material called 

photoresist, which is covered over the substrate surface. During optical lithography, a 

selective irradiation of the photoresist with a light beam activates the photochemical 

reactions in the irradiated region of the resist. This photochemical reaction in turn 

changes chemical and physical properties of the irradiated region of the photoresist. A 

series of chemical treatments and etching following this irradiation helps to transfer the 

patterns on to the material underneath the photoresist.  
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Briefly, a photoresist is light-sensitive material which is mainly composed of three main 

components such as, resin, photosensitizer, and the solvent. The resin is a synthetic 

polymer that provides the mechanical characteristics such as adhesion and strength, 

thermal stability and chemical resistance to the photoresist. When exposed to light, 

depending on the type of resin, they get either polymerized or photo-solubilized. This 

polymer reaction in a photoresist is controlled by the component called the 

photosensitizer. This sensitizer is the photoactive compound in the resist, and it alters its 

chemical properties upon light absorption. And finally the chemical solution called 

solvent helps to have a liquid texture for the photoresist, which is required for a 

photoresist so that it can be spun coated on to the substrates.  

Although since its discovery, the term photoresist has been referred as a material that 

helps to transfer pattern on to the substrates during lithography, studies show the 

possibility to use certain resists as a valuable structural material in micro- and 

nanotechnology. SU-8, an epoxy based negative photoresist is a typical example of one 

of such photoresists which has been widely used as a structural material in 

semiconductor industry and microelectromechanical system [Conradie 2002, Padgen 

2009, Ribeiro 2005].  

2.1. SU-8: Composition and physical properties 

SU-8 (glycidyl ether of bisphenol A) is an acid-catalyzed, near-UV photoresist based on 

EPON SU-8 epoxy resin which was developed and patented by IBM in 1989 (US Patent 

4882245). The first commercial SU-8 products were introduced in 1996 by MicroChem 
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Figure 2.1: Molecular structure of SU-8 [Genolet 2001]. 

 

(Westborough, MA). SU-8 is produced by dissolving the EPON SU-8 resin in an 

organic solvent (cyclopentanone or gamma-butyrolactone), and triarylsulonium-

hexafluoroantimonate is the photosensitizer used in SU-8 resist. SU-8 dissolved in 

cyclopentanone and gamma-butyrolactone solvents are classified as SU-8 2000 and SU-

8 3000 series respectively. SU-8 has eight epoxy groups per monomer and the number 

eight in SU-8 refers to the eight epoxy sites present in each monomer. The molecular 

structure of SU-8 is shown in figure 2.1. 

Referring to the physical texture of SU-8, it is a highly viscous liquid and the viscosity 

is determined by the ratio of solvent to EPON resin mixed. The viscosity influences the 

thickness of the resist film when spun coated on a substrate. A broad range of thickness 

ranging from 200 nm to 350 µm can be achieved by single spin coating of SU-8 [Liu 

2004]. Upon the radiation exposure (UV, e-beam or X-ray), SU-8 gets cross-linked and 
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becomes insoluble to the developer solution. The physical properties of SU-8 are listed 

here [Ghodssi 2010, Campo 2007, The 2005]. The cross-linked SU-8 structures exhibit 

exemplary thermal resistance, mechanical and chemical properties and they are resistant 

to most of the acids and bases such as NaOH, nitric acid, or acetone. The mechanical 

properties such as the tensile strength and the thermal conductivity of the cross-linked 

SU-8 ranges from  70 to 60 Mpa, and  0.2 to 0.3 W/mK for SU-8 3000 and SU-8 2000 

series respectively. SU-8 has a poisson coefficient of 0.22 and a friction coefficient of 

0.19. This epoxy resist has a high degradation temperature (~380°C) and a coefficient of 

thermal expansion of 52 ppm/°C. The cross-linked resist is highly stable at elevated 

temperatures and resistance to moisture and most of the solvents, and therefore the resist 

does not get dissolved and degrades in solvent exposing environments. The unexposed 

resin has a glass transition temperature of ~50°C and after the cross-linking the 

transition temperature increases to >200°C. SU-8 has a refractive index of 1.67 

(λ=365nm) and 1.650 (λ=405nm). The density of the raw SU-8 is 997.8 kg/m
3
and it 

gets elevated to 1200 kg/m
3
with the cross-linking. The electrical properties such as the 

dielectric constant and the dielectric strength of the cross-linked SU-8 varies from 3.2 to 

4.1 (1GHz) and 112-115 (V/µm) respectively. It has a volume resistivity of  1.8-2.8 x 

10
16

 Ωcm and a surface resistivity of 1.8-5.1 x 10
16

 Ωcm. SU-8 possesses a young‟s 

modulus of 4 GPa, and it has excellent adhesion ability on various substrates like Si, 

SiN, glass, Al2O3, Cu, Au, and GaAs.  
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2.2. Structuring of SU-8 using lithographic techniques  

After the invention of SU-8, for a while its applications were limited only to the 

fabrication of printed circuit boards. However, due to its exemplary chemical, 

mechanical and physical properties it soon became a promising structural material in 

microelectromechanical system (MEMS) [Zhang 2001, Tuomikoski 2005, Lopez 2006, 

Esquive 2010, Duarte 2011], and biological microelectromechanical system 

(BioMEMS) [Lee 1995, Vernekar 2008, Patel 2008]. The first SU-8 microchannel 

model was produced in 1997 by Guerin and coworkers at the Institute of microsystem, 

Lausanne, Switzerland [Guerin 1997]. Afterwards SU-8 was extensively used in 

microfluidics since thick layers of this resist can be patterned precisely and rapidly on 

different substrates using lithographic techniques. However, the application of SU-8 

mostly confined to define only channel walls or larger fluidic areas then. Later 

researches proposed a vast range of models based on SU-8, such as SU-8 cantilevers, 

interferometer, ring resonators and optical filters and thus soon SU-8 became one of the 

prominent materials in many research fields. 

When it comes to the structuring of SU-8 surfaces, this polymeric resist exhibits high 

material and process flexibility and so the structuring of this resist does not require 

high-cost and tedious dry etching techniques as those used for inorganic materials. 

Lithographic techniques such as photolithography, soft lithography, e-beam lithography 

and x-ray lithography are the most widely used SU-8 structuring methods. SU-8 

structures with diverse designs and dimensions (micrometric and nanometric) can be 

produced by selectively exposing the resist to a polymerization precursor (ex: e-beam, 
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x-ray or proton beam, or UV light) followed by the chemical development of the 

exposed region. Among all the above mentioned methods, due to its advantages such as 

low cost, ease of patterning, and good spatial resolution, photolithographic patterning of 

SU-8 is the most common lithographic method used.    

2.2.1. Photolithographic structuring of SU-8 

Photolithography is referred as a method that transfers patterns on a photomask to a 

resist surface. From the early stages onwards, UV photolithographic structuring has 

been one of the promising and efficient structuring techniques in IC fabrication, 

semiconductor industry, and MEMS. Photolithography is one of the widely used SU-8 

patterning. A schematic of photolithographic patterning of SU-8 is shown in figure 2.2.  

 

                  

Figure 2.2: Schematic representation of photolithographic patterning of SU-8. 
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The basic process for the patterning of SU-8 using photolithography includes i) 

substrate preparation, ii) spin coating of the resist on to the substrate, iii) soft baking of 

the spin coated resist, iv) UV exposure of the soft baked resist film, v) post exposure 

bake of the exposed surface, and vi) finally the development of the baked surface. 

During photolithography the cross-linking of the exposed SU-8 takes places in two 

steps: 1) initially, upon the exposure, the photochemical reaction gets initiated by the 

photosensitizer and produces an acid which opens the epoxide rings of the resin, 

following this 2) the acid generated by the exposure in turn acts as the catalyst to 

promote the cross-linking of the resist during the post exposure bake. Thus, the cross-

linking renders the exposed region of this resist insoluble to the developer.   

To obtain desired SU-8 structures with maximum resolution and definition, the 

optimization of the photolithographic parameters such as baking time and temperature, 

exposure conditions, developing time and proper substrate preparation are necessary. 

Studies show that the lack of proper substrate preparation prior to the resist deposition is 

one of the major reasons for the instability (removal) of the resist from the substrates 

[Barber 2007, Zhang 2011]. Due to the highly hydrophobic nature (contact angle about 

73
o 

[Zhang 2005]) of SU-8, prior to the spin coating the substrates have to be modified 

to obtain a homogeneous and stable SU-8 film. Literature review shows that SU-8 has 

poor adhesion to most of the substrate such as SiO2, TiO2, Al, Ni, glass, Au or Ni, and 

certain surface pre-treatments are required to improve the adhesion of SU-8 on the 

substrates [Dai 2005, Barber 2007, Zhang 2011, Liu 2014]. Different research groups 

such as that of Wouters at KULeuven and Morikaku at the University of Hyogo proved 

that coating the substrate with chromium or primers helps to increase the adhesion of 

SU-8 on silicon and SiO2 substrates [Wouters 2012, Morikaku 2013]. Similarly, studies 

UNIVERSITAT ROVIRA I VIRGILI 
LITHOGRAPHIC MICRO- AND NANOSTRUCTURING OF SU-8 FOR BIOTECHNOLOGICAL APPLICATIONS 
Pinkie Jacob Eravuchira 
Dipòsit Legal: T 773-2015 



 

12 | Chapter 2  

have carried out to investigate the change in adhesion ability of SU-8 on glass substrates 

by surface pretreatment with RCA, Acetone or Isopropyl alcohol rinse, oxygen plasma 

treatment, and the results show that such surface pretreatment offers improved adhesion 

of SU-8 on substrates [Grist 2010, Serra 2007]. Similarly, MicroChem 

[www.microchem.com] has suggested that cleaning of the substrates with piranha, or 

with RIE can significantly improve the adhesion of SU-8 due to the increased 

hydrophilicity of the substrates. Therefore, a proper substrate pre-treatment is always 

required for better adhesion of SU-8 on to the substrates. 

Apart from the substrate pre-treatment, the non-optimization of structuring parameters, 

especially the baking and exposure conditions are one of the major reasons that produce 

deformed or undesired SU-8 structures. Significant works have been carried out to study 

the effects and to find the optimized lithographic conditions to obtain SU-8 structures 

with maximum resolution and definition. Referring to the baking conditions, the baking 

time and temperature are two of the critical parameters that define the produced SU-8 

structures, and therefore they have to be optimized to achieve high defined SU-8 

structures. The physical and mechanical properties of the cured SU-8 highly depend on 

the soft baking bake and post exposure bake (PEB) conditions and so researches have 

been conducted to study the effect of each process for SU-8 structuring [William 2004, 

Chung 2013, Johari 2014]. In optical lithography, the soft baking step is intended to 

remove the solvent and thus to improve the SU-8 adhesion on substrates, and PEB is 

performed to thermally cross-link the exposed region of the resist. A higher soft baking 

temperature (T >137 
◦
C) might initiates the cross-linking of the resist even if the 

photosensitization is not carried out. Also, a shorter soft bake will not be enough to 

remove the solvent. Similarly at a lower PEB temperature the cross-linking will not 
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occur and higher PEB causes film stress. Therefore optimization of both soft baking and 

PEB conditions is necessary for the structuring of SU-8. Williams and co-workers at 

Louisiana State University recommended that a progressive increase in the baking (soft 

baking and PEB) temperature up to 95
o
C can produce SU-8 structures without cracks 

due to reduced residual film stress [Williams 2004]. They have investigated on the 

influence of thermal and mechanical properties of SU-8 at different baking 

temperatures. Their study shows that a PEB temperature above 100 
o
C changes the 

tensile strength of the cured SU-8. Further studies recommended a two-step baking 

process where the temperature slowly increases from 65 to 95 
o
C for SU-8 structuring, 

especially for the fabrication of high aspect ratio structures [Chung 2013, Nguyen 

2002]. The gradual increase of temperature helps to avoid a drastic temperature change 

and to achieve a more controlled solvent evaporation from the resist film.  

Thus, the various studies show that by applying the optimized conditions, a range of 2D 

and 3D SU-8 structures such as microfluidic systems, micropillars, or microneedles can 

be fabricated by photolithography. However, while patterning SU-8 films, the thickness 

of the resist film has to be considered as the structuring parameters (especially the 

baking conditions and exposure time) depend on the thickness of the SU-8 resist film. 

Table 2.1 represents the soft bake and PEB conditions for various SU-8 types. 
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SU-8 type Thickness 

(µm) 

Soft bake 

(min)  

at 65
o
C 

Soft bake 

(min)  

at 95
o
C 

PEB 

(min)  

at 65
o
C 

PEB 

(min)  

at 95
o
C 

SU-8 2 1.5-5 1 1-3 1 1 

SU-8 5 5-15 1 3-5 1 1-2 

SU-8 25 15-40 3-5 5-15 1 2-4 

SU-8 2002 2-5 1 2 1 1 

SU-8 2007 8.5-10 1 2 1 1-2 

SU-8 2025 41-75 1-3 3-9 1 3-7 

SU-8 2050 50-165 3-5 6-30 1 5-12 

SU-8 2100 100-260 5-7 20-60 1 10-15 

 

Table 2.1: Table represents the processing time of SU-8 of different thicknesses [Campo 2007]. 

 

When it comes to SU-8 structures produced using photolithography, so far many works 

have been reported on the photolithographic fabrication of SU-8 microfludics [Guerin 

1997, Chuang 2003, Svasek 2004, Abgrall 2006, Stanciu 2012]. The applications of 

those produced structures vary from enzymatic microreactors [Hostis 2000] to 

separation devices like dielectrophoresis [Cui 2000, Cui 2002]. In 2005 Tuomikoski and 

team at Helsinki University of Technology demonstrated the fabrication of electrospray 

tip with SU-8 for electrospray ionization-mass spectrometry, and in 2012 Stanciu at 

IMT, Bucharest shows the fabrication of electrokinetic microfluidic structures using 

SU-8 to study the electro-osmotic (EO) mobility [Tuomikoski 2005b, Stanciu 2012].  

A three-layer process was demonstrated for the fabrication of free-standing SU-8 

microfludic chips with enclosed microchannels and high density of fluidic inlets where 
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photolithography combined with an adhesive bonding and etching technique was used 

[Tuomikoski 2005a]. Using this method they have fabricated microchannels with a 

channel width ranging from 10 to 2000 µm, depths from 10 to 500µm, and lengths up to 

6 cm. Similarly, in 2006 Lopez at MEMS/MST Department, Arrasate reported on the 

use SU-8 as a lab-on a chip device by integrating low-cost optical sensors and 

microfluidic structures using photolithographic steps accompanied with a bonding 

technique [Lopez 2006]. In 2004 Carlier at IEMN, Villeneuve d'Ascq Cedex shows the 

fabrication of an integrated lab-on-a chip microsystem with SU-8 microchannels on 

silicon wafers using for protein analysis by mass spectrometry (figure 2.3a) [Carlier 

2004]. Besides, various studies proved that SU-8 is an ideal structural material for the 

fabrication of microfluic devices [Zhang 2001, Duarte 2011]. In 2009 Saha at IIT, 

Mumbai has reported on the fabrication of SU-8 microfluidic channels with integrated 

pillars using lithography to understand the capillary flow, surface tension and viscosity 

of the working fluid (ethanol) with the surface texture of microfluidic channels (figure 

2.3b) [Saha 2009]. To study the influence of the pillar sizes (diameter, pitch, height) on 

the capillary flow they have fabricated pillars with varying size, and the results show 

that the geometry of the pillar was observed to significantly influence the capillary flow 

in the micro channels. Furthermore, the fabrication of multilevel microchannels using 

two-step photolithography and they have produced microchannels with different widths 

(20-600 µm) and height (20-30 µm) was also reported [Choi 2010]. 
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Figure 2.3: SU-8 a) microchannels and b) microfluidic channels with integrated pillars. [Figures reproduced 

from Carlier 2004 and Saha 2009 respectively].  

 

Apart from microfluidic devices, successful photolithographic fabrication of SU-8 

cantilevers, interferometers, ring resonators and more are reported. In 2010 Keller at the 

Technical University of Denmark reported on the photolithographic fabrication of SU-8 

cantilevers having a thickness of 2μm and length of 100 μm using dry release method 

and two-step photolithography figure (2.4a) [Keller 2010]. Similarly, the fabrication of 

SU-8 cantilevers for various bio-chemical applications was also reported [Nordstrom 

2008]. 

The relatively high refractive index of SU-8 makes it suitable for evanescent-wave 

optical sensors methods such as interferometry [Shew 2008, Beche 2010], planar 

waveguides [Lee 2003, Nordstrom 2007], Y-splitters [Shew 2005, Parida 2009], and 

ring and resonators [Leinse 2004, Yanga 2010, Salleh 2013]. Shew and team at 

NSRRC, Hsinchu reported on the photolithographic fabrication of SU-8 MZI and Y-

splitters where SU-8 is the core material [Shew 2005]. The produced devices were then  
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Figure 2.4: SU-8 a) cantilevers, b) waveguide and c) ring resonator. [Figures reproduced from Keller 2010, 

Nordstrom 2007 and Salleh 2003 respectively]. 

 

used for biochemical detection where they have shown detection of NaCl solution down 

to a concentration of 10
-9

g/l. Apart from this, studies show the possibility of applying 

photolithographically patterned SU-8 MZI as ammonia sensors [Bednorz 2006] and as 

micro-sensors for gage pressure measurements [Pelletier 2007]. In 2007 Nordstrom and 

co-workers at the Technical University of Denmark showed the possibility of 

fabrication of single-mode SU-8 waveguide using UV lithography for micro-opto-

electromechanical system applications (figure 2.4b) [Nordstrom 2007]. The fabricated 

waveguides had a height and width of 4.5 and 5μm respectively. Additionally, Boiragi 

at IIT, Mumbai presents both theoretical and experimental studies on single mode SU-8 

based MZI for bio-sensing and they have studies the effect of sensitivity of the sensor 

by varying the length of sensing window [Boiragi 2011]. Apart from SU-8 MZI, studies 

are presented on the fabrication of single-mode rib optical waveguides composed of SU-

8 with low optical losses using photolithography [Beche 2004, Pelletier 2006].  

In 2003, Salleh at University of Glasgow reported on SU-8 based dual disk ring 

resonator integrated with microfluidic device for high sensitive label-free optical 
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biosensing, where the SU-8 structures were produced using photolithography (figure 

2.4c) [Salleh 2003]. Similarly, studies have demonstrated on the photolithographic 

fabrication of SU-8 micro-ring resonators [Yanga 2010]. The produced structure was 

then used as an optofludic ring resonator switch for optical particle transport. 

Additionally, SU-8 is also one of the favorable materials to fabricate high aspect ratio 

(HAR) structures due to the excellent mechanical properties it offers. Range of HAR 

SU-8 structures can be made by controlling the lithographic conditions [O‟Brien 2001, 

Zhang 2001, Lin 2002, Abgrall 2007]. Studies show that optimized photolithographic 

conditions produce SU-8 structures having aspect ratios up to 20 [Dentinger 2002,  

Loechel  2000, Campo 2007, O'Brien 2001, Lin  2002]. In 2005 Yang and Wang from 

Louisiana State University reported on the capability of SU-8 to produce structures with 

HAR around 191. The produced structures have a height of 1150 μm and a thickness of 

6 μm. By optimizing the lithographic conditions, mainly the baking temperatures, 

fabrication of HAR SU-8 micropillars with aspect ratio up to 8 is shown to be possible 

by Amato and co-workers from Technical University of Denmark [Amato 2012]. The 

fabricated micropillars showed pillar heights bigger than 20 μm and a diameter smaller 

than 2.5 μm. 

Besides, an approach for the fabrication of inclined three-dimensional SU-8 structures 

by inclined photolithography was demonstrated by Sato at Waseda University and Han 

at Pohang University of Science and Technology [Sato 2004, Han 2004]. In a 

conventional lithographic system the mask and the resist coated substrate are aligned 

perpendicularly to the light source and as a result vertical structures are produced. 

However, in an inclined lithographic method, with the help of a tilting stage the mask 
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and the resist film are aligned at an inclined angle with respect to the light source 

resulting in the formation of inclined structures. The shapes of the microstructure are 

defined by the UV irradiation angles and the number of exposures. In 2004 Han 

demonstrated the fabrication of SU-8 cylinders, bridges, embedded channels, V-grooves 

and truncated cones with aspect ratios higher than 4 using 100 µm thick SU-8 layers by 

an inclined photolithographic method using a conventional mask aligner (figure 2.5) 

[Han 2004]. Moreover, they have produced tapered structures with non-vertical 

sidewalls by tilted and simultaneously rotating the photomask and photoresist coated 

substrates during the light exposure.  

 

 

Figure 2.5: a) Tilted SU-8 pillars obtained by tilted UV single exposure (scale bar 100μm), b) SU-8 

structures obtained by double exposure (scale bar 200 μm), and c) tapered structures obtained by tilted and 

rotated UV exposure (scale bar 50 μm). [Figures reproduced from Han 2004]. 
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Figure 2.6: SU-8 micromesh obtained with multiple UV exposures [Figure reproduced from Sato 2004]. 

 

Similarly, complex three-dimensional structures can be produced by multiple exposures 

of the resist film at different inclined angles [Sato 2004]. They have fabricated HAR 

(aspect ratio 20) SU-8 three-dimensional micromesh by multiple backside exposure and 

by tilting the substrate and the mask at different angles (figure 2.6).  

Apart from using SU-8 as a permanent structural material, the high chemical and 

thermal resistance, and mechanical strength it offers makes SU-8 one of the most 

suitable material for creating master mold for the soft lithographic production of various 

polydimethylsiloxane (PDMS) based MEMS and lab-on-a-chip structures and devices. 

The required pattern is initially transferred on to SU-8 by lithography and then PDMS 

structures/devices are replicated from SU-8 structure using soft lithography. The soft 

lithographic replication of PDMS microfluidic devices using SU-8 molds fabricated 

using photolithography was demonstrated by Natarajan at University of Utah, and 

Jenkins at Nanjing University [Natarajan 2008, Jenkins 2013]. Using SU-8 as a mold 

allows rapid replication of PDMS microfluidic structures. 
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2.2.2. Soft lithographic structuring of SU-8 

Soft lithography comprises a set of techniques for replication and pattern transfer of 

micrometer and nanometer scale structures and devices on planar or, flexible substrates 

using elastomeric stamps, and molds [Scott 1998, Xia 1998]. In soft lithography initially 

the master mold has to be produced and then the structure on the master mold is 

transferred on to stamps or molds. Figure 2.7 presents the schematic representation of 

fabrication of PDMS stamp.  

The stamps are usually produced by cast molding in which the polymer is poured over a 

master template having a relief structure on its surface. This is followed by curing the 

polymer over the master template either thermally, or by light exposure. The curing 

mode depends on the properties of the polymer used for stamp. Then using tweezers the 

cured polymer is peeled off from the master and thus forms the stamps with relief 

pattern. The stamps create an inverse pattern of the master template pattern, and so the 

final structure will contain the pattern on the master templates. Following this, the 

patterns are then transferred on to the sample surface by pressing the stamp against the 

sample surface.  
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Figure 2.7: Figure represents four main soft lithographic approaches for structuring surface. 

 

Soft lithography includes a board range of techniques and depending on the basic 

principle of pattern transfer, all the method are grouped into three general categories 

such as replica molding, embossing, and printing [Gates 2004].  

Replica molding is a method in which the master mold itself acts as the stamp for the 

pattern transfer (figure 2.8a). Here the patterns are transferred by solidifying a liquid 

pre-polymer mixture which is in contact with the master by thermal or UV radiation 

curing.  

Embossing, also known as imprinting is a method in which the pattern is imprinted on 

to a flat solid surface by pressing the stamp or mold against a soft surface such as 

photoresist accompanied by thermal or UV curing (figure 2.8b). The stamp or mold is 

embossed with pressure, thermally, or with solvent assisted method.  
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Finally, printing also known as microcontact printing is a technique in which a patterned 

elastomeric stamp transfers the surface pattern on to the sample surface (figure 2.8c). In 

this method initially a thin layer of alkanethiol ¨ink¨ is spread on to the elastomeric 

stamp. By using this inking method the molecules to be transferred are immobilized on 

to the stamp surface and subsequently they are transferred to the substrates by printing.  

 

 

Figure 2.8: Figure represents four main soft lithographic approaches for structuring surface. 
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Referring to the soft lithographic structuring of SU-8, studies have reported on the 

fabrication of SU-8 structures in both micrometric and nanometric scale using various 

soft lithographic techniques. The applications of the soft lithographically patterned SU-

8 structures range from micro-electronic and micro-optics to biotechnology. 

Microstructuring of SU-8 by UV assisted imprinting with a non-transparent mold (Ni 

mold) was demonstrated by Youn at AIST, Ibaraki [Youn 2008]. Using this process 

they fabricated arrays of 1 mm long SU-8 lines having a width of 10 µm and a 10 µm 

spacing between the adjacent lines. Additionally, the fabrication of SU-8 microring 

resonator filters using soft lithographic method was demonstrated by Poon and co-

workers at, California Institute of Technology, where PDMS stamps were used for the 

pattern transfer to the SU-8 film [Poon 2004]. Further, in 2005 Moona and team at 

KAIST, Daejeon demonstrated the fabrication of patterned polymer photonic crystals 

using a hybrid combination of holographic lithography and soft lithography [Moona 

2005].  

Various works has been performed by a hybrid combination of soft lithographic and 

photolithographic techniques to create various 2D and 3D periodic structures 

[Nordstrom 2006, Hu 2006, Jeon 2007, Cannistra 2010]. In 2006 Hu and co-workers at 

University of Michigan successfully produced 3D SU-8 micro- and nanostructures 

using reversal UV imprint process where the SU-8 was initially coated on a patterned 

glass mold and then transferred on to various substrates by reversal UV imprint at an 

ambient temperature and pressure [Hu 2006]. Using this method they have produced 

100 nm to 1 µm wide SU-8 gratings, multiple-level nanochannels, cavities, and air-

bridging polymer structures having a width ranging from 400 nm to 10 µm on flat or 

patterned substrates (figure 2.9).  
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Figure 2.9: SEM images of SU-8 structures produced by reversal UV imprinting: a) SU-8 gratings having a 

depth of 650nm and width of 1 µm on Si substrate, and b) sealed SU-8 channels. 

 

Similarly, a work was demonstrated on a method for the fabrication of sloped-side 

walled (54.7
o
) SU-8 structures using a combination of hot embossing and UV exposure, 

where electrochemically etched silicon wafers served as the master molds [Nordstrom 

2006]. Likewise, later in 2010 Cannistra and co-workers at University of North Carolina 

reported on the fabrication of complex 3D micro-optical components such as spherical 

and cylindrical refractive microlens array of SU-8 using a combination of micro-

molding and photolithography [Cannistra 2010]. Micro-optical components sized down 

to 100 nm fabricated by this method. 

2.3. Applications of SU-8 in biology and biotechnology 

For many years‟ inorganic materials such as silicon, silicon dioxide and silicon nitride 

have been the most prominent structural materials used in biotechnology and 

BioMEMS. Miniaturized biosensors and devices of such inorganic materials can be 
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fabricated by various micro- and nanofabrication techniques such as physical and 

chemical vapor deposition, or chemical and reactive ion etching. However, these 

fabrication techniques can be time consuming and involves high production costs, 

which is one of the drawbacks of using an inorganic material. Studies show that the 

polymers such as PDMS and SU-8 can be equally valuable materials as that of inorganic 

materials for biological studies as are biocompatible and they can be patterned with any 

required designs using low-cost and rapid lithographic techniques [Holgado 2010, 

Fernandez 2007, Walther 2007]. Although for many years SU-8 was considered as a 

structural material in MEMS, studies found SU-8 can be an promising material for 

biosensors [Holgado 2010], drug delivery [Fernandez 2007, Pramanick2013, Altuna 

2013], and cell culture [Matschegewski 2010, Walther 2007]. The characteristics such 

as biocompatibility, nonirritant, and non-toxicity attribute SU-8 a valuable material in 

biological research. 

In 2002 kotzar and co-workers at BIOMEC, Cleveland studied on the biocompatibility 

of some of the commonly used BioMEMS materials such as silicon nitride, silicon 

dioxide, single-crystal silicon, titanium and SU-8 [Kotzar 2002]. They have carried out 

five of the ISO 10993 physiochemical and biocompatibility tests and the results show 

that except silicon nitride and SU-8 all other materials fell below the detectable limits in 

four test categories (residue on ignition, nonvolatile residues, UV absorption and 

turbidity). Similarly, in 2002 Weisenberg at University of Minnesota showed that the 

biocompatibility and good chemical compatibility SU-8 offers makes it a potential 

material for microfluidic applications [Weisenberg 2002].  
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Successful fabrication and application of various biosensor devices such as include SU-

8 optical waveguides [Lee 2002], cantilevers [Johansson 2006, Nordstrom 2008], 

interferometers [Shew 2005, Esinenco 2005], and ring resonators [Salleh 2013] using 

SU-8 has been reported so far. In reference to the analytes, studies show different 

methods of immobilization of DNA [Marie 2006, Wang 2011], and protein [Blagoi 

2008, Shew 2006] on to SU-8 surfaces. Studies have reported on a successful perfusion 

of brain tissue cells using microfluidic chamber patterned with SU-8 micropillars of 

different arrangements [Passaeraub 2003]. A rapid and one-step procedure for the 

immobilization of cholesteryl-tetraethyleneglycolmodified oligonucleotides (chol-DNA) 

on SU-8 surfaces was reported and the results showed that a robust and efficient 

attachment of DNA was achieved on SU-8 surfaces (figure 2.10) [Erkan2007].  

 

 

Figure 2.10: Schematic diagram of chol-DNA immobilization and the hybridization procedure on SU-8 

surfaces.  
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The devices used for biological applications always require the immobilization of 

biomolecules on the device surface. Some of the different methods for immobilization 

of biomolecules on to device surface are encapsulation, adsorption, or covalent bonding. 

Since a covalent bonding results in a better biomolecule activity, greater stability and 

reduced non-specific adsorption, a covalent immobilization of biomolecules is preferred 

for those molecules that do not adsorb, adsorb very weakly or adsorb with improper 

orientation and conformation to polymer surfaces [Wei 2000, Parl 2002, Tatte 2003]. 

Many studies have been conducted to develop a highly functionalized SU-8 surface with 

a high immobilization efficiency and good accessibility to target biomolecules [Tao 

2006, Sethi 2010]. Target molecules such as nucleic acids, antigens or antibodies can be 

immobilized on SU-8 by physical adsorption [Marie 2006, Erkan 2007, Blagoi 2008, 

Holgado 2010], but the instability and higher non-specific adsorption makes this method 

less favorable for biosensing purposes.  By modifying the polymer surface to have at 

least one of the functional group such as amine, thiol, aldehyde, or carboxyl helps to 

achieve a strong covalent bonding between the biomolecules and SU-8. Studies shows 

different wet (ex: silanization) and dry (ex: plasma treatment) methods for the SU-8 

surface functionalization [Wang 2006, Joshi 2007a, Joshi 2007b, Tao 2008, Blagoi 

2008, Deepu 2009].  

Wet functionalization of SU-8 surfaces with sulphochromic solution followed by [3-(2-

aminoethyl) aminopropyl]-trimethoxysilane (AEAPS) and glutaraldehyde was 

demonstrated by Joshi at IIT, Mumbai [Joshi 2007a]. Following this, human 

immunoglobulin (HIgG) was then immobilized on to the functionalized SU-8 surfaces. 

Similarly, in 2009 Deepu and co-worker at IIT, Mumbai have presented a wet 

functionalization method using two cross-linkers, glycine and 11-mercapto undecanoic 
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acid [Deepu 2009]. Initially the SU-8 surfaces were hydrolyzed using NaOH and HCl 

and the hydrolyzed surfaces were treated with the crosslinkers to produce amine or thiol 

group on the SU-8 surfaces and then the functionalized surfaces were then treated with 

EDC:NHS mixture. Also, a dry method for the functionalization of SU-8 with amine 

group as achieved using pyrolytic dissociation of ammonia in a hotwire CVD setup 

[Joshi 2007b]. IgG was then successfully immobilized on to the functionalized SU-8 

cantilevers surfaces.  

The functionalized nano- and microfabricated SU-8 surfaces find application in various 

fields of biomedicine and biotechnology. In 2010 Holgado at Universidad Politécnica de 

Madrid presented label-free optical biosensors made of SU-8 planar and nanopillars 

surfaces for the detection of bovine serum albumin (BSA) antigen and anti-BSA 

antibody (aBSA) [Holgado 2010]. The detection measurements were performed using 

UV spectrophotometer and the results showed increased detection sensitivity with the 

structuring of sensing surfaces (figure 2.11). 

An optical biosensor based on SU-8 MZI for the detection of antibody was shown by 

Shew at NSRRC, Hsinchu [Shew 2008]. IgG was allowed to interact with the antigen 

immobilized on SU-8 surface and results showed that the SU-8 MZI achieves a 

maximum sensitivity of 10−9 g/ml (∼6.7×10
−12

 M). Besides, they have used SU-8 MZI 

chip to detect the refractive index change in the enzyme-linked immunosorbent assay 

(ELISA) process. In 2009 Boiragi at IIT, Mumbai has reported on the fabrication of 

integrated optical biosensor with SU-8 multimode waveguides (Y-splitters) for the 

detection of IgG of different concentrations  
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Figure 2.11: Schematic representation: A) BSA-aBSA on planar SU-8 surface, B) BSA-aBSA on SU-8 

nanopillar surfaces, C) optical response of each structure with the antigen-antibody interaction on planar 

and structures SU-8 surfaces. 

 

(down to 0.0125mg/ml) [Boiragi 2009]. In this study the SU-8 surfaces were initially 

hydrolyzed and treated with EDC:NHS solution to achieve a covalent bonding of the 

biomolecules to the SU-8 surfaces. Similarly, using photolithography, Shameli and team 

have fabricated a hybrid chip of quartz-SU-8-PDMS produced for the rapid simple 

isoelectric focusing for proteins [Shameli 2011]. The microchip helps for the separation 

and detection of proteins and PI markers with UV absorbance-based whole-channel 

imaging detection method. Furthermore, Walther at Technical University Munich 

showed a study on the enhancement of cell growth on O2 plasma activated SU-8 

surfaces [Walther 2007]. The results showed that the cell proliferation increases  
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Figure 2.12: Schematic picture of the SU-8 nanoneedles. a) Overview of the whole device, b) SU-8 

supporting structures made of SU-8 pillars, and c) SU-8 nanoneedle. 

 

significantly with the plasma activation of SU-8 surfaces. Moreover, Xiang and team 

have successfully demonstrated the possibility of SU-8 microneedles for transdermal 

drug delivery (figure 2.12) [Xiang 2013]. The produced SU-8 nanoneedles were tested 

by penetrating it into the pig skin to delivered drugs. The study shows that the SU-8 

needles are strong enough to stand forces during its penetration to the skin for drug 

delivery.  

Despite the fact SU-8 is a valuable material for biosensing and biotechnological 

applications, the photoluminescence in the visible wavelengths [Marie 2006, Sikanen 

2006] limits the uses of it in many applications, especially for the detection of 

fluorescence tagged analytes or when fluorescence is used as the predominant detection 

mode. So far only few studies have been reported on the reduction of SU-8 
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luminescence to use it for biological applications [Cao 2012]. Cao and team at 

Technical University of Denmark presented a method for the reduction of SU-8 

luminescence by coating the SU-8 surface with a thin gold nanoparticle layer. 

Significant reductions of SU-8 luminescence (up to 81% compared to bare SU-8) were 

observed after coating it with a gold film and improve the sensitivity of fluorescence-

based detection (figure 2.13). DNA was then successfully immobilized on to the gold 

coated SU-8 surface facilitating sensitive bio-analytical applications, such as DNA 

hybridization and SP-PCR. 

 

 

Figure 2.13: The reduction in photoluminescence of the Au-coated SU-8 surface for the different 

wavelength ranges: Cy3, Cy5 and FITC. 
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Chapter 3 

Micro- and Nanostructuring of SU-8 

Surfaces Using Lithographic Techniques 

Lithographic techniques such as photolithography, laser lithography and soft 

lithography are widely used as a tool for patterning and structuring devices in the field 

of microfabrication, nanotechnology and biotechnology [Stevenson 1986, Qin 1998, 

Cedeno 2002, Torres 2003, Lee 2005, Zaouk 2006, Lipomi 2012]. The advantages 

such as the ease of handling, rapid and low cost of structuring of surfaces make these 

lithographic techniques a key technique for the fabrication of micro- and nanostructures, 

especially in semiconductor industry.  

This chapter is divided into two sections: i) first section gives an overall insight about 

the various steps and parameters involved in structuring of sample surfaces using any of 

these three lithographic techniques, and ii) the second section describes on the 

patterning of SU-8 surfaces using photolithography and soft lithography and the 

resulting SU-8 structures we have obtained. Besides, in the second section a detailed 
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description on laser lithography, which was the tool for the fabrication of photomask, is 

also presented. 

3.1. Lithographic techniques for structuring surfaces 

In this section, initially a general description of various steps and parameters involved in 

structuring of any sample surfaces using photolithography is given. This is followed by 

a descriptive note on parameters and methods of structuring sample surfaces by laser 

lithography. And finally, a description on soft lithographic technique for transferring 

patterns from a master template to sample surface is presented.  

3.1.1. Photolithography 

Photolithography is an optical means of transferring various geometrical patterns from a 

photomask on to sample substrates such as silicon, glass, GaAs, InP e.t.c. To achieve 

this transfer of patterns to the substrate, it is necessary to coat the substrate to be 

patterned with an intermediate material called the photoresist, which is a light-sensitive 

material. After coating the substrate with the photoresist, by light exposure followed by 

a cascade of surface treatments such as post bake, development and hard bake, the resist 

film can be patterned with the desired pattern. The patterns drawn on the imagable 

photoresist film is then transferred on to the substrate by various processes like etching, 

lift-off.  
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Figure 3.1 represents a typical photolithographic process. There are two types of 

photoresists and depending on the type of photoresist used, positive photoresist or 

negative photoresist, the steps involved in the photolithographic patterning process 

differ slightly. The patterning of a positive photoresist by photolithography involves 

five steps; i) substrate preparation (figure 3.1a), ii) spin coating of the photoresist on to 

the substrate (figure 3.1b), iii) soft baking of resist coated substrates (figure 3.1c), iv) 

light exposure of soft baked sample through the photomask (figure 3.1d), and v) finally, 

development of the exposed samples using a developer solution (figure 3.1e). However, 

in case of a negative photoresist an additional step called (vi) post exposure bake is 

required after the light exposure of the sample substrates (figure 3.1f). After the post 

exposure bake, the samples undergo development as in the case of a positive  

           

Figure 3.1: The schematic representation of various steps involved in the photolithographic patterning of 

any sample. 
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photoresist. A detailed description on each steps involved in photolithographic 

patterning is explained here.   

i. Substrate preparation 

The substrates preparation is achieved in two steps: cleaning of the substrates for the 

removal of contaminants presents on it, and followed by the dehydration of cleaned 

substrates to remove the water content. The substrate contaminants can be either in the 

form of particulates or in the form of any organic or inorganic layer. The presence of 

particulates causes defects in final photoresist pattern if they are not removed before 

spin coating, and the presence of organic or inorganic film on the substrate causes poor 

adhesion of resist on the substrates. Therefore the removal of the substrate 

contamination is important to improve the adhesion of the photoresist to the substrates 

and to obtain maximum process reliability.  

The substrate cleaning can be accomplished by various methods such as wet chemical 

cleaning, ozone stripping or by plasma cleaning [Choi 2003a, Choi 2003b]. One of the 

widely used methods for substrate cleaning is the wet chemical cleaning. Cleaning with 

solutions such as piranha (a mixture of H2SO4 and H2O2), acetone, ethanol, water, or 

trichloroethylene is usually performed for the removal any organic and inorganic 

contaminants present on the substrates. If the substrates are not highly contaminated, 

simple degreasing can be achieved by ultra-sonication of the substrates in acetone, 

ethanol or methanol for 5-10 min.  

Once the substrates are cleaned, they have to be baked at a set temperature. This baking 

helps to get rid of any water content present on the substrates, which otherwise would 
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cause poor adhesion of the photoresists on to the substrates. Depending on the types of 

substrates the temperature and time for baking varies from 150 to 200 
o
C for 10 to 15 

min. respectively. After baking, the substrates are allowed to cool down, and as soon as 

after cooling it down, they can be coated with the photoresists.  

ii. Spin coating  

Photoresists are coated on to the substrates by spin coating using a spin coater. The spin 

coating helps to obtain a uniform thin film of photoresist on the substrates. Initially the 

substrate to be coated is held on a spinner having a vacuum chuck and then the liquid 

photoresist is dispensed on to that substrate. The substrate is then rotated at a controlled 

spinning speed and thus the resist gets spread over the substrate and form a thin film. 

The thickness of the resist film obtained by spin coating depends on many factors such 

as, the spinning speed, the properties of the solvent solution of photoresist (viscosity 

and surface tension), and the substrate material. A thinner resist film can be obtained 

when the spinning speed is high enough. However, a very high spinning speed might 

cause irregularities in the obtained resist film. Similarly, a highly viscous resist will 

have to be coated at a higher spinning speed to obtain a thin film, while the spinning 

speed can be reduced when using a resist which has less viscosity. Thus, to obtain a 

desired thickness for the resist film, calibration of the spinning parameters is required 

when different resists are used.  

iii. Soft bake 

After spin coating, 20-40% of the solvent still remains on the coated resist film.  In 

order to remove these solvent present in the coated resist film, the substrates has to be 
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soft baked after the spin coating. This soft baking helps to evaporate out the solvent 

present in the resist film. The soft baking also helps to improve the adhesion of the 

resist on to the substrates and minimize the dark erosion during the development. Dark 

erosion is the removal of the undesired area of the photoresist from the substrate during 

development. Besides, the removal of the solvent prevents the photomasks from 

sticking on to the resist layer in the case of contact photolithographic exposure, which 

might otherwise contaminate the photomask. 

A soft bake is usually done on a level hot plate to have a good thermal contact and 

heating uniformity. The rate of evaporation of the solvent depends on the rate of heat 

transfer and thus the soft baking time and temperature has to be adjusted depending on 

the thickness of the photoresist and the substrates. Excessive baking results in the 

degradation of photosensitivity of the resist by thermally decomposing the photoactive 

compound of the resist. On the other hand insufficient soft baking results in higher dark 

erosion during development of the UV exposed samples. After the soft bake, the 

substrates are allowed to cool down to room temperature and then they are ready for the 

light exposure. 

iv. Light exposure 

In photolithography, in order to transfer the patterns from the photomask on to the resist 

surface, the soft baked samples undergo a light exposure through the photomask. This 

light exposure is accomplished using a mask aligner. Figure 3.2 represents a contact 

mask aligner setup and following this a short general description on the working of 

mask aligner is given. 
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Figure 3.2: Schematic of a mask aligner. 

 

A mask aligner consists of three main parts, a lamp house, a microscope, and an 

alignment stage. The lamp house of a mask aligner contains the source of light and the 

optical components such as the lenses and mirrors. A typical mask aligner uses gas 

discharging lamps such as mercury arc lamps. These lamps emit light in a broad 

spectrum in the DUV, UV and visible regions. During a light exposure, the absorption 

spectrum of the photoresist needs to be matched with the emission spectrum of the lamp 

in the aligner so that the photoactive compound in the resist becomes activated. A 

wavelength ranging from 365 to 440 nm can be produced with a mercury arc lamp. The 

sensitivity of almost all the photoresist lies in this range of the electromagnetic 

spectrum.  

The lamp house has a second optical system called the integrator, which consists of a set 

of filters, lenses and mirrors. The filters helps to select particular spectral lines of the Hg 
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emission, and the lenses and mirrors are employed in the path of light to collimate and 

reflect the light before it gets incident on the sample. Other than the lamp house, the 

alignment stage and the microscope in a mask aligner helps to hold and align the sample 

and the mask for the light exposure. The sample substrates are held on the XY 

alignment stage and the photomask is placed over the sample substrate. In order to 

enhance the contact between the sample substrate and the mask, the alignment chuck is 

equipped with a vacuum holder. The microscope helps to obtain a correct alignment 

between the photomask and the sample substrate. 

Once the photomask is properly aligned with the sample substrate, the light is shined on 

to the photoresist. During this light exposure, the light from the lamp is allowed to pass 

through the photomask and then projected it on to the sample substrate. Upon the light 

exposure, the chemical properties of the resist gets modified thus in turn changes 

solubility of the resist in the developer solution. When a positive photoresist is used, the 

exposed regions get dissolved in the developer while the unexposed regions remain on 

the substrate. The opposite happens for a negative photoresist. In this case, during 

development the exposed region of photoresist is polymerized and it renders insoluble 

to the developer, while the unexposed parts get dissolved. Figure 4.3 shows the 

schematic on difference between patterning processing positive and negative resist. 

During a light exposure, the exposure time is a critical parameter to be considered in 

order to obtain structures with maximum resolution. In a positive resist a shorter 

exposure time is not enough to activate the photosolubilization of the resist, while in a 

negative resist the cross-linking of the sensitizer cannot occurs with a low exposure 

time. A longer exposure time causes undesired exposure by the scattering, reflection and  
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Figure 4.3: Schematic diagram of patterning of a positive and negative photoresists. 

 

diffraction of light in the region on the photoresist layer which should not be exposed. 

Therefore the dimensions of pattern on the photomask are not precisely reproduced on 

the resist layer. On the other hand, a shorter exposure time can cause the formation of 

structures with very low dimension due to the insufficient exposure, and a too short 

exposure time is insufficient to activate the photoresist and causes dark erosion during 

development. A schematic of overexposed and underexposed patterns which are 

produced due to longer exposure time and shorter exposure respectively are shown in 

figure 3.4.  
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Figure 3.4: Schematic representation of overexposed and underexposed patterns on photoresist film. 

 

The required exposure time to obtain structures with correct dimensions depends on 

various factors such as the power of the UV lamp in the mask aligner, the thickness of 

the photoresist and on the type of substrates used. The exposure time needed when 

using a lamp with high power is lower than one when a lamp with low power is used. 

For example, a light intensity of approximately 20-30 mW/cm
2
 can be achieved with a 

mask aligner equipped with a 350W Hg bulb. Thus, when using a 1000W Hg bulb, the 

exposure time should be reduced to approximately three times than the one with 350W 

bulb.  

Apart from the power of the lamp, the exposure time has to be adjusted according with 

the thickness of the photoresist and the reflectivity of the substrates used. A thicker 

photoresist has to be exposed for longer time than a thinner layer of resist, because of 

the thickness of a thick-resist is higher than that of the penetration depth of the exposure 

light. Wherein, a short exposure dose is sufficient to make the thinner resist layer active. 
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Similarly, depending on whether the substrate using is highly reflective or transparent, 

the required exposure time varies. The exposure time needed to activate the photoresist 

is shorter for a highly reflecting sample substrate than that of a transparent substrate. 

Therefore, taking into account all these influencing factors, the calibration of the 

exposure time has to be done beforehand when using a photoresist.  

v. Post exposure bake 

After the light exposure, a positive photoresist can directly undergo development using 

a developer solution. But in case of a negative photoresist, to increase the chemical etch 

resistance of the exposed polymer for development an additional baking steps called a 

“post exposure bake” is required after the exposure and before the development. The 

post exposure bakes helps to thermally cross-link the exposed portion of the sample 

surface and thus in turn make the exposed portion inert to the developer. A post 

exposure bake is usually performed either on a hot plate and the time and temperature 

depends on the type of resist used.  The exposed and baked resist are then ready for 

development.  

vi. Development 

Development is a wet chemical etching process performed using a solution known as 

the developer. A developer is an aqueous solution which is formulated either with an 

inorganic or with an organic compound. As explained above, for a positive resist the 

exposed parts get dissolved by the developer, while for a negative resist it is the 

unexposed parts that get removed. During development the parameters such as the 

developer concentration and the development time are important parts that have to be 
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considered in a photolithographic process. The developer concentration affects the 

development time of a resist, and thus a calibration between the concentration and time 

has to be performed initially. In some cases, a higher developer concentration causes 

higher dark erosion and therefore the developer has to be diluted with base solution (ex: 

water) during the developer preparation. A longer developing time will dissolve both 

the exposed and un-exposed resist and a shorter developing time will result only in a 

partial dissolution of the exposed or un-exposed region.  

3.1.2. Laser lithography  

Laser lithography, also known as direct laser lithography is a mask-less optical 

lithographic technique mainly used for patterning photomasks and for rapid prototyping. 

Three major steps involved in the structuring of a sample substrate using laser 

lithography are; i) sample preparation, ii) designing the pattern to be drawn and iii) laser 

exposure for transferring designs on to sample surface.  

i. Sample preparation 

The sample preparation for laser lithography is carried out in a similar fashion as that in 

photolithography. Initially the substrates are cleaned and dried to remove the 

contaminants and water present on the surface. This is followed by spin coating of the 

resist on to the substrate and then soft bake. Afterwards, instead of exposing the sample 

surface with lamps having a broad band of wavelength, the samples are exposed using a 

laser that emits a narrow band around a given single wavelength. The exposure is 

followed by the post exposure bake and development as explained in section 3.2.1.  
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ii. Pattern preparation  

As in photolithography, in this technique the structuring is achieved by the exposure of 

light on to substrates coated with a photoresist, followed by the development of the 

exposed samples. But, unlike in photolithography where the light exposure is performed 

through a photomask, in laser lithography the exposure is performed by the raster 

scanning of a focused laser beam. The sample holder is a translation stage that can shift 

the sample in two dimensions in the plane of the sample by means of two precision 

servo motors controlled by a computer connected to the lasers lithographic unit. 

Therefore, prior to the fabrication, the desired design of the device has to be designed 

and modeled and then transferred to the photomask. The designing can be performed 

with the support of any computer-aided design or mathematical modeling tool (ex: 

Clewin or LASI). Afterwards, the computer that controls laser unit is loaded with the 

digital pattern desired to be drawn on the sample surface. Once the design is ready it is 

transferred to the computer that controls the laser lithographic unit. Thus, during the 

exposure the laser will be drawn only through these designed areas.  

iii. Laser exposure 

Once the system is ready with the designs to be patterned on to the sample surface, the 

next step is the laser exposure of the prepared samples. The exposure is performed by a 

beam of laser equipped in the laser lithographic unit. The three major parts of a laser 

lithographic unit are; a source of laser, filters and lenses, and a scanning stage. A 

general schematic representation of a laser lithographic unit is shown in figure 3.5. 
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Figure 3.5: Schematic representation of a laser lithographic system. 

 

The laser source can either be a high power pulsed or continuous wave laser. Some of 

the commonly used sources of laser in a laser lithographic unit are GaN laser (405nm), 

krypton fluoride laser (248nm), or argon fluoride laser (193nm). As mentioned in the 

section 3.2.1, the selection of the light (laser) source depends on the absorption 

spectrum of the photoresist.  

During laser exposure, the laser power incident on the substrates is controlled by the use 

of neutral density filters (ex: 1%, 10% and 30% filters), which permits the transmission 

of a given amount of the beam power. The power of laser has to be optimized and by 

using neutral filters the laser power reaching the substrate can be controlled. For 

example use of 1% filter will let only 1 percentage of the total power of the laser to be 

incident on the sample surface. Similarly 10% and 30% will let only 10 and 30 
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percentage of the initial laser power to be used for the exposures respectively.  The light 

that comes out through the filter is then reflected by a mirror and then finally focused on 

to the sample through a focusing lens. 

In a laser lithographic system the substrates are loaded on an XY scanning stage 

equipped with a vacuum chuck. The vacuum helps to hold the substrate on the scanning 

stage. In order to eliminate external vibrations during exposure, all the components of a 

laser lithographic system are self-contained in an anti-vibrational unit. Besides, a 

temperature controlling and stabilization system is embedded in the unit to keep the 

internal temperature constant. 

3.1.3. Soft lithography  

Soft lithography is a collective term referring to various fabricating or structure 

replicating techniques using elastomeric stamps or rigid molds to pattern soft materials 

such as polymers and photoresists. Using this technique, both two-dimensional and 

three-dimensional structures can be easily achieved, which might be harder and tedious 

to obtain using photolithography [Xia 1998, Torres 2003, Wolfe 2010]. Compared to 

most of the lithographic techniques such as e-beam lithography, laser lithography, and 

nanosphere lithography that comprises high cost, time taking and tedious formulas, soft 

lithography is a rapid and cost effective technique for the structuring samples.   

Figure 3.6 represents an overview on the structuring of any surfaces by soft lithography. 

The three major step involved in the structuring of a sample using soft lithography are; 

i) fabrication of a master template (figure 3.6.1), ii) transferring the patterns on the  
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Figure 3.6: Schematic diagram of soft lithographic technique. 

 

master to produce a stamp (figure 3.6.2), and finally iii) imprinting the patterns on the 

stamps on to the sample surface (figure 3.6.3). 

i. Master templates 

The first step in soft lithography is the fabrication of master templates. Silicon, metals, 

alumina, plastics, poly-(methyl methacrylate) (PMMA), or photoresists are some of the 

commonly used master template. One of the major requirements when choosing a 

master template is the rigidity of the template surface. The rigidity helps to prevent the 

template surface from collapsing when the polymer (ex: PDMS) is poured over it for 

producing stamps. The master templates are fabricated using various techniques such as 

lithography, chemical methods, e-beam writing, or microcontanct printing [Wolfe 2010, 

Qin 2010]. Photoresist patterned by photolithography, direct laser writing, and 
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nanosphere lithography are commonly used as master templates [Wolfe 2010]. Apart 

from the lithographic methods, nonporous materials such as porous alumina or silicon to 

play as the master template are used.  

ii. Stamps  

Once producing the master templates, the next step is transferring the patterns from the 

master template to the stamp. PDMS, an elastomeric polymer, is one of the most widely 

used materials as the stamp in soft lithography [Lipomi 2012]. It can be cured thermally 

and it is easy to peel off from the master template after curing. Other than PDMS, 

polymers such as PMMA and PMMS (poly (3-mercaptopropyl methylsiloxane)) also 

serve the purpose as stamps in soft lithography.  

iii. Embossing (Imprinting) 

After obtaining the stamps, the final step is the imprinting of the stamp against the 

sample surface. This step helps to replicate the pattern from the stamp on to the sample 

surface. During imprinting a high pressure is always applied to keep the stamp tight to 

the sample surface and thus to transfer the pattern in the stamp on to the film. Along 

with this pressure either the sample surface with the stamp will be exposed to light or 

heat. The mode of treatment depends on the sensitivity of the used materials. This 

thermal or light treatment helps to produce a firm pattern on the sample surface. Finally 

the stamp is gently peeled off and thus releases the patterns on to the sample surface.  
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3.2. Experimental procedures to obtain photomasks and 

patterning SU-8 surfaces  

Using the lithographic techniques such as laser lithography, photolithography and soft 

lithography, which are explained in section 3.1, we have fabricated photomasks, and 

various nano- and micro- SU-8 structures. The experimental methods for the fabrication 

of photomasks and SU-8 structures, and the corresponding results are presented in this 

section.  

Photomasks were fabricated using laser lithography, and photolithography was used for 

the fabrication of SU-8 macropillars and straight waveguides. In this dissertation, 

depending on the dimensions (width and height) of the SU-8 pillars produced, they are 

refered as macropillars, micropillars and nanopillars. SU-8 pillars having dimensions 

(width and height) above 5 μm are called as macropillars, while SU-8 pillars having a 

dimension below 3 μm are referred as micropillars. Similarly, those pillars having a 

dimension below 500 nm are referred as nanopillars. Using soft lithography we have 

produced SU-8 structures such as SU-8 nanopillars, micropillars, nanopores and 

micropores. Further, by combining photolithography and soft lithography, we have 

fabricated SU-8 macropillars pattered decorated with nanopores, micopores, nanopillars 

and micropillars on its surface. 

As mentioned in section 3.1.1, in photolithography the light is projected through the 

photomask for transferring the patterns to the resist film. In our work, in order to 

fabricate SU-8 macropillars and straight waveguides using photolithography, 
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photosmasks with the desired patterns were required. Therefore, prior to the fabrication 

of SU-8 macropillars and waveguides, photomasks with defined patterns for 

macropillars and waveguides was produced using laser lithography. The fabrication 

details and the corresponding results are explained in section 3.2.1.  

First part of this section describes on the patterning of photomask and, the second and 

third part describe on the structuring of SU-8 surfaces using photolithography and soft 

lithography respectively.  

3.2.1. Laser lithography for the patterning of photomask  

A photomask is a glass plate coated with an opaque surface. The most common type of 

photomask used in photolithography is quartz glass plate coated with a chrome layer on 

one side. For our studies, we have patterned two chromium photomasks, one having 

designs for the photolithographic fabrication of SU-8 macropillars and another one with 

the designs for SU-8 waveguide fabrication. 

The initial substrate to obtain the photomasks consisted of commercially purchased 

chromium masks (Nano Film, Westlake Village, CA). The chromium masks were 

already coated with a positive photoresist, AZ1505 resist when purchased. The 

thickness of the resist layer on the substrate was 500 nm. 

The patterning of chromium masks using laser lithography involves two steps; i) 

designing the desired pattern, and ii) patterning the defined design on to the photomask 

using laser lithography.  
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i. Designing patterns 

The designing of the desired patterns were performed using Clewin, layout editor 

software [PhoeniX Softwares]. Designs can be drawn with any desired dimensions and 

shapes using this software. For the fabrication of macropillars, two sets of designs 

having different dimensions were drawn. One set consisted of 6 µm width squares on a 

square periodic lattice with separation between two nearest neighbors of 6 µm. 

Similarly, the second set consisted of 8 µm width squares with a separation of 8 µm 

between two nearest neighbors. Both designs covered a total area of 1 cm x 1 cm. An 

image that shows how the patterns look when designed using Clewin is shown in figure 

3.7.  

 

 

Figure 3.7: Image depicting the square designs drawn using Clewin. 
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Similarly, the designing of pattern for the patterning of chromium mask for the SU-8 

waveguides were done as explained above. The only difference was that, instead of 

squares, straight lines were drawn for the waveguide fabrication. Two sets of lines 

having different dimensions were designed. One set had lines having a width of 6 μm 

and for the other set the lines had a width of 8 μm. In both the cases the length of each 

line was 5 cm and the separation between each lines were 600 μm.  

After designing the patterns, they were transferred to the computer that controls the 

laser lithographic unit. Once they were transferred, the next step was to pattern these 

designs on to the chromium using laser lithography. Since the chromium masks we had 

were already coated with photoresist, no sample preparation was required. They were 

ready for laser exposure. 

ii. Laser lithography for producing photomasks 

The laser exposures were performed using a lithographic unit model DWL 66FS, from 

the company Heidelberg Mikrotechnik GmbH (Heidelberg, Germany), shown in the 

picture of figure 3.8. The unit is equipped with a diode laser source that emits at a 

wavelength of 405 nm and the laser power is 50 mW.   

As mentioned in section 3.1.2, a very low and a very high exposure power will result in 

the under-exposure and over-exposure of the patterned structures respectively. 

Therefore, initially a set of test runs were performed with different filters to optimize 

the laser power for achieving patterns with high resolution and accurate dimensions on 

chromium mask. We have used 1%, 3% and 10% neutral filters to find the optimized 

laser power. The samples drawn with different energies were then checked under  
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Figure 3.8: Digital photo of the laser lithographic unit. 

 

environmental scanning electron microscope (ESEM) to verify the optimized energy 

required for patterning the chromium mask. The ESEM results show that for achieving 

structures with maximum resolution, the laser energy has to be 1 % of the initial laser 

power. Thus the power used for patterning chromium masks with designs for 

macropillars and waveguides was 0.5 mW. Figure 3.9 shows the ESEM images of over-

exposed and under-exposed SU-8 pattern obtained during power optimization. 
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Figure 3.9: (a) Over exposed and (b) under exposed photoresists.  

 

After obtaining the optimized power, the chromium mask was exposed to laser to 

pattern designs for macropillar fabrication. Once the chromium mask coated with 

photoresist was exposed, the next step was to develop the exposed mask using a 

developer solution. Therefore, the chromium masks were developed using AZ725 

developer for 1 min. Subsequently, the mask was rinsed with plenty of DI water. Since 

the photoresist coated on the chromium mask is a positive photoresist, the exposed 

region was removed during developing.  

This chromium mask served as the photomask for the fabrication of SU-8 macropillars. 

The ESEM images of chromium masks are shown below (figure 3.10). The ESEM 

images shows that the patterns in the chromium masks have the same dimension as that 

of the initial designs. One set has squares having a dimension of 6 μm and the center to 

center distance was 12 μm. Similarly, the second set has squares with a dimension of 8 

μm and the center to center distance was 16 μm. 
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Figure 3.10: Digital photo (a) and the ESEM images of the chromium mask. (b) and (c) represents the 

ESEM images with squares having a dimension (width and height) of 6 and 8μm respectively. 

 

Similarly, in the case for patterns for waveguides, once the designs were drawn, they 

were transferred and patterned on to the chromium mask as described in the case of 

fabrication of mask for macropillars. The designed mask was checked under ESEM and 

the images show that a line on the chromium mask has a good replication of the initial 

design. The ESEM image of chromium mask patterned with straight lines is shown in 

figure 3.11. One set of lines in the chromium mask have a width of 6 μm and the second 

one has a width of 8 μm. 
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Figure 3.11: ESEM image of the chromium mask with lines having a width of 6 μm. 

 

After fabrication the chromium mask, SU-8 macropillars and waveguides were 

fabricated using photolithography.  

3.2.2. Photolithography for the fabrication of SU-8 

microstructures 

In our studies we have used SU-8 2005, whose primary solvent is cyclopentanone. SU-8 

2005 and the SU-8 developer (1-methoxy-2-propyl-aacetate, PGMEA) were obtained 

from Microchem (Westborough, MA). SU-8 is sensitive to near UV light and thus the 

structuring of SU-8 is generally performed with light having a wavelength between 350 

to 400 nm. This light exposure induces chemical amplifications in SU-8. The UV 

exposure followed by a cascade of thermal treatments generates highly cross-linked SU-

8 structures that have good thermal and chemical stability.  
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Here we show that SU-8 structures of various dimensions and geometry can be easily 

patterned and fabricated using photolithography, which has the advantages, such as fast, 

low-cost and ease of fabrication. Using photolithography we have fabricated SU-8 

macropillars and SU-8 waveguides. A description on the parameters used for the 

fabrication of SU-8 macropillars and waveguides, and the ESEM images of the resulting 

structures are given below.   

a. Fabrication of SU-8 macropillars 

SU-8 macropillars were fabricated on two types of substrates, on silicon wafers and on 

microscopic glass slides. As mentioned in section 3.1.1, the structuring of negative 

photoresist (SU-8) consisted of five steps; i) substrate preparation, ii) spin coating of 

SU-8 on to the substrates, iii) soft baking of SU-8 coated substrates, iv) UV exposure of 

SU-8, v) post exposure bake of exposed SU-8 surfaces, and vi) development of the 

samples for the removal of the unexposed region.  

i. Substrate preparation 

Initially both silicon and glass substrates were cleaned using piranha solution. The 

piranha solution is a mixture of hydrogen peroxide (H2O2) and sulfuric acid (H2SO4). A 

3 to 1 ratio of hydrogen peroxide and sulfuric acid was prepared in a pyrex glass beaker. 

This was done by adding 30 ml of hydrogen peroxide into a 10 ml solution of 

concentrated sulfuric acid. Silicon wafers and glass slides were immersed in the 

prepared solution for 30 min. at 100
o
C. In order to make sure that the wafers are clean, 

the prepared wafers were further cleaned with acetone and isopropanol in an ultrasonic 

bath for 5 min. each. Subsequently, the substrates were rinsed with plenty of DI H2O. 
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Afterwards, to remove the presence of any water content from the substrates, the 

cleaned silicon wafers and glass slides were kept in a pre-heated oven set at a 

temperature of 180
o
C, for 20 min. After drying the substrate were brought out of the 

oven. The cleaned and dried substrates were then ready for spin coating.  

It was observed that the adhesion of SU-8 on substrates was significantly improved after 

cleaning the substrates with piranha solution, while SU-8 was observed to get removed 

easily during developing from those substrates that were not cleaned with piranha 

solution. The improved adhesion of SU-8 on the piranha cleaned substrates could be due 

to the increased hydrophilicity of the substrates.   

ii. Spin coating of SU-8 

Initially to obtain the relation between spin coating speed and the thickness of SU-8, 1 

ml of SU-8 was spun coated on to the glass and silicon substrates at various spinning 

speeds. The thickness of the photoresist can be controlled by adjusting the scanning 

speed (rpm).  

A spinning speed ranging from 1000 to 5000 rpm was studied. The spin coated 

substrates were then soft baked and then examined under ESEM to find the thickness of 

SU-8. The relationship between the spinning speed and the thickness of the SU-8 is 

represented in the graph below (figure 3.12)            
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Figure 3.12: Graph representing the relation between spin speed and the thickness of SU-8. 

 

The thickness of SU-8 can vary from 7.7 μm to 4.5 μm by controlling the spin speed 

from 1000 to 5000 rpm. After obtaining the spinning speed required, 1 ml of SU-8 was 

dispensed on to the substrate and spin coated at a spinning speed of 1000 rpm for 30 

sec. The SU-8 coated substrates were then soft baked. 

iii. Soft baking 

Since the glass slides used were thicker than silicon wafers, the SU-8 coated glass slides 

were baked for longer time than silicon wafers. To obtain good results, a gradual 

increase of temperature during the soft bake is always recommended for SU-8 and 

therefore, a two-step soft baking was performed for SU-8 solvent evaporation [William 

2004, Grist 2010]. To find the soft baking time required for SU-8, the time was varied 

and from 1 to 10 min. and checked. The optimized soft baking parameters  
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Figure 3.13: Temperature profile during soft baking of SU-8. 

 

for SU-8 having a thickness of 6-7 µm on silicon wafers were observed to be 65
o
C for 2 

min. followed by baking at 95
o
C for another 3 min. While, SU-8 coated glass slides 

were soft baked at 65
o
C for 3 min. then baked for another 4 min at 95

o
C. The soft baked 

substrates were then allowed to cool down to room temperature by bringing down the 

temperature at a ramping rate of 10
 o

C/min. Figure 3.13 shows a graph that represents 

the soft baking conditions (time vs temperature) used. 

iv. UV exposure 

The soft baked samples were then ready for the UV exposure. Since SU-8 is a negative 

photoresist the exposed parts get polymerized and remain on the substrate, while the 

unexposed part is removed by the developer. In our studies the UV exposures were 

performed using a mask aligner MG 1410, Suss MicroTec (Munich, Germany). The 

aligner is equipped with an Hg lamp with wavelength ranging 365-400 nm and with  
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Figure 3.14: Digital photo of the mask aligner. 

 

a power of 350 W. In the mask aligner, both the lamp house and microscope are 

movable. A digital image of the mask aligner setup we have used is shown in figure 

3.14. 

The SU-8 coated samples were exposed under the UV light through the prepared 

chromium mask to transfer the patterns on the mask. To obtain the optimized UV 

exposure time to produce SU-8 macropillars with maximum resolution, SU-8 coated 

silicon and glass substrates were exposed with UV light at various exposure time. The 

exposure time ranged from 1-6 sec. on Si wafer and 3 to 20 sec. on glass slides. Since 

silicon is more reflective than a glass surface, the exposure time required for a silicon 

substrate is always less than a glass substrate. It was observed that an exposure time 

smaller than 3 sec. and 8 sec. on silicon and glass substrates respectively, resulted in the 
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removal of the photoresist from the substrate during development. The cross-linking of 

the polymer could not occur with this time due to the under-exposure of SU-8 on 

substrates. Similarly, a higher exposure dose than 3 sec. and 8 sec. on Si and glass 

substrates resulted in the formation of overexposed SU-8 macropillars (figure 3.15). 

However, the degree of over-exposure was different in both substrates. In case of silicon 

wafer, even a slightly higher exposure time such as 3.3 sec. causes the formation of 

structures that are over exposed. While, when SU-8 on glass slides was exposed for 9 or 

10 sec., the width of the macropillars were observed to be 2 to 3 µm bigger than that of 

the patterns in chromium mask. Although, on glass when the exposure time was higher 

than 12 to 14 sec, the structures obtained were over exposed.  Thus the optimized UV 

exposure time in our case to obtain SU-8 macropillars on glass substrate was 8 sec., 

while for SU-8 coated silicon substrates the exposure time was 3 sec.  

 

 

Figure 3.15: ESEM images of over exposed (a) and under exposed (b) SU-8 macropillars. 
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v. Post exposure bake 

Subsequently, to thermally cross-link the exposed region of photoresist, SU-8 coated 

silicon and glass substrates were post-baked on a hot plate. The conditions of post 

exposure bake temperature were similar to that of soft baking, except the time. The hot 

plate having the substrates was initially at room temperature and then the temperature 

was gradually increased in two steps up to 95
o
C. Silicon wafers were post baked at 65

o
C 

for 2 min. and then the temperature was increased to 95
o
C and baked for another 2 min. 

On the other hand, the glass slides were post baked at 65
o
C for 3 min. then baked for 

another 3 min at 95
o
C. The baked substrates were brought down to room temperature by 

leaving it for another 20 min.  

vi. Development 

The post-baked samples were then developed using SU-8 developer, PGMEA (1-

methoxy-2-propanol acetate) for 1min., followed by rinsing with isopropanol for 10 sec. 

A development time less than 1 min. was not enough to remove the un-exposed area and 

a higher development time washed off both the exposed and un-exposed SU-8 from the 

substrates.  

The fabricated SU-8 macropillars on silicon and glass substrates were examined under 

ESEM. The top view and the cross sectional view of SU-8 macropillars on silicon wafer 

and glass slide is shown in figure 3.16. The results show that the array of macropillars 

has good distribution order like in its corresponding chromium mask. Nevertheless, it 

was observed that during photolithography, the width of the structures increases by 0.3-

0.5 μm than the width of the patterns in chromium mask. Thus the fabricated SU-8 
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macropillars have a width of 6.3 μm with a chromium mask having a 6 μm pattern. 

Similarly, those macropillars fabricated through patterns with a dimension of 8 μm were 

observed to have a dimension of 8.4 μm. Besides, the images show that the macropillars 

on glass substrates have a square shape while the macropillars on silicon have a nearly 

circular shape. This could be due to the difference in reflectivity of the substrates. The 

macropillars on both the substrates have a width of 6.3 µm and a height of 7.7 µm.  

 

   

        

Figure 3.16: ESEM images of SU-8 macropillars (a and b) on glass, and (c and d) on silicon substrates. a 

and c are the top view, and b and d are the cross-sectional view.  
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b. Fabrication of SU-8 waveguide 

Using photolithography we have fabricated planar SU-8 waveguides on silicon dioxide 

wafers. A cladding layer with lower refractive index than the core helps to propagate 

light through the waveguide core by total internal reflection. In our studies, oxidized Si 

(n = 1.46) wafer acts as a lower cladding material and SU-8 acts as the core. SU-8 has a 

refractive index of 1.58 at a wavelength of 633 nm. Silicon dioxide substrates were 

accomplished by the thermal oxidation of silicon wafer in a tubular furnace. The 

fabrication procedures of SU-8 waveguides were similar to that of the fabrication of 

SU-8 macropillars. The only difference was the substrate preparation in which the 

silicon wafers were oxidized using thermal oxidation prior to the resist coating. 

Before depositing the photoresist the substrates were cleaned using piranha solution as 

mentioned in the previous section. Cleaned wafers were then dried with air and were 

ready for thermal oxidation. The oxidation was performed in a tubular furnace. In order 

to obtain a lower cladding layer (SiO2) with a low refractive index compared to the core 

(SU-8), and to provide the surface passivation, the cleaned silicon wafers were oxidized 

using tubular furnace at a temperature of 1100
o
C for 10 h. with a homogeneous flow of 

air. The dry thermal oxidation resulted in the formation of an oxide layer of few 

micrometers (approximately < 0.3μm) on the Si wafers. The oxidized wafer had a slight 

green color. The oxidized wafers were then cleaned with water and dried in the oven for 

30 min. at 180
o
C. The SiO2 wafers were then ready for spin coating.  

Other than the thermal oxidation, the fabrication procedure of SU-8 waveguides was the 

same as that of the fabrication of SU-8 macropillars. The optimized conditions of soft 
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baking, UV exposure parameters, post exposure bake and the development were the 

same for the fabrication of SU-8 macropillars and waveguides.  

The optical waveguides produced were observed under SEM. The results show that 

during photolithography, the magnitude of the structures increases by around 0.5 μm. 

Thus the SU-8 waveguides produced through a chromium mask having a dimension of 

6 μm have a width of 6.2 μm. Similarly the structures formed through mask having a 

width of 8 μm were observed to have a width of 8.3 μm. However, this increase in 

dimension was observed to be repeating in all the structures. The top view of SU-8 

waveguides is shown in figure 3.17. The separation between each waveguides was 600 

μm.  

 

 

 

Figure 3.17: SEM images of SU-8 waveguides (top view). 
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Figure 3.18: SEM images of the a) cross section and b) edge of an SU-8 waveguide. 

 

Besides measuring the width, we have examined a diced piece of wafer in order to 

check the cross section of the waveguides. The substrate was diced using a diamond 

cutter, and the analysis was done using SEM. Figure 3.18a shows the obtained result. 

Similarly the edges of the waveguides were checked under SEM and figure 3.18b shows 

the results. It was observed that the waveguides do not reach till the edges of the 

substrates.                                     

3.2.3. Hierarchical structuring of SU-8 with soft lithography and 

hybrid lithography 

In this dissertation the term hierarchical structuring refers to the structuring of surfaces 

at different features sizes such as in nanomeric and micromeric scales, and hierarchical 

structures are a collective name that defines structures at different scales such as 

nanometric and micrometric scales. This section describes on the structuring of SU-8 
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surfaces using two lithographic methods; 1) soft lithography for the patterning of SU-8 

surfaces with nanomeric and micromeric pores and pillars, and 2) hybrid lithography for 

the fabrication of SU-8 macropillars patterned with nanomeric and micromeric pores 

and pillars on its surface. Here the term hybrid lithography refers to a structuring 

technique where the structuring is carried out using a combination of two different 

lithographic techniques; soft lithography and photolithography. In this work, using 

hybrid lithography we have fabricated SU-8 macropillars patterned with nanomeric and 

micromeric pores and pillars on its surface.  

In this section the first part describes on the fabrication of master templates such as 

nanoporous alumina and microporous silicon for soft lithographic patterning. Following 

this the fabrication procedure of PDMS stamps is explained. The last two sections show 

the soft lithographic and hybrid lithographic patterning of SU-8 surfaces for the 

fabrication of planar SU-8 surfaces patterned with nanomeric and micromeric pores and 

pillars, and SU-8 macropillars decorated with nanomeric and micromeric pores and 

pillars on its surface respectively.  

i. Fabrication of master templates  

In this work, nanoporous alumina and microporous silicon served as the master 

templates for patterning PDMS stamps. The ordered nanoporous anodic alumina was 

fabricated using two-step anodization [Mauda 1995]. Initially, aluminum foils were 

electropolished for 4 min. at a voltage 20 V in a 1:4 (v/v) mixture of perchloric acid and 

ethanol. Then to wash away the acid residue, the samples were thoroughly rinsed with 

water and ethanol followed by drying with air. The first anodization step was carried out 

in 1% phosphoric acid in ethanol: water mixture (1:4) (v/v) at 194 V and 0ºC for 24 h. 
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Afterwards, the alumina layer with the pores was dissolved through wet chemical 

etching in a mixture of phosphoric acid 0.4 M and chromic acid 0.2 M (1:1 volume 

ratio) for 3h. at 70ºC. Subsequently, the second step of anodization was performed 

under the same experimental conditions as those of the first anodization step. The time 

of anodization was controlled by the charge to obtain layers with 600 nm thickness for 

NAA. Later, the pore diameter of the as-produced alumina was tuned to obtain the 

desired dimension using by pore widening in 5 wt.% of phosphoric acid at 30-40 ºC. 

Figure 3.19 shows the digital images of nanoporous alumina produced. 

The produced nanoporous alumina was examined using ESEM (figure 3.20). The 

ESEM results show that the alumina produced has an ordered nanoporous surface. The 

pores have a diameter of 130 to 140 nm and a depth of 200 nm.  

 

 

Figure 3.19: Digital image of nanoporous alumina. 
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Figure 3.20: ESEM images of nanoporous alumina templates. a) top view and b) cross-sectional view. 

 

Microporous silicon was fabricated by electrochemical anodization of silicon in 40% 

hydrofluoric acid (HF) solution. This solution acts as the electrolyte and it was prepared 

by diluting HF (40%) in dimethylformamide solution (DMF). A 10:1 (v/v) proportion of 

DMF: HF [Vyatkin 2002, Starkov 2003] was used. This porous silicon were produced 

on p-type silicon wafers with a (1 0 0) orientation and having a resistivity of 10-100 

Ωcm. Prior to the etching the silicon wafers were washed with 5% HF, and then rinsed 

with DI H2O and dried. The porous silicon was produced with a current density of 5 mA 

cm
-2

 for 10 min. A custom made Teflon cell with etching area 1,54 cm
2
 was used for the 

fabrication microporous silicon. Figure 3.21 shows the digital images of microporous 

silicon produced and the ESEM images of microporous silicon produced is shown in 

figure 3.22. The images show that disordered porous surfaces were produced by this 

method. The produced micropores had a diameter ranging from 0.8 to 1.1 μm. The 

depth of the pores varied from 1 to 1.3 μm. 
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Figure 3.21: Digital image of microporous silicon. 

 

 

   

Figure 3.22: ESEM images of microporous silicon templates. a) top view and b) cross-sectional view. 
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ii. Fabrication of PDMS stamps 

Four steps involved in the production of PDMS stamps are; 1) preparation of the 

polymer, 2) pouring the PDMS over the master templates, 3) curing of PDMS, and 

finally 4) peeling off the PDMS from the master.  

We have fabricated two sets of PDMS stamps: i) PDMS stamps with nanometric and 

micrometric pillars and ii) stamps with nanometric and micrometric pores on it. PDMS 

stamps with pillars were produced by single PDMS casting while porous PDMS stamps 

were obtained by double casting. Generally, in single casting the production of 

patterned PDMS stamps is achieved using the master template, while in double casting 

the PDMS stamps prepared using single casting acted as the master templates. In this 

work, nanoporous and microporous master templates were used for the PDMS stamp 

production using single casting. While for double casting the PDMS stamps produced 

by the single casting acted as the master template and thus porous PDMS stamps were 

obtained. The details of both methods are explained below. 

Prior to the production of stamps, the master templates were modified with 

hexamethyldisilazane vapor to make the PDMS surface hydrophobic [Slavov 2000, 

Tasaltin 2011]. This surface treatment prevents the PDMS from sticking to the master 

template surfaces and thus facilitates easy demolding.  

Figure 3.23 shows the different steps involved in the fabrication of PDMS stamps. At 

first, to obtain a soft PDMS mold, a 9:1(v/v) ratio of pre-polymer (sylgard 184) [Down 

Corning Sylgard 184] and its silicone based curing agent was mixed (figure 3.23a). For 

that, 9 ml of the pre-polymer was taken and poured into a glass container initially. To 
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that solution 1ml of the curing agent was then added. In order to have a uniform mixture 

of pre-poylmer and curing agent, the composite was whisked well with a spatula for 

about 10 min. This mixing process leads to the formation of air bubbles within the 

prepared mixture. Since the presence of air bubbles can significantly decrease the 

strength of the produced PDMS stamps, the air bubbles have to be removed from the 

solution mixture. Moreover these air bubbles can cause irregularities in the PDMS 

structure produced. Therefore, after the mixing of base and the curing agent, the mixture 

was degased under vacuum until all the air bubbles were escaped (figure 3.23b). This 

mixture was carefully poured on to the master templates (figure 3.23c). Subsequently, it 

was cured (figure 3.23d) in the oven at 85
o
C for 1h. and peeled off from the master 

templates once it was cooled down (figure 3.23e). Thus, PDMS stamps with 

micropillars and nanopillars were produced (figure 3.23f).    

 

Figure 3.23: Digital images of the fabrication procedure of PDMS stamps. 
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Once the stamps were produced, they were examined under ESEM. The ESEM images 

of PDMS stamps with pillars are shown in figure 3.24. The images show that produced 

PDMS stamps with nanopillars have a pillar diameter of 135-150 nm and height of 200 

nm. Similarly, PDMS surface structured with micropillars have a pillar diameter of 0.8-

1.2 μm and height of 1-1.2 μm. The digital images of produced PDMS stamps are 

shown in figure 3.25. 

 

 

 

Figure 3.24: ESEM images of PDMS stamps (a and b) nanopillars and (c and d) micropillars.  
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Figure 3.25: Digital images of the (a) nanopillars (b) and micropillars PDMS stamps. 

 

After obtaining PDMS stamps with nanometric and micrometric pillars, the next step 

was to produce PDMS stamps with micro- and nano-pores by double casting. For the 

PDMS double casting, initially the obtained first set of PDMS stamps underwent 

thermal ageing for 48 h. in an air oven at 100
o
C [Gitlin 2009]. Following the thermal 

ageing, the stamps were treated with oxygen plasma for 1 min. in environmental plasma 

to render hydrophilicity of the PDMS surface. This plasma activated the PDMS surfaces 

which served as the master templates for the second replica molding. The method of 

fabrication of the second set of PDMS stamps was similar to that of the first set. A 

9:1(v/v) ratio of pre-polymer and curing agent was mixed and poured over the activated 

PDMS templates, followed by degassing and curing in the oven at 85
o
C for 1h. The 

second PDMS layer was peeled off from the PDMS template once it cooled down. The 

obtained PDMS templates were evaluated under ESEM (figure 3.26). The nanopores 

produced have a depth and a diameter of 200 nm of 135-150 nm, and the micropores 

have a depth and a diameter of 0.9-1.2 nm and 1.3 µm respectively. The results show 

that in terms  
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Figure 3.26: ESEM images of PDMS stamps with a) nano pores and b) micro pores. 

 

of the pore diameter and height, the produced PDMS stamps are a good replication of 

master template used. 

iii. Soft lithography of planar SU-8 

Nanometric and micrometric structuring of planar SU-8 surfaces was accomplished by 

embossing the PDMS stamps patterned with pores and pillar on to the SU-8 surfaces.  
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Figure 3.27: Schematic of structuring of planar SU-8 surfaces using PDMS stamp.  

 

Figure 3.27 shows how planar SU-8 surface was structured with pillars and pores using 

PDMS stamp. At first, using spin coating the cleaned substrates were coated with SU-8 

(figure 3.27i). Afterwards, the resist-coated substrate was kept on a hotplate and the 

PDMS stamp was pressed against the SU-8 surface (figure 3.27ii). Once the SU-8 was 

baked enough, the substrate removed from the hot plate and the PDMS stamp was 

peeled off (figure 3.27iii). Hence planar SU-8 surfaces with nanometric and 

micrometric pores and pillars were achieved (figure 3.27iv). 

We have used silicon wafers as the substrate. Initially the substrates were cleaned using 

piranha solution and then dried at 180 
o 

C for 40 min. Subsequently, 1ml of SU-8 was 

dispensed on to the cleaned substrates by spin coating. Subsequently, the substrates 

were kept on the hotplate set at room temperature and then the PDMS stamp with pillars 

was placed over the SU-8 surface. Simultaneously, to press the PDMS stamp against the 

SU-8 surfaces well enough, a high pressure was applied on to the PMDS by keeping a 

metal block of approximately ~1Kg on the top of the stamp. These substrates (with the 
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metal block on PDMS) were then baked at 65
o
C for 2 min. followed by baking at 95

o
C 

for another 3 min. At a shorter baking time than this, SU-8 solvent was not dried enough 

to accomplish the structuring, rather it retained in its liquid nature. In such a case, 

during peeling off of the PDMS stamp SU-8 was sticked on to the stamp surface as it 

was in liquid form.  

After the baking, using a tweezers the PDMS stamp was peeled off from the SU-8 

surface to release porous SU-8 surfaces. Afterwards, the obtained SU-8 structures were 

exposed to UV light so that the polymer surface remains unaltered during further 

experimental. 

Structural characterization of fabricated SU-8 structures was performed using ESEM. 

The ESEM images of SU-8 nanopores and SU-8 micropores are shown in figure 3.28. 

The images verify the successful replication of featured patterns of master template on 

SU-8 surface. The produced SU-8 nanopores have a depth and diameter of 150 and 160 

nm respectively. Likewise, the microporous SU-8 surfaces have pores having a depth 

and diameter of 0.9 and 1.3 μm respectively. In terms of geometry, the results show that 

the fabricated SU-8 surfaces retained the order, shape, and size of the PDMS stamps 

without any significant structural deformation.  
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Figure 3.28: ESEM images of SU-8 (a and b) nanopores and (c and d) micropores.  

 

Afterwards, SU-8 surfaces with micropillars and nanopillars were achieved with 

microporous and nanoporous PDMS stamps respectively. The structuring procedures to 

obtain SU-8 nano- and micropillar surfaces were same as in the case of structuring of 

porous SU-8 surfaces. The SU-8 structured obtained were analyzed using ESEM. The 

ESEM images of SU-8 nanopillars and SU-8 micropillars are shown in figure 3.29.  
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Figure 3.29: ESEM images of SU-8 (a and b) nanopillars and (c and d) micropillars.  

 

As in the case of SU-8 nanoporous and microporous surfaces, here also a successful 

replication of featured patterns of master template on SU-8 surface was achieved. The 

nanopillars have a height of 190 nm and a diameter of 150-175 nm. On the other hand 

the produced micropillars have a height of 1.3 μm and diameter of 0.8-1 μm.  

iv. Hybrid lithography of SU-8 

Figure 3.31 depicts schematically the procedure to obtain hierarchical SU-8 patterning 

with hybrid lithography that combine photolithography and soft lithography. The 
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fabrication of SU-8 macropillars surfaces decorated with porous and pillars comprises 

of two steps; (figure 3.30i) soft lithography to obtain the porous and pillar pattern on a 

spin coated SU-8, and (figure 3.30ii) photolithography of the porous and pillar SU-8 

surfaces to fabricate SU-8 macropillars. Thus by combining soft lithographic technique 

with photolithography, the top of the SU-8 macropillar with diameter in the order of 8 

μm were decorated with nanometric and micrometric sized pores and pillars are 

produced (figure 3.30iii).  

Initially, the patterning of polymer surface with micropores and nanopores were 

performed as explained in the section 3.2.3 (iii). Once obtaining the porous SU-8 

surfaces, SU-8 macropillars were fabricated using photolithography as described in 

section 3.2.1. The difference between the fabrication of bare SU-8 macropillars and 

decorated macropillars is that, unlike in the first case, here the soft baking is performed 

with a PDMS stamp on the SU-8 surface to produce porous SU-8 surfaces. After the 

 

Figure 3.31: Schematic diagram representing the structuring of SU-8 macropillar surfaces with pores and 

pillars.  

 

UNIVERSITAT ROVIRA I VIRGILI 
LITHOGRAPHIC MICRO- AND NANOSTRUCTURING OF SU-8 FOR BIOTECHNOLOGICAL APPLICATIONS 
Pinkie Jacob Eravuchira 
Dipòsit Legal: T 773-2015 



 

Micro- and Nanostructuring of SU-8 Surfaces Using Lithographic Techniques | 83 

 

 

soft bake, the stamp was peeled off. Now the SU-8 surface is patterned with pores on it. 

After peeling off the PDMS stamps, the baked samples were then exposed under UV 

light through chromium mask. The exposed surfaces were then baked (PEB) and then 

developed. The conditions and parameters of UV exposure, post exposure bake and 

development remained the same as for SU-8 macropillar fabrication. 

The produced SU-8 surfaces were checked by ESEM (figure 3.31). The images shows 

that SU-8 macropillars with micrometric and nanometric porous surfaces could be 

successfully fabricated using a combination of soft lithography and photolithography. 

But it was observed that the structure of the SU-8 macropillars fabricated on a porous 

SU-8 surface is different than those SU-8 macropillars produced on planar SU-8 

surfaces using photolithography (section 3.2.1). Contrary to the latter case, here the 

macropillars produced do not have smooth side walls. This could be because; the 

presence of pores on the SU-8 surfaces might have caused higher diffraction of light 

during the UV exposure through the chromium mask. Nevertheless, we were able to 

produce SU-8 macropillars patterned with an ordered distribution of hierarchical pores 

on the macropillar surfaces. 
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Figure 3.31: ESEM images of SU-8 macropillars with (a and b) nanopores and (c and d) micropores.  

 

Structuring of SU-8 macropillars with nanopillars and micropillars were carried out as 

explained in the section above. Here we have used nano-porous and micro-porous 

PDMS stamps to produce hierarchical pillars on the SU-8 surfaces. Other than using 

different the PDMS stamps, the method of fabrication of SU-8 macropillars patterned 

with hierarchical pillars remained the same as in the above case. The fabricated SU-8 

samples were viewed under ESEM (figure 3.32). The nanopores and micropores have a 

diameter around 190 nm and 1.2 μm respectively. 
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Figure 3.32: ESEM images of SU-8 macropillars with (a and b) nanopillars and (c and d) micropillars.  

 

The results show that using a combination of soft lithography and photolithography, 

SU-8 macropillars surfaces patterned with nanopillars and micropillars can be achieved. 

As seen above, the shape of the SU-8 macropillars was observed to be not so smooth. 

However, the nanopillars and micropillars on the SU-8 macropillar surfaces retained the 

geometry as that of the corresponding PDMS stamps used. The nanopillars and 

micropillars have a height about 130-140 nm and 0.7-0.8 μm respectively.  
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Chapter 4  

Application of Micro- and 

Nanostructured SU-8 for Immunosensing 

The detection and quantification of biomolecules is of great interest in many fields 

mainly diagnostics, health care monitoring, environmental field monitoring, and drug 

development. Among bio-detection techniques, an immunosensor is a compact 

analytical device which utilizes the immunochemical affinity of an antigen for its 

corresponding antibody. Depending on the detection principle immunesensors can be 

classified as electrochemical, optical, or electrical. 

Although, at present the most widespread bio-detection techniques comprise of labeling 

of the biomolecules, great effort is being applied to develop label-free bio-detection 

techniques [Fang 2011, Dong 2010]. Unlike label-free biosensing technique, label-based 

technique involves time consuming and tedious processing for labeling of samples prior 

to the measurements [Lichlyter 2003]. Thus the diverse advantages of label-free 

biosensing techniques such as ease of sample preparation, ease of handling, sensitivity, 

and cost effectiveness make them preferred over its counterpart, label-based techniques. 
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Referring to the label-free biosensing methods, a wealth of optical and photonic 

techniques is available. Surface plasmon resonance [Sipova 2013, Huang 2009], 

localized SPR [Guo 2012], interferometers [Peter 2011, Kyu-shil 2010], ring resonators 

[Muhammad 2013, Yuze 2011] and fiber-optic probes [Sai 2010] are couple of the well-

known opto-electronic label-free sensing methods whose operating principle is related 

to the high sensitivity of evanescent waves to the surface changes of the measuring 

platform.  

Recently, studies shows that photoluminescent based biosensors have drawn much 

attention [Budz 2010, Duplana 2011, Viter 2012]. Although SU-8 finds various 

applications in biotechnology field, the high photoluminescence it has in the near UV 

and visible wavelength limits its use in most of the biological applications, especially 

for studying fluorophore tagged analytes. Lately, studies have reported on the reduction 

of photoluminescence of SU-8 by coating gold nanoparticles on SU-8 surface [Cao 

2012] for biological applications.  

In this work we try to exploit the photoluminescence property of SU-8 to fabricate a 

cost-effective and reliable tool for immunosensing. We study the possibility of using 

SU-8 as a platform for label-free immunosensing, where the transduction mechanism is 

the reduction in photoluminescence of SU-8 upon the attachment of an analyte to a 

functionalized sensing surface. The sensing mechanism is demonstrated using a model 

antigen-antibody pair (aIgG and IgG from goat serum), where sensor selectively detect 

IgG. One of the objectives of our work is to prove that the reduction of SU-8 

photoluminescence with the binding of analyte on to their ligands immobilized on the 

SU-8 structure can be a tool for sensing and in particular for inmunosensing. 
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When it comes to the structure of a sensing platform, micrometric or nanometric 

structuring of the active area of biosensors has proved to be a method that improves the 

sensing efficiency [venkataramani 2006, Holgado 2010]. The second objective of this 

work is to evaluate the ability of the various structured SU-8 sensing platforms for IgG 

sensing. The structures include SU-8 macropillars, micropillars, nanopillars, 

micropores, nanopores and finally SU-8 macropillars decorated with nanometric and 

micrometric pillars and pores on its top surface. All these structures were fabricated as 

described in chapter 3.  

The first section of this chapter (4.1) explains on the experimental procedures of 

functionalization of the SU-8 surfaces with the aminosilanes and glutaraldehye followed 

by the immobilization of the antigen-antibody pair on to the functionalized surfaces. 

Subsequently, section 4.2 present the results on the photoluminescent (PL) 

measurements carried out on planar and macro-structured SU-8 surfaces. Afterwards, 

section 4.3 shows the PL measurements performed on hierarchical structured SU-8 

surfaces, which includes porous and pillar SU-8 surfaces. Finally, in 4.4 a comparison 

study on the SU-8 PL reduction on all types of SU-8 surfaces we have studied is 

presented. 

4.1. Surface modification of SU-8 surfaces 

As mentioned above, in our study the ability of SU-8 surfaces to function as 

immunosensors is proved by the selective detection of anti-immunoglobulin G (IgG) by 

an immunoglobulin G (aIgG) functionalized SU-8 surface. In order to show the ability 
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of SU-8 to act as an immunosensor, it is necessary to provide binding sites for the 

analyte (IgG). Consequently, the surface of SU-8 must be first functionalized with the 

corresponding binding molecule, aIgG. In order to immobilize aIgG on the SU-8 

surface, this must be properly functionalized. In this section, this process of 

functionalization is described and its effect on the PL of the SU-8 is studied. 

The immobilization of biomolecules on to any surfaces is promoted by either a physical 

adsorption or a covalent bonding between the samples and the substrate surfaces. A 

mere physical adsorption of biomolecules on any surface is easy to break and thus is 

easy to remove the molecules that are physically adsorbed on to the sample surface. 

Therefore, due to the increased adhesion stability of biomolecules on to the polymer 

surface always a covalent bonding is preferred over a physical adsorption. Studies show 

that a covalent binding of biomolecules on to the SU-8 surface can be obtained by 

modifying the SU-8 surface to have one of the functional groups, such as CHO, or SH 

[Deepu 2009, Joshi 2007a, Tao 2008].   

Therefore in our work, in order to obtain a covalent bonding between aIgG and SU-8, 

SU-8 surfaces were functionalized with 3-aminopropyltrimethoxysilane (APTMS) and 

glutaraldehyde (GTA) before the IgG immobilization.  

In this part the first subsection (4.1.1) explains on how the functionalization of SU-8 

surfaces with APTMS and GTA was carried out. Following this, in the section 4.1.2, the 

results of fourier transform infrared spectroscopy measurements are provided, which 

prove the presence of APTMS and GTA on SU-8 surfaces. The subsequent section 

(4.1.3) describes on the method of immobilization of aIgG and IgG on to APTMS-GTA 

functionalized SU-8 surfaces. To observe the distribution of aIgG-IgG over the SU-8 
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surfaces, fluorophore tagged analyte was immobilized on to SU-8 macropillars and were 

observed using fluorescent microscope. Section 4.1.4 shows the microscopic image of 

aIgG-IgG immobilized SU-8 macropillars.  

4.1.1. Functionalization of SU-8 surfaces with APTMS and GTA 

All the SU-8 surfaces we have used in this work where functionalized with APTMS and 

GTA as described here. Initially, to promote the adhesion of aminosilane to the epoxy 

group, SU-8 samples were hydroxylated with 0.1M NaOH and 1M HCl for 30 s. each. 

The hydroxylation was performed as follows. At first, SU-8 samples were dipped in 

NaOH for 30 s. followed by dipping it in HCl solution for 30 s. and then washed with 

DI H2O and ethanol and then dried with nitrogen. This surface pretreatment modifies 

the epoxy group and generates hydroxyl groups (-OH) on SU-8 surface.  

 

 

 

 

 

 

 

Figure 4.1: Digital image of the set-up used for silanization. 
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After the hydroxylation, to obtain the amine groups on the SU-8 surfaces, the 

hydroxylated SU-8 samples were treated with APTMS and GTA [Joshi 2007a]. 

Initially, silanization of SU-8 was carried out with APTMS for 2 hr. in nitrogen 

atmosphere. The silanization was performed in an air tight homemade chamber (figure 

4.1). The chamber has a lid in the top side, and the middle of this lid is equipped with a 

rubber stopper having a diameter of approximately 0.5 cm. Apart from the lid, the box is 

facilitated with a connection tube to which the nitrogen supply can be connected.  

After preparing the setup, the hydroxylated SU-8 samples were placed in a glass beaker 

along with a magnetic stirrer. The beaker was then kept inside the chamber and then the 

lid was closed tightly. Then, in order to create an inert atmosphere, nitrogen (2 sccm) 

was allowed flow inside the chamber for 10-12 min.  

Afterwards, 20 ml ethanol (99.99%) and 50 μl APTMS were poured into the beaker 

containing samples. The samples were then allowed to immerse in 2.5% (v/v of APTMS 

and ethanol) of silane solution mixture for 2 h. The solution was stirred continuously all 

through the reaction. This surface treatment renders NH2 group on the hydroxylated SU-

8 surfaces (figure 4.2c). 

After 2 h., to remove the unbounded silane molecules on the SU-8 surfaces, the 

silanized samples were rinsed with ethanol and water for 5 min. each.  To remove the 

moisture content from the cleaned samples, they were then dried at 110 
o 

C for 10 min. 

in an oven. Finally, to obtain the aldehyde group on the silanized SU-8 surface, the 

dried APTMS-modified SU-8 samples were treated with 10% GTA (anhydrous 10% in 

ethanol) for 1 h. at room temperature (figure 4.2d). This was done by immersing the 

silanized SU-8 surfaces in GTA solution. After 1 h., the excess amount of GTA was  
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Figure 4.2: Schematic representation of the functionalization of SU-8 surfaces. (a) Lithographically 

produced SU-8 surface, (b) SU-8 surface after hydroxylation, (c) SU-8 surface functionalized with APTMS, 

and (d) functionalization with GTA.  

 

removed by washing the samples with ethanol followed by water. This surface 

treatment helps to activate the SU-8 surfaces to achieve a strong covalent bond between 

SU-8 surfaces and aIgG. Figure 4.2 shows a schematic representation of the surface 

modification of SU-8 with APTMS -GTA. 

4.1.2. Fourier transform infrared spectroscopy - Attenuated 

Total Reflectance (FTIR-ATR) 

To prove the presence of APTMS and GTA, the functionalized surfaces were assessed 

using FTIR-ATR. The ATR measurements were carried out using an FTIR spectrometer 

(Bruker Vertex 70) equipped with tungsten and Globar sources and with a total internal 

reflection accessory. The measurements were done with a scanner velocity of 2.5 kHz 
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and an aperture size of 3 mm. The spectra were taken in the range of wavenumbers 

between 800 and 2000 cm
-1

 with a resolution of 4 cm
-1

.    

The ATR spectra of bare SU-8, SU-8 functionalized with APTMA and finally APTMS-

GTA modified SU-8 are shown in figure 4.3. The FTIR measurements were performed 

on SU-8 coated on glass substrate and glass was used as a background for the 

measurements. The red, blue, and green spectrums represent the ATR spectra of bare 

SU-8, SU-8 functionalized with APTMS, and finally APTMS-GTA modified SU-8 

surface respectively. Many functional groups which are present in SU-8 are also present 

in the used linkers (APTMS and GTA). However, there are certain functional groups 

that are specific for SU-8, APTMS and GTA. Therefore it is possible to distinguish the 

vibrational modes corresponding to APTMS and GTA, and thus confirming the 

functionalization achieved.  

Comparing the spectra of bare SU-8 and SU-8 modified with APTMS helps to notice 

the additional peaks corresponding to vibrational modes from amine group on the 

APTMS-SU-8 spectra. The peaks at 1640 and 1560 cm
-1

 are assigned to bending modes 

vibrations of –NH2 in APTMS. The vibrational peak from –C-N- is observed at 1320 

cm
-1

. The presence of APTMS was further confirmed with the vibrational peaks at 3285 

and 3350cm
-1

 which is in the higher wavenumber region. These bands are attributed to –

NH2 vibration. After further modification of APTMS with GTA, changes were appeared 

in the spectrum. The bending vibrations at 1720 cm
-1

 show the presence of aldehyde 

group (-CHO) in the GTA modified SU-8 surface. Thus the FTIR-ATR spectra confirm 

the presence of –NH2 and –CHO bands which were obtained with the functionalization 

of hydrolyzed SU-8 surfaces with APTMS and GTA respectively. Thus using FTIR- 

UNIVERSITAT ROVIRA I VIRGILI 
LITHOGRAPHIC MICRO- AND NANOSTRUCTURING OF SU-8 FOR BIOTECHNOLOGICAL APPLICATIONS 
Pinkie Jacob Eravuchira 
Dipòsit Legal: T 773-2015 



 

Application of Micro- and Nanostructured SU-8 for Immunosensing | 95 

 

 

 

Figure 4.3: ATR spectra of bare SU-8 (red), APTMS (blue) and GTA (green). 

 

ATR the presence of specific chemical groups after functionalization of sample 

substrates with APTMS and GTA were identified. 

4.1.3. Immobilization of aIgG and IgG on surface-modified SU-8  

Functionalization of SU-8 with APTMS and GTA was performed to provide a covalent 

bonding between aIgG and SU-8 surfaces. After the functionalization of SU-8, aIgG 

was immobilized on to those modified SU-8 surfaces. aIgG functions as the binding site 

for the analyte, IgG, and the antibody-antigen interaction takes places during the 

immobilization of IgG on to SU-8 surfaces with aIgG. This aIgG-IgG immobilization 

step is performed to prove the ability of SU-8 to functions as an immunosensor. 
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Both antigen and antibody were in liquid form. In order to produce sample (aIgG and 

IgG) solutions with various concentrations, they were diluted in phosphate buffered 

saline (PBS, pH 7.4) solution. Once the protein samples were prepared, there were 

allowed to immobilize on to the APTMA-GTA functionalized SU-8 surfaces. The 

procedure of aIgG and IgG immobilization on all the SU-8 surfaces (planar and 

hierarchical SU-8) were the same in our studies.  

Initially aIgG was immobilized on to the APTMS-GTA functionalized SU-8 surfaces. 

The immobilization was achieved by incubating aIgG on SU-8 surfaces for 1 h. in 

humid atmosphere at room temperature (figure 4.4a). In order to create a humid 

atmosphere, water wetted tissue papers were spread over in a petri dish. Then the 

functionalized SU-8 surfaces were placed on the top of the tissues. Subsequently, aIgG 

was dropped all over the sample surface with the help of a pipette. And finally the petri 

dish was covered with another dish having water wetted tissues and left it unmoved for 

an hour.  

After incubating the samples with the antigen for 1 h., the unbounded molecules were 

removed by rinsing the aIgG functionalized SU-8 surfaces with a solution mixture of 

5% of Tween 20 in PBS. Following this, the samples were gently rinsed with water and 

then dried with air. 

Once the SU-8 was functionalized with the aIgG, to activate the antigen-antibody 

interaction the analyte (IgG) was immobilized on to the antigen coated SU-8 surface 

(figure 4.4b). This immobilization step is where the selective binding of IgG occurs. 

The immobilization of IgG was carried out in the similar fashion as for the aIgG. It was 

accomplished by incubating IgG on aIgG coated SU-8 surfaces for 1 h. in humid  
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Figure 4.4.: Schematic representation of the immobilization of (a) aIgG, and (b) IgG, on to APTMS-GTA 

functionalized SU-8 surface.    

atmosphere at room temperature. Then the surface was thoroughly rinsed with the 

solution mixture of PBS and Tween 20, followed by water and then dried with air. 

Figure 4.4 shows a schematic representation of the immobilization of aIgG and IgG on 

to SU-8 surface modified with APTMS-GTA. 

4.1.4. Labelling of IgG with Rhodamine  

Furthermore, to visualize the distribution of biomolecules immobilized on SU-8 

surfaces using fluorescence microscopy, rhodamine (rhodamine b isothiocyanate mixed 

isomers) labeled IgG was immobilized on the SU-8 macropillars. IgG was immobilized 

on to aIgG coated SU-8 surfaces. Labelling of IgG with rhodamine was performed as 

follow. Initially a mixture of 5 mg/ml of rhodamine in dimethyl sulfoxide (DMSO) 

solution was prepared by dissolving 5 mg of rhodamine in 1 ml of DMSO solution. In 
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order to achieve the complete dissolution of rhodamine in DMSO, the solution mixture 

was stirred with the help of a magnetic stirrer for 5 min. Subsequently, 1 mg/ml of IgG 

in PBS was prepared. Then, 100 µl of fluorophore solution was added drop by drop to 1 

ml of IgG solution. Mixture was left to stir until they are miscible. After obtaining the 

flurophore labeled IgG solution, they were deployed on to the aIgG functionalized SU-8 

surfaces. The immobilization was carried out in humid atmosphere for 1 h at room 

temperature.  

Fluorescence microscopic image were obtained using a NIKON Eclipse TE 2000 

(Melville, NY). The images were captured with inverted microscope equipped with a 

40x (Nikon Plan Fluor, N.A 1.30) lens. The images were excited with UV filter at a 

wavelength of 543 nm and the emission was at 550-650 nm for rhodamine labeled 

protein samples.  The images were processed using NIS elements software [Nikon 

imaging software]. Figure 4.5 depicts the fluorescence image.  

The fluorescence images were taken after the immobilization of rhodamine labeled IgG 

on aIgG functionalized SU-8 macropillars on silicon substrate. The results show that the 

biomolecules are uniformly distributed over the macropillars without any aggregation. 

Furthermore the images prove that the molecules are attached on to the SU-8 surfaces 

and not on the substrates. 
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Figure 4.5: Fluorescence image of aIgG-IgG immobilized SU-8 macropillars.  

4.2. Immunosensing by reduction of photluminescence in 

SU-8 planar and macropillar surfaces 

In this section the experiments undertaken to demonstrate the possibility of using the PL 

of SU-8 as the basis of an immunosensor are described. The main goal of the 

experiments is to evaluate the decrease in the PL from a SU-8 planar or macro-

structured film after each step of functionalization and after the attachment of aIgG to 

IgG, which is the step in which the sensing is performed. In order to show the ability of 

the functionalized SU-8 as immunosensor, PL spectra of SU-8 with APTMS-GTA 

functionalization, with aIgG immobilization and with IgG immobilzation were 

measured. The change in PL of SU-8 with the selective binding of IgG on to aIgG 

immobilized SU-8 surfaces is the basic principle of this optical immunosensor. The 

measurements were performed on two types of SU-8 surfaces; planar and macropillars 

SU-8 surfaces. Initially all the PL measurements were performed on planar SU-8 

surfaces, which served as the reference measurements. The study was then extended by 
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measuring the PL of macro-structured SU-8 sensing platforms. These measurements 

give an insight to the effect of reduction in PL with 3-D structuring of the sensing 

platforms.  

Apart from studying the effect of structuring of sensing platform, we have compared the 

dependence of sensor substrate for sensing ability by fabricating SU-8 surfaces on two 

types of substrates, silicon wafers and glass slides. The fabrication of all the SU-8 

structures is explained in section 3.2. 

Section 4.2.1 presents the PL measurements on planar and macropillar SU-8 surfaces 

after the surface modifications. Following this, in 4.2.2 a comparison study on the 

change in PL of planar and macropillar SU-8 surfaces are presented. Finally section 

4.2.3 presents the sensing response of SU-8 macropillar surfaces at various IgG 

concentrations.  

4.2.1. Photoluminescence reduction on planar and macropillar 

SU-8 surfaces after each surface treatment 

The PL measurements were performed using a fluorescence spectrophotometer (Photon 

Technology International Inc, Spain), which has a Xe lamp as a light source. An 

excitation slit width of 5 nm and emission slit width 2 nm was used for the 

measurements. All the measurements were performed at room temperature. 

A set of three SU-8 planar and macropillar sample surfaces each on silicon and glass 

substrates were investigated. The concentration of antigen (aIgG) and antibody (IgG) 

was 80 μg/ ml in PBS each in both the measurements. In all the cases, the PL 
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measurements were taken on bare SU-8 surface, APTMS-GTA functionalized SU-8 

surface, aIgG immobilized SU-8 surface, and finally on SU-8 surface after the aIgG-IgG 

interaction. 

 

   

  

Figure 4.6: PL spectra of planar (a and b) and SU-8 macropillars (c and d) after each surface treatment. (a 

and c) corresponds to the PL spectra of SU-8 on glass substrates and (b and d)  corresponds to those on 

silicon substrates. 
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At first, the PL measurements were performed on planar SU-8 surfaces. The PL spectra 

of planar SU-8 on glass and silicon substrates at various stages of surface modifications 

are shown in figure 4.6 (a and b). The spectral results show that after each surface 

modification a gradual decrease in the SU-8 PL occurs.  

After obtaining the PL spectra of planar SU-8, to study the dependence of change in PL 

with the surface structuring of the active area of the sensing platform, further PL 

measurements were carried out with SU-8 macropillar surfaces. The fluorescence 

spectra of macro-structured SU-8 surfaces on glass and silicon substrates after each 

surface modification is shown in figure 4.6 (c and d). The red and blue lines correspond 

to bare SU-8 surface, and APTMS-GTA modified SU-8 surface modified respectively. 

The pink and green lines represent the PL spectra of SU-8 surface immobilized with 

aIgG and IgG respectively. 

The results show that at an absorption wavelength of 325 nm, SU-8 shows a peak 

photoluminescence emission at a wavelength around 380 nm. Besides, from figure 4.6 it 

can be observed that both planar and macropillar surfaces show a similar fashion of 

change in PL with each of the surface modification steps. In both cases a gradual 

decrease in the SU-8 PL is observed.  

Besides, the specificity of aIgG was confirmed by measuring the PL spectra of SU-8 

surface after immobilizing bovine serum albumin (BSA) on to an aIgG functionalized 

SU-8 surface. BSA solution of 80 μg/ ml in PBS was incubated on to the SU-8 surface 

immobilized with aIgG in a humid atmosphere at room temperature for 1 h. The PL 

intensity of the SU-8 surface before and after immobilizing BSA remained unaltered.  
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4.2.2. Comparison of photoluminescence of SU-8 planar and 

macropillar surfaces  

Since the observed PL reduction is systematic and appears in all cases, especially in the 

detection step, permits us to define a metric called R (equation 4.1). The metric R (%) 

stands for the percentual reduction in the SU-8 PL after the attachment of aIgG to IgG. 

Imax, aIgG and Imax IgG represents the maximum PL intensity of SU-8 after aIgG and IgG 

immobilization respectively. 

 

                   (4.1) 

The bar graph in figure 4.7 depicts the comparison of PL reduction rate when planar and 

macro-structured sensing platforms are used. Furthermore, the comparison studies on 

the dependence of R with the two types of substrates (glass and silicon) used is shown 

in this bar graph.  

PL reduction after the aIgG- IgG interaction on each types of sensing platforms (planar 

and macropillars on both substrates) are indicated in the graph. The results show that the 

amount of reduction is different for different substrates (glass and silicon) and different 

for both planar surfaces and macropillar structures. 

R %    1 0 0  

I m a x , a I g G 
 I m a x , I g G 

I 
m a x , a I g G 
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Figure 4.7: Comparison of reduction in photoluminescence of planar and macro-structured SU-8 on both 

silicon and glass substrates.  

 

Planar SU-8 platforms on glass substrate gives an R value of 8%, while a macro-

structured sensing platform on glass substrates shows an R amount of 18%. Similarly, a 

planar and macro-structure sensing surface on silicon substrate gives an R of 10% and 

25% respectively. The above measurements on planar and macro-structured SU-8 

surfaces clearly show an increased rate of PL reduction with the macro-structuring of 

sensing platform. The R is around 50% higher when the sensing platform is patterned 

with macropillar array than when a planar surface served as the sensing surface. This 

fashion is observed on both glass and silicon substrates. Thus this study proves the 

dependence of sensitivity on the total active surface area of an immunosensor, and thus 

in turn it can be seen that the sensing efficiency can be increased by modifying the 
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active area by macro-structuring, without increasing the total dimension of the sensing 

surface.  

Furthermore, from the results on both planar and macro-structured SU-8 surfaces on 

silicon and glass substrates its can be concluded that the R is always higher when a 

silicon substrate is used. Thus it can be observed that he PL reduction rate is higher 

when the sensing surface is on silicon substrate than when on glass. This could be 

attributed to the higher reflection of silicon substrate than a glass substrate. So we can 

conclude that the use of silicon as a substrate for SU-8 permits a bigger sensitivity than 

using glass as a substrate. 

4.2.3. Sensing response with IgG concentration on SU-8 

macropillar surfaces 

The dependence of reduction in PL with varying the concentration of IgG on aIgG 

immobilized SU-8 macropillar surface was also studied. The measurements were done 

on SU-8 macropillar surfaces on glass and silicon substrates. An aIgG concentration of 

80 μg/ml in PBS was kept constant for all the measurements and four different 

concentrations of IgG such as 10, 20, 40 and 80 μg/ ml in PBS were used for the study. 

Figure 4.8 shows the dependence of R with varying IgG concentration on SU-8 

macropillars which are fabricated on silicon and glass substrates. The blue and red lines 

represent the R when silicon and glass substrates are used respectively.  
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Figure 4.8: Change in photoluminescence reduction with a varying concentration of IgG. 

 

The X-axis represents the concentration of analyte in µg/ml and the Y-axis represents 

the PL reduction rate in percentage. The results show that the R increases with the 

increase in IgG concentration. As the IgG concentration increases from 0-80 μg/ml, the 

R was correspondingly varied from 7.5% to 24.7% with an error ranging from 1.44% to 

0.67% on silicon substrate. Likewise, when the sensor substrate was glass the R was 

increased from 5.7% to 18.3 % within an error of 0.35% to 2.41%. Furthermore, it can 

be observed that both the substrates show a steeper slope at a lower concentration and a 

tendency to saturate at higher IgG concentrations. This pattern could be due to the 

unavailability of aIgG binding sites for IgG at higher concentrations. 
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4.3. Immunosensing by reduction of photoluminescence 

in SU-8 hierarchical structures. 

After demonstrating the possibility of immunosensing by SU-8 PL reduction, we have 

extended our studies to find the possibility of applying the same sensing principle to 

more complex SU-8 structures. The structures includes i) planar SU-8 surfaces 

patterned with nanometric and micrometric pillars, ii) planar SU-8 surfaces patterned 

with nanometric and micrometric pores, iii) SU-8 macropillars patterned with 

nanometric and micrometric pillars on it, and iv) SU-8 macropillars patterned with 

nanometric and micrometric pores on it. Thus this study gives an insight to the effect of 

reduction in PL with hierarchical 3-D structuring of the sensing platforms. The 

structuring of all these four types of surfaces were achieved using lithographic 

technique as introduced in chapter 3. 

Except the surface textures of the sensing platforms, the mode of preparation of the 

samples (functionalization and immobilization) and the experimental procedure 

remained the same as that of planar and macropillar SU-8 surfaces. This allow us to 

compare the results of these structures with the previous results (planar and macropillar 

SU-8). 

As an illustration of the PL measurements carried out for such samples, figure 4.9 

shows the PL spectra of SU-8 macropillar surfaces decorated with micropillars, and 

micropores after each surface treatments. The measurements included in figure 4.9 are 
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representative of all the set of PL spectra measurements, so it would be redundant to 

include all of them. 

At first, the PL spectra of planar SU-8 surfaces patterned with hierarchical pillars and 

pores were measured. The spectral pattern was similar to that of planar and macropillar 

SU-8 surfaces. In all the four cases the maximum PL was around 380 nm and PL 

reduction was observed with each surface treatment. 

After studying planar surface patterned with pores and pillars, we have investigated the 

PL reduction of SU-8 macropillar surfaces structured with nanopores, micropores, 

nanopillars and micropillars. Interestingly a shift in the PL maximum was observed in 

the PL spectra of hierarchically structured SU-8 macropillar surface. Instead of 380 nm, 

the PL maximum was observed at a wavelength around 420 nm. Nevertheless, the 

spectra show that in all the four cases the PL of SU-8 was decreased with each surface 

modification.  

    

Figure 4.9: Photoluminescence spectra of SU-8 macropillars surfaces patterned with, (a) micropillars, and 

(b) micropores. 
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This patterned was observed in both nanometric and micrometric structures. 

Furthermore, tough not so higher, it was observed that the reduction rate of a 

microstructures sensing surface is always higher than its nanostructured counterpart. 

This pattern was the same for both porous and pillar surfaces.  

A summary of the PL reduction (R), which is the measure used for IgG detection, with 

various SU-8 structuring is shown in the figure 4.10. The structures includes planar SU-

8, SU-8 macropillars, planar SU-8 patterned with micropillars, nanopillars, micropores, 

and nanopores, and finally, SU-8 macropillars patterned with micropillars, nanopillars, 

micropores, and nanopores.  

 

 

Figure 4.10: Summary of measured PL reduction, R, for the different kinds of SU-8 surfaces. 
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It can be seen from the graph that in all the cases a structured SU-8 surface gives higher 

PL reduction than a planar SU-8 surface. The lowest R was given by planar SU-8 

surfaces and the highest R was obtained with macropillar SU-8 surfaces patterned with 

micropillars.  

When comparing the macro-structured surfaces, a higher reduction is shown by 

macropillars patterned with micropillars (30.5%), and the lowest reduction is shown by 

bare macropillars which is 25.3%.  

When it comes to planar SU-8 surfaces structured with pores and pillars, the reduction 

is bigger for surfaces patterned with pillars than with pores. SU-8 surfaces with 

nanopillar and micropillars give a reduction rate of 27.5% and 28.7% respectively, 

while nanoporous and microporous SU-8 surfaces shows an R value of 13.6% and 

12.1% respectively.  

Further, when comparing all the structured surfaces, SU-8 surfaces patterned with 

macro-, micro- and nanopillars show a higher PL reduction than a micro- and 

nanoporous SU-8 surface. This fashion was observed also in the case of SU-8 

macropillars patterned with pores and pillars, where the PL reduction is bigger for pillar 

surfaces than for its counterpart porous surfaces.  

SU-8 macropillars with micropillar and nanopillars have an R of 30.5% and 28.3% 

respectively, and SU-8 macropillars with micropores and nanopores shows an R of 

14.3% and 13.51% respectively. Thus from all the above results, it can be observed that 

the highest R was shown by SU-8 macropillars patterned with micropillars and 

nanopillars.  
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All these measurements are a proofs of the concept that R can be used as a sensing 

transduction parameter for a label-free optical immunosensing. Moreover, the results 

reported here help also to understand the effects of hierarchical structuring the SU-8 

surfaces in their sensing performance. 
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Chapter 5 

Laser Lithographic Patterning of Silicon 

Wafers 

The works discussed in this chapter were done in collaboration with two of the research 

groups (Minos and Nephos) among EMaS. The main objective of these works is to 

investigate on how lithography is a useful tool in different applications developed 

within the other two groups and EMaS. During the collaboration, we have performed 

the laser lithographic patterning of silicon wafers to produce various structures such as 

interdigital electrodes and inverted micropyramid arrays. The produced structures were 

then modified and used for various applications, such as for gas sensing and in 

biotechnology. Description on the patterning of silicon wafers and the corresponding 

applications of the patterned structures are given in this chapter. 

2D or 3D structures of silicon, polymer, or alumina find wide range of application in the 

MEMS, or biotechnology, and so structuring of such patterns with maximum precision 

is always important. Lithographic structuring (ex: photolithography, e-beam 
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lithography, or laser lithography) is one of the widely used methods in MEMS and 

biotechnology. Among this, laser lithography is one of the lithographic techniques 

which can draw any custom patterns with resolution down to few nanometers.  

The structure of this chapter is as follows; the first section (5.1) describes on the 

fabrication of platinum interdigital electrodes on SiO2 wafer and their application to gas 

sensing. The second section (5.2) explains the fabrication of inverted micropyramid 

arrays using laser lithography followed by electrochemical etching. Following this, a 

short description on the two applications of the produced micropyramid structures is 

reported; 1) production of plamonic supercrystal arrays by using inverted 

micropyramids as a template, and 2) fabrication of silicon dioxide micopillars from 

inverted micropyramids and their application in biotechnology. 

5.1. Fabrication of platinum interdigital electrodes and 

their application for gas sensing. 

The detection of gases, both toxic and non-toxic, is important for monitoring and 

maintaining a safe and healthy condition in industries and domestic areas, and for the 

detection of gas leakages. Gas detection is achieved using gas sensors, which detects the 

gases in its vicinity. A gas sensor interacts with the gases in a particular area and 

measures the gas concentration. Depending on the mode of detection, there are different 

types of gas sensor such as resistance based gas sensors, capacitance based and acoustic 

wave-based gas sensors, optical gas sensors, and electrochemical gas sensors.  
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Due to the low detection limit, high sensitivity to different gases, compact size and low 

cost of fabrication, metal-oxides gas sensors are relevant in gas sensing technologies. 

Among the metal oxides, due to its high sensitivity to gases such as NO2, O3, H2, H2S, 

and Ethanol, tungsten trioxide (WO3) has gained much attraction recently [Stoycheva 

2010, Vallejos 2008, Labidi 2005, Hoa 2013, Ahsan 2012].  

Referring to the fabrication of electrodes of gas sensors, screen printing is one of the 

most widely used techniques for electrode fabrication [Annanouch 2013, Murugappan 

2011]. However, one of their major difficulties is that, it is not possible to obtain 

electrodes with smaller widths and a smaller separation between the adjacent electrodes. 

In this work we show that the laser lithographic technique is a good alternative to 

pattern high resolution electrodes with smaller dimensions (width and separation). 

Using this technique we were able to produce interdigital electrodes with a width of 10 

µm and a separation (between the adjacent electrodes) of 5 µm on SiO2 wafers. After 

patterning the electrodes, using sputtering technique followed by lift-off, we were able 

to produce platinum interdigital electrodes. Subsequently WO3 nanoneedles were 

deposited over platinum interdigital electrodes, and the fabricated sensor was tested for 

ethanol sensing.  

The first part of this section (5.1.1) presents the experimental procedure on the 

fabrication of platinum interdigital electrodes using laser lithographic and sputtering 

techniques. The following section (5.1.2) gives a short description on the deposition of 

WO3 over the fabricated electrodes and the characterization results of the obtained 

sensor for ethanol gas sensing. In this collaboration, the fabrication of platinum 

interdigital electrodes using lithographic patterning followed by sputtering and lift-off 
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was done in the framework of this Ph.D., and the deposition of WO3 nanoneedles and 

gas characterization was carried out by Minos group. 

5.1.1. Fabrication of platinum interdigital electrodes  

Fabrication of platinum electrodes was accomplished in three steps: i) preparation of 

SiO2 substrates by thermal oxidation, ii) patterning the design using laser lithography, 

and finally iii) the producing platinum electrodes using sputtering followed by lift-off. 

i. Substrate preparation 

Initially silicon wafers were oxidized using thermal oxidation to produce silicon dioxide 

wafers. At first the silicon wafers were cleaned with acetone, ethanol, and water for 5 

min. each. Then the oxidation of those cleaned wafers was carried out for 10 hours at 

1100 
o
C in a tubular furnace. Initially the furnace was at room temperature and then the 

temperature was increased to 1100 
o
C with a ramp up rate of 15

o
C/min. After 10 h. at 

1100 
o
C, the furnace was then brought down to room temperature with a ramp down 

rate of 20 
o
C/min. The oxidized wafers were then prepared for lithographic patterning.  

ii. Laser lithographic patterning of interdigital electrodes 

As described in section 3.2.1, the patterning of photoresist using laser lithography 

involves few steps such as the deposition of the photoresist on wafer by spin coating, 

soft baking of the resist coated wafer, laser exposure of soft baked resist, post exposure 

bake and finally the development to produce the patterns. The laser lithographic 

patterning of electrodes was carried out as follows. 
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Prior to the laser exposure, the substrates were cleaned with acetone, and water for 5 

min. each, and then dried for 20 min. at 200
o
C in an oven. Following this the cleaned 

wafers were coated with AZ 5214E, a negative photoresist, by spin coating at a spinning 

speed of 3000 rpm for 25 s. This resulted in the formation of a thin layer of 

approximately 500 nm of AZ 5214E on the wafer. The resist coated wafer was then 

placed on a hotplate and soft baked for 1 min. at 100
o
C.   

These baked substrates then underwent laser exposure. As mentioned in section 3.2.1, 

prior to the laser exposure, the lithographic unit was loaded with the pattern of 

interdigital electrodes. The designing of the electrodes were achieved using Clewin, 

layout editor software. An inverse pattern of the required interdigital electrodes were 

drawn, so that after sputtering followed by lift-off we would be able to produce the 

desired pattern. The laser exposure was performed using a diode laser that emits a 

wavelength of 405nm (DWL 66FS, Heidelberg, Mikrotechnik GmbH, Germany). The 

laser exposure was carried out with a laser power of 5mW. 

Subsequently the laser exposed samples were baked (post exposure bake) for 50 s. at 

110
o
C. Then to remove the exposed region of the photoresist the post baked samples 

were developed for 50 s. using the developer solution AZ725.The wafer was then rinsed 

with plenty of DI H2O.  

iii. Sputtering and lift-off to produce platinum interdigital electrodes 

After patterning the wafers, next step was to deposit platinum over the patterned 

electrodes, which was accomplished by sputtering technique. 
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Sputtering is a physical vapor deposition technique to deposit thin film of materials (ex: 

Ag, Au, Pt, Al, Ti e.t.c) on to substrates such as silicon wafer, glass or more. Sputtering 

is carried out in a vacuum chamber and during the sputtering this chamber will have a 

continuous flow of a gas, such as usually argon, oxygen, or nitrogen. The selection of 

gas depends on the type of material to be deposited. In sputtering the deposition of the 

material on the substrate is achieved by ejecting the material from its source called the 

¨target¨. The material gets deposited on the substrate by applying an electrical potential 

between the cathode (the target) and the anode (the chamber body). This electrical 

potential causes free electron to accelerate and collide with the gas atom and thus create 

a positively charged gas ion. These energetic positively charged gas ions hit the target 

and expel the atoms and thus these atoms drift towards substrate where they condense. 

In our work the deposition of platinum was carried out using an ion beam sputtering 

(AJA sputtering International INC, N.Scituate, MA) system and the sputtering took 

place in an argon gas atmosphere. Figure 5.1 shows the schematic of the sputtering 

setup.  

The required thickness of the platinum in our case was 150 nm. Since the adhesion of 

platinum on the SiO2 wafers is poor, prior to the platinum deposition a thin film of 20 

nm of titanium was deposited on to the wafer. After depositing a thin layer of titanium 

and platinum on the wafers, the next step was to remove the metal layer from the 

unwanted area of the patterned layer, which was achieved by lift-off.  
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Figure 5.1: Schematic diagram of sputtering. 

 

Lift-off is a method used for creating patterns on any substrate with the support of a 

sacrificial layer (ex: photoresist). A schematic representation of lit-off process is given 

in figure 5.2. 

Initially the sacrificial layer is deposited and it is patterned using techniques like 

lithography or etching (figure 5.2b and 5.2c). Afterwards, the required material is 

deposited over the whole area of the substrate by any material deposition method (in our 

case, sputtering) (figure 5.2d). Following this, the substrate is washed with solutions 

that can remove the sacrificial layer (ex: acetone). During this wash the sacrificial layer 

along with the material on the top of this layer gets lifted-off and removed (figure 5.2e).  
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Figure 5.2: Schematic diagram of lift-off process. a) substrate preparation, b) deposition of sacrificial layer, 

c) patterning of the sacrificial layer, d) deposition of target material, e) removal of the sacrificial layer along 

with the target material on its surface using lift-off solution,  and f) patterned layer of target material. 

 

Thus, after this lift-off the target material remains only in the area where it was in direct 

contact with the substrate (figure 5.2f). 

In our work to remove the platinum from the unwanted area of the wafers and to create 

the platinum electrodes, lift-off was carried out with acetone solution (99.9%) for 10 s. 

Subsequently the samples were rinsed with ethanol and DI H2O for 30 s. each. During 

lift-off the metal deposited on the photoresist was removed and the desired platinum 

interdigtial electrode pattern was produced. Figure 5.3 shows the SEM images of the 

produced platinum interdigital electrodes. The electrodes had a width of 10 µm and the 

separation between the electrodes was 5 µm.  
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Figure 5.3: SEM image of obtained platinum Interdigital electrodes. 

 

5.1.2. Deposition of WO3 nanoneedles  

After obtaining the platinum interdigital electrodes, WO3 nanoneedles were deposited 

over the electrodes, which were achieved by drop coating of WO3. In order to obtain an 

aligned distribution of the nanoneedles across the electrodes, during drop coating a 

sinusoidal wave with a frequency of 3MHz and amplitude of 14V (peak to peak) was 

applied to the electrodes using a functional generator. Figure 5.4a shows how the 

deposition of nanoneedles was carried out, and figure 5.4b shows the SEM images of 

the distribution of the nanoneedles over the electrodes. The SEM images show that the 

nanoneedles are bridged across the electrodes and the average lengths of the 

nanoneedles were around 6 to 10 µm. 
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Figure 5.4: (a) Schematic representation of dielectrophoresis for the deposition of WO3 nanoneedles over 

the electrodes, and (b) SEM image of WO3 nanoneedles deposited on the electrodes (scale 10µm). 

 

These electrodes were then tested towards 30 ppm of ethanol at a working temperature 

of 250
o
C. The change of resistance of the sensors upon the adsorption of the gas 

molecules on the metal-oxide is the detection principle of this metal-oxide resistive 

sensor.  

The figure 5.5 represents the resistance as a function of time graph of ethanol sensing. 

The result shows that the sensor resistance rapidly drops down upon its exposure to the 

ethanol gas, which in turn confirms the ability of the produced sensor for ethanol 

sensing. From the graph it can be seen that the response time of this sensor is 96 s. and 

the recovery time 302 s.  
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Figure 5.5: The graph depicts the change in sensor resistance with time. The indications corresponding to 

the introduction of ethanol and of air are indicated. 

 

5.2. Fabrication of silicon inverted micropyramid arrays 

and their applications in biotechnology. 

Due to their high biocompatibility and non toxicity, silicon and silicon dioxide have 

emerged as a promising material for many studies in biology and biotechnology [Chen 

2011, Dhanekar 2013]. Nanostructures and microstructures of Si and SiO2 in different 

dimensions have been successfully used in drug delivery, tissue engineering, and cell 

culture [Spieth 2011, Merlo 2013]. 2D and 3D structures of different materials, 

especially of silicon, can be fabricated using various techniques such as lithographic 

techniques (ex: photolithography, soft lithography or laser lithography), followed by 

wet and dry etching methods (ex: plasma etching, reactive ion etching, or 
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electrochemical etching) [Choi 2003, Waits 2005]. The possibility of fabricating high 

resolution silicon structures with various dimensions and shapes make laser lithography 

a promising structuring tool in biotechnology applications.  

This section describes on the fabrication of silicon inverted micropyramid arrays using 

laser lithography and two applications of the produced inverted pattern. In the work 

explained here, the lithographic patterning of photoresist on SiO2 wafers done in the 

framework of Ph.D. and the rest of the work was performed within Nephos group. Part 

5.2.1 explains on the fabrication procedure of inverted micropyramid arrays using a 

combination of laser lithography and electrochemical etching. Following this, section 

5.2.2 describes on the formation of periodic array of pyramidal supercrystals using the 

inverted micropyramid arrays as the templates. The produced pyramidal surfaces were 

then tested as an optical sensor for the monitoring of carbon monoxide (CO). Finally, 

section 5.3.1 explains on the fabrication SiO2 micropillars and the selective 

functionalization of external and internal surfaces of the fabricated micropillars with 

biomolecules. 

5.2.1. Fabrication of silicon inverted micropyramid arrays 

Silicon micropyramid arrays were fabricated on planar silicon wafers using laser 

lithography. The fabrication methods were carried out as described in figure 5.6. 

Initially the silicon wafers were oxidized to grow a thin silicon dioxide layer (figure 

5.6a). This oxide layer serves as the mask during the anisotropic alkaline etches. The 

oxidation was carried out at 1000
o
C for 15 min. in a tubular furnace and the thickness of 

the oxide layer formed was around 10-12 nm. The wafers were then cleaned and dried. 
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Afterwards, a thin layer of a positive photoresist, AZ 1505 was deposited on the wafers 

by spin coating at a spinning speed of 500 rpm for 30 s. (figure 5.6b). The resist coated 

wafer was then soft baked at 100
o
C for 60 s. Following this, square patterns having a 

width and length of 2 μm each and a separation between the adjacent squares of 2 μm 

were patterned on to the SiO2 wafers by laser lithography. The exposures were carried 

out with a laser power of 5 mW. The exposed wafers were then developed with AZ725 

for 50 s. Then the developed wafers rinsed with plenty of DI H2O.  

 

 

 

Figure 5.6: Schematic representation of inverted micropyramid arrays fabrication: a) wafer oxidation, b) 

deposition of photoresist, c) patterning of photoresist by laser lithography, d) selective removal of oxide 

layer by BHF etch followed by the removal of remaining photoresist, e) formation of inverted pyramids by 

TMAH etch, and f) dissolution of the residual SiO2 layer.  
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To transfer the patterns drawn on the photoresist on to the SiO2 layer, the wafers were 

then etched with buffered hydrofluoric acid (BHF) (figure 5.6d). Subsequently, to 

produce the inverted pyramids on the silicon wafers, the wafer were etched with 8% 

tetramethylammonium hydroxide (TMAH) solution for 3-6 min. at 80
o
C (figure 5.6e). 

The TMAH etches anisotropically the silicon and produces inverted micropyramids on 

silicon wafers. Finally the oxide layer was dissolved by a quick dip of the wafers in 5% 

hydrofluoric acid (HF) solution (figure 5.6f). 

The as produced inverted micropyramid arrays were examined using SEM and the 

resulting images of the obtained inverted micropyramid arrays are shown in figure 5.7. 

 

    

Figure 5.7: SEM pictures of the obtained inverted micropyramid arrays. 
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Figure 5.8: SEM images of pattern having a dimension of 1and 1 µm width and length. 

 

Besides, a couple of tests were also performed to produce micropyramids of lower 

dimensions (1 µm width, and 1 µm length), but those produced patterned were observed 

not to have uniformity. Figure 5.8 shows the micropyramid structures having a 

dimension of 1 µm and 1 µm. 

5.2.2. Inverted micropyramids as a template for the formation of 

macroscale plasmonic substrates for surface enhanced raman 

scattering. 

This section presents a template-assisted method for the fabrication of organized 

pyramidal supercrystal arrays by stamping the colloidal particles. The produced inverted 

pyramids served as the templates for the formation of gold nanoparticle pyramid. The 

produced gold nanoparticle plasmonic platform was then used to produce a handheld 

portable and reversible surface enhanced raman scattering (SERS) surface for sensing of 
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carbon monoxide (CO). Using this method a periodic array of plasmonic supercrystals 

can be produced in a larger area. This work is reported by Alba [Alba 2013]. 

i. Production of Plasmonic platform 

Figure 5.9 depicts the process of obtaining nanoparticle pyramids. The templates were 

cleaned with oxygen plasma prior to the deposition of nanoparticles. Subsequently, a 

concentrated solution of gold nanoparticles was casted on the templates and allowed to 

dry. Thus a periodic array of square pyramids made from a compact packing of 

plasmonic particles (gold nanoparticles) were formed. 

 

       

Figure 5.9: a) Schematic representation of the fabrication of the microscale nanostructured film. b) SEM 

image of the microscale plasmonic film after stamping, c) High-resolution SEM images of the pyramids and 

d) TEM image of the gold nanoparticle building blocks.  

UNIVERSITAT ROVIRA I VIRGILI 
LITHOGRAPHIC MICRO- AND NANOSTRUCTURING OF SU-8 FOR BIOTECHNOLOGICAL APPLICATIONS 
Pinkie Jacob Eravuchira 
Dipòsit Legal: T 773-2015 



 

Laser Lithographic Patterning of  Sil icon Wafers  | 129 

 

 

The formed pyramidal structures were then demonstrated as an ultrafast and reversible 

optical sensor for monitoring CO. The detection was performed using a handheld 

Raman spectrometer. Prior to the exposure of the analyte to the plasmonic surface, 5-

[(triisopropylsilyl)thio]-10,20-diphenylporphyrin(TDPP) complexed with Fe
II
 was 

allowed to self-assemble on to the gold pyramids. This was done to have to selective 

and reversible gas (CO) capture on the sensing surface. Subsequently the sensing 

surfaces were allowed to interact with the analyte (CO) and the vibrational bands were 

measured. The change in the vibrational bands before and after the interaction of the 

analyte with the plasmonic pyramid was measured. Figure (5.10) shows the SERS 

spectra. The vibrational spectra are different before and after the interaction of the 

analyte with the sensing surface. The new vibrational bands appeared after the 

interaction of the analyte with the sensing surface are associated with the CO gas. This 

proves the presence of CO on the sensing platform, and thus shows that plasmonic 

pyramids with TDPP-Fe
2+ 

can serve as an excellent sensing surface for gases such as 

CO. The SERS measurements were obtained with a handheld Raman macrosystem with 

an excitation laser wavelength of 785 nm. The acquisition time was1 s and the laser 

power at the sample was 1 mW. 

The blue, brown and red spectrum corresponds to the raman spectra of TDPP, TDPP-

Fe
2+

, and TDPP-Fe
2+

-CO respectively. The vibrational bands at 1549, 1490, 1444, 1370, 

and 1320 cm 
-1

 are attributed to the ring stretching, and the bands at 1268 and 1240 are 

associated with CCN bending. CCH bending (1146and 1070 cm
-1

), ring breathing (1026 

and 999 cm
-1

), ring deformation (880 and 857 cm
-1

), and N-Fe stretching (591, 569, 506, 

and420 cm
-1

).The spectral changes after CO complexation are highlighted by the arrows 

in the red spectrum. 
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Figure 5.10: SERS spectra of the free porphyrin, the porphyrin coordinatedto iron, and the iron porphyrin 

complexed with CO.  

 

In short, this work shows the possibility of patterning homogeneous macroscale 

nanoparticle architectures over large areas, and proves that such plasmonic 

macrosubstrates can be used as a platform for a reversible and portable optical sensor 

for CO.  

5.2.3. Fabrication of SiO2 hollow micropillar arrays and their 

application for dual-side functionalization. 

This section explains on the fabrication SiO2 micropillars and the selective 

functionalization of external and internal surfaces of the fabricated micropillars with 

biomolecules. After producing the inverted pyramids, an ordered array of SiO2 

micropillars were produced by electrochemical etching from the arrays of inverted 
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pyramids. The inner and outer surfaces of the produced micropillars were then 

selectively functionalized with biomolecules without cross-contamination. The inner 

surfaces were functionalized with mercaptopropyl trimethoxysilane (MPTMS) and the 

outer surfaces were functionalized with bovine serum albumin (BSA). This work has 

been published by Alba [Alba 2014]. 

i. Fabrication of SiO2 micropillars 

The growth of micropores in silicon is not a self-ordering process and by 

electrochemical etching alone there would not form a periodic arrangement. The 

resulting pores formed by electrochemical etching alone nucleate at random points on 

the wafer surface and thus forms an unordered distribution of pores.  However, 

periodically ordered pores can be produced on silicon wafers by combining lithography 

followed by etching. Lithography is used to define the nucleation sites, that are used as 

etch pits for the subsequent electrochemical etching. Nevertheless, the pore diameter 

and shape are defined by the etching condition and the wafer resistivity and not by the 

size of the pyramidal notch [Trifonov 2004]. 

In this study, after producing an ordered array of inverted silicon micropyramid arrays, 

an electrochemical etching resulted in the formation of SiO2 micropillars. The schematic 

of fabrication of SiO2 micropillars and the procedure of functionalization of inner and 

outer surfaces of the micropillars is shown in Figure 5.11.  
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Figure 5.11: Schematic representation of fabrication of SiO2 micropillars and the dual-side 

functionalization of the SiO2 micropillars: A) fabrication of ordered micropores by electrochemical etching 

(dimethylformamide and 40% hydrofluoric acid solution), B) formation of silicon dioxide by thermal 

oxidation, C) removal of the oxide layer from the backside of the sample, D) TMAH etching for the 

formation of SiO2 micropillars, E) functionalization of the inner side of the micropillars with Rh-MPTMS, 

(F) backside silicon etching using TMAH and (G) functionalization of the external side of the micropillars 

with FITC-BSA.  

 

The micropillars were functionalized as follows. Initially the porous structures were 

exposed to a 5 mM solution of MPTMS-rhodamine in anhydrous toluene for 3 h at 75
o
C 

under nitrogen atmosphere (figure 5.11E). After the functionalization of internal 

surfaces, the micropillars were released by TMAH etch (figure 5.11F) in the back side. 

TMAH is selective only for silicon that is anisotropic. Then the outer surfaces of the 

micropillars were functionalized with BSA-FITC (figure 5.11G). This was achieved by 

incubating the pillars in 100 mg/ml of BSA-FITC in PBS solution for 2h. The 
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functionalized micropillars were then observed under the fluorescence microscope 

(figure 5.12). The fluorescence microscopy images show that the inner and outer walls 

of the micropillars are functionalized with photolabelled MPTMS and BSA 

respectively.  

The results show that a successful dual-side functionalization of SiO2 micropillars 

without cross-contamination was achieved. These 3D micropillar arrays of dual-side 

functionalized micropillars are a promising flexible platform for range of 

biotechnological applications, such as biosensing, 3D cell culture and drug delivery.  

 

       

Figure 5.12: Figure 12: Fluorescent images of SiO2 micropillars after dual-side functionalization with a 

simultaneous excitation of 488 and 543 nm lasers. Top view images collected through bandpass filters of 

(A) both 515±15 and 590±30 nm, (B) 590±30 nm and (C) 515±15 nm, and (D) cross-section image of an 

unattached micropillar collected through both 515±15 and 590±30 nm emission filters. (Scale bar for (A), 

(B) and (C) is 10 mm; and for (D) is 2 mm). 
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Chapter 6  

Conclusions 

This Ph.D. Dissertation has focused on three dimensional structuring of SU-8 surfaces 

in both micrometric and nanometric scales and to utilize the fabricated structures for 

immunosensing. In this respect, this work has been divided into two sections: initially 

the structuring of SU-8 surfaces was carried out using lithographic techniques such as 

photolithography, soft lithography and hybrid lithography, and subsequently the 

produced SU-8 surfaces were utilized for fabricating photoluminescent-based 

immunosensors.   

The first task of this work was the lithographic structuring of SU-8 surfaces. 

The structuring of SU-8 surfaces was carried out using photolithography, soft 

lithography and hybrid lithography. The significant conclusions of this task are:  

 Fabrication of SU-8 macropillars on silicon and glass substrates was achieved 

using photolithography.  
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 We have demonstrated the fabrication of SU-8 nanometric and micrometric 

pores and pillars using soft lithographic technique. 

 Furthermore, we have developed a technique for the nanometric and 

micrometric structuring of SU-8 macropillar surfaces. This hierarchical structuring 

of SU-8 was achieved using hybrid lithographic method, which is a combination of 

soft lithography and photolithography. Hybrid lithographic patterning of SU-8 

surfaces resulted in the production of SU-8 macropillar surfaces decorated with 

micrometric and nanometric pores and pillars. 

 

The produced SU-8 macropillar, micro- and nano pores and pillars, and 

macropillars decorated with pores and pillars were utilized as sensing platform for 

photoluminescent based immunosensing. The most important results obtained from this 

work are: 

 A cost-effective, label-free optical immunosensing based on reduction of 

photoluminescence of SU-8 sensing platform is presented in this work. 

 A reduction of the photoluminescence of SU-8 has been demonstrated with 

each step of surface modification and especially after the antigen-antibody 

immobilization. Thus this work proves the possibility of using 

photoluminescence reduction as a sensing transduction parameter. 

 Performing photoluminescence measurements on SU-8 planar and macropillars 

sensing surfaces proves that a macro-structured SU-8 surface provides higher 

sensing response to the same analyte concentration. 
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 Quantitatively evaluation of the sensitivity of the SU-8 platform shows that 

sensitivity depends strongly on the used substrate. 

 This study reveals that an SU-8 sensing surface patterned with pillars 

(micrometric and nanometric) always gives a higher photoluminescence 

reduction than porous sensing surfaces. 

 Furthermore, this work shows that the SU-8 macropillars patterned with 

micrometric and nanometric pillars and pores results in a higher sensitivity 

compared to planar SU-8 surfaces patterned with macropillars, and micrometric 

and nanometric pores and pillars.  
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