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Objective: To compare low-contrast detectability (LCDet)

performance between a model [non–pre-whitening

matched filter with an eye filter (NPWE)] and human

observers in CT images reconstructed with filtered back

projection (FBP) and iterative [adaptive iterative dose

reduction three-dimensional (AIDR 3D; Toshiba Medical

Systems, Zoetermeer, Netherlands)] algorithms.

Methods: Images of the Catphan® phantom (Phantom

Laboratories, New York, NY) were acquired with Aquilion

ONE™ 320-detector row CT (Toshiba Medical Systems,

Tokyo, Japan) at five tube current levels (20–500mA

range) and reconstructed with FBP and AIDR 3D.

Samples containing either low-contrast objects (diame-

ters, 2–15mm) or background were extracted and ana-

lysed by the NPWE model and four human observers in

a two-alternative forced choice detection task study.

Proportion correct (PC) values were obtained for each

analysed object and used to compare human and model

observer performances. An efficiency factor (h) was

calculated to normalize NPWE to human results.

Results: Human and NPWE model PC values (normalized

by the efficiency, h50.44) were highly correlated for the

whole dose range. The Pearson’s product-moment correla-

tion coefficients (95% confidence interval) between human

and NPWE were 0.984 (0.972–0.991) for AIDR 3D and

0.984 (0.971–0.991) for FBP, respectively. Bland–Altman

plots based on PC results showed excellent agreement

between human and NPWE [mean absolute difference

0.560.4%; range of differences (24.7%, 5.6%)].

Conclusion: The NPWE model observer can predict

human performance in LCDet tasks in phantom CT

images reconstructed with FBP and AIDR 3D algorithms

at different dose levels.

Advances in knowledge: Quantitative assessment of

LCDet in CT can accurately be performed using software

based on a model observer.

CT has become one of the most used techniques in radi-
ology departments. Its progressive introduction in health-
care services and the increasing number of CT scans
performed worldwide per year has raised the concern
about the related radiation dose.1,2 Several improvements
have been incorporated in the scanners to obtain images
at the lowest achievable dose without losing relevant di-
agnostic information. Among them, iterative reconstruction
techniques are promising. Several studies have shown that,
with these algorithms, the image noise can be decreased
and that higher contrast-to-noise ratios (CNRs) can be
obtained compared with traditional filtered back pro-
jection (FBP) and thus a significant dose reduction can
be achieved.3–6

Awide variability in dose and image quality has been found
between different CT scanners to perform similar di-
agnostic tasks.7 To assess image quality, low-contrast de-
tectability (LCDet) is determined as the smallest object
visible for certain contrast value at a given dose level.
LCDet can be subjectively assessed by several observers
scoring the visibility of objects on CT phantom images.
These studies are time consuming and expensive owing to
the large required number of observers and observations.8

The range of available protocols and custom parameters for
each application adds complexity to optimization too.9

Furthermore, the results might be biased if the observers
know beforehand the location of the objects in the phan-
tom. Tests of statistical significance are controversial to
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obtain average results based on human observer studies, as
a great inter- and intra-observer variability may appear.10,11

Computer model observers, intended to predict the perfor-
mance of human observers in image analysis, can be an alter-
native to objectively assess image quality. They can be a useful
tool when investigating the influence of acquisition and re-
construction parameters on image quality or the effect of object
size, shape and contrast in detection tasks.12–15

In a previous work, an objective statistical method using a spe-
cific model observer [non–pre-whitening matched filter with an
eye filter (NPWE)] was presented to investigate the influence of
different CT acquisition parameters on LCDet.16

The main goal of this work is to compare the model observer
LCDet performance in CT images acquired at different dose
levels with human observers. Images reconstructed with two
algorithms (FBP and iterative) were used in this study. Two-
alternative forced choice (2-AFC) experiments, in which the
observers scored samples containing signals or background (Bg)
extracted from the images, were carried out. The results were
presented at the Medical Imaging Perception Society XV Con-
ference held in Washington DC during 14–16 August 2013,
which is focused on observer performance analysis and di-
agnostic quality of imaging technique improvements.

METHODS AND MATERIALS
Image acquisition
Throughout this study, images of the Catphan® 500 phantom
(Phantom Laboratories, New York, NY), which is dedicated to
quality control tasks on CT scanners, were used. The low-contrast
module (CTP515) contains three groups of cylindrical rods of
various diameters (2–15mm) and three contrast levels (0.3%,
0.5% and 1.0% nominal contrast), as shown in Figure 1. The
nominal contrast (expressed as a percentage) is defined by the
Catphan manufacturer as the difference in CT number between
the target object and the background divided by 10.

CT images of the phantom were acquired on a 320-detector row
CT scanner (Aquilion ONE™; Toshiba Medical Systems, Tokyo,
Japan) by selecting the following parameters: 643 0.5-mm
beam collimation, 240-mm field of view, helical acquisition
(pitch, 0.828), 120 kVp tube voltage, 0.5 s rotation time and five
different tube current levels (20, 40, 80, 300 and 500mA).
Images of 0.5-mm slice thickness were reconstructed with a soft-
body kernel (FC13), which enhances low frequencies in the
image, reduces high-frequency noise and smooths the appear-
ance of the image in general. Two reconstruction algorithms
were selected: FBP and an iterative algorithm [adaptive iterative
dose reduction three dimensional (AIDR 3D); Toshiba Medical
Systems]. The latter is an iterative algorithm that performs
calculations in the raw data domain using statistical models,
scanner characteristics and projection noise estimation to de-
crease the electronic noise and, afterwards, applies an iterative
technique in the image domain to decrease image noise.5

The phantom was scanned two times for each tube current–time
product (mA) value. To avoid possible artefacts owing to the
nearby modules, only the 42 central axial images of the LC

module were taken into account from each scan. Thus, ten image
series (considering the five mA values and two reconstruction
algorithms used), composed by 84 images each, were available for
the model and human observer tests in this study.

Model observer (NPWE) and low-contrast
detectability software
A software program dedicated to automated LC objects de-
tection on CT, implemented in MATLAB® (MathWorks®,
Natick, MA), was described in a previous work.16 The
improvements implemented in the methodology are explained
in detail in this section.

To locate the LC objects in the CT images, a mask of the dis-
tribution of the disks in the phantom was created. The manu-
facturer specifications (size, shape, position and contrast) were
used to generate templates to match the objects in the real CT
images (Figure 1). The object templates were blurred to model
the modulation transfer function in each case, which was
obtained as the full width at half maximum of the point spread
function (PSF).17 Images of a phantom containing a 0.18-mm
diameter tungsten bead were acquired for the different mA
values and reconstruction algorithms to measure the PSF values.
A thick slice is automatically created for each mA set by aver-
aging all the available related images. To optimize the detection
of the objects in the CT images, the templates were individually
shifted 33 3 pixels around the initial location estimated using
Catphan specifications.

A circular white band was found close to the outer rim of the
phantom images (Figure 2). These background inhomogeneities

Figure 1. A constructed 40-mm thick slice of the Catphan®

(Phantom Laboratories, New York, NY) low-contrast module.

The contrast groups and the object diameters are tagged for

the supraslice region. The mask for the objects and the

background (Bg) sample locations are overlaid in the figure.
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may affect LCDet. To correct them, in the thick slices previously
created, for each of the image sets individually, an annular-
shaped region of interest (ROI) was taken around the 15-mm
object of each contrast group, and another circular ROI was
taken on these objects. The signal difference in Hounsfield units
was measured between these regions. Based on these values,
artificial signals were created, blurred by the measured PSF value
and subtracted from the thick slice image. The resulting thick
slice (equivalent to the LC module without objects in it) was
then subtracted from the individual CT images.

To avoid any bias in the human observer study, the samples
taken from the CT images should have the same size, in-
dependently of object diameter. The geometrical distribution of
the LC objects in the Catphan phantom was a limitation for this
purpose, as nearby objects could be included in the samples. To
overcome this, an additional image correction was performed,
using the templates previously created, to wipe out, from each
object sample, the nearby objects in its corners.

The effect of these corrections (Bg inhomogeneities and object
wipe out) in the images was analysed comparing the noise and
contrast in the original and corrected images. For each mA and
FBP/AIDR 3D series (for either the corrected or original set), the
mean pixel value and the standard deviation s (used as a mea-
sure of noise) were measured in ROIs of size 26.73 26.7mm2

taken in the Bg sample locations (Figure 1). A relative
difference value (%) was calculated for each condition as
ðsoriginal images 2scorrected imagesÞ=scorrected images. Regarding the
effect on contrast, a ROI was defined at the exact location of
the 15-mm object for the three contrast groups. Contrast (C)
was measured, averaged for each set (original or corrected
image), and relative difference values were obtained as
ðCoriginal images 2Ccorrected imagesÞ=Ccorrected images.

For the 2-AFC experiment, Bg samples were extracted from an area
located close to the smallest disk of each contrast group but posi-
tioned farther from the module centre (Figure 1). Object (signal)
samples were extracted following the process explained above. Both
types of samples had the same size (26.7326.7mm2) for all the
objects in the module with independence of their diameter.

The software automatically calculated LCDet using an NPWE
model observer for each object and the three contrast groups
present in the LC module of the phantom. This model is based on
the assumption that the human observer uses templates of the
expected signals for cross-correlation in the images and that it is
unable to modify the template to pre-whiten correlated noise. The
addition of an eye filter (E) takes into account the spatial frequency
( f) response of the human eye. We selected the eye filter proposed
by BurgessE( f)5 fe2bf, with b chosen such that E( f) peaked at four
cycles per degree and assuming a fixed viewing distance of 50 cm
from the monitor.18 Different studies have shown that human
performance lies between pre-whitening and non–pre-whitening,
depending on the spectral distribution of the image noise.19,20

For each object in the phantom, the model cross-correlates the
samples (signal or Bg) taken from the 84 images of the set with
the appropriate template (blurred expected signal), after filtering
them by an eye filter (E).18 This results in T1 (correlations of the
template and object samples) and T2 (correlations of the tem-
plate and Bg samples). Based on distributions of the test sta-
tistics of the correlation results, a discrimination index dʹ was
calculated applying Equation (1):18
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where,. refers to the mean and s( ) is the standard deviation;
subindexes 1 and 2 are related to the object and to the Bg
distributions of test statistics, respectively.

This procedure was performed for all the contrast groups in the
phantom and repeated for the five selected mA values and two
reconstruction techniques sets. The detectability index dʹ was
expressed as a function of object diameter for the three contrast
groups and each condition. Then, dʹ values were transformed
into proportion correct (PC) using Equation (2):16,18
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This method was applied for the 10 CT image series, and thus, dʹ
and PC profiles as a function of the object diameter were
obtained for each mA and FBP or AIDR 3D sets. As, just by
chance, in a 2-AFC experiment, a default PC5 50% value can

Figure 2. An example of the wiping out of nearby object

processes in the Catphan phantom CT images for the 150 mA

filtered back projection series. Inside the white square, a crop

of the thick slice is shown before the correction. For one of the

images in the set, the object samples are shown with different

window settings before and after the corrections. The arrow

highlights the band background inhomogeneities.
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be obtained, the detectability threshold (l) was fixed at
PC5 75%. Thus, when PC$ 75% in the analysis, the related
object diameter was considered visible.

Human observer two-alternative forced
choice study
To validate the trends shown by the NPWE, a 2-AFC human
observer study was carried out by four medical physicists, each
of them scoring pairs of ROIs (signal or Bg samples) extracted
from the different sets of images for the 1% contrast group. To
analyse intra-observer variability, each observer scored twice the
84 pairs of images (the same used for the NPWE model) related
to a given object diameter acquired at certain mAs and recon-
structed with FBP or AIDR 3D. Thus, each observer scored 84
(pairs of images) 3 9 (diameters) 3 5 (mA values) 3 2 (FBP or
AIDR 3D) 3 2 (intra-observer variability), which makes 15,120
images in total.

For the signal known exactly and background known exactly
(SKE/BKE) task performed in the human observer study, an
application was created in MATLAB. In Figure 3, an example of
the 2-AFC software interface is shown: two images are displayed
together with the template on a grey canvas; the one which
contains the object must be clicked on and scoring results are
automatically stored in an output file. The object always appears
in the centre of the sample, as shown in the template. The
images with or without object were displayed randomly at left or
right. Each set of images (for a given diameter, mA and re-
construction method) was independently scored and images
related to different conditions were not mixed in this study.

The scoring was performed on an i-MAC 270 (Apple Inc., cupertino,
CA) monitor using recommended visualization conditions, with

fixed values for window level and width (taken as 3s, where s is
the average standard deviation of pixel values of the Bg samples
for each series). The quotient between the maximum and
minimum luminance that the monitor can deliver or luminance
ratio was 491, and the measured ambient luminance was kept
,10 lux.21

One training session was programmed for the observers to get used
to the software features and the task. All observers scored the images
twice (without any time limitation to review them) in four different
sessions (two for each reconstruction method to analyse the intra-
observer variability), which lasted approximately 2 hours each.
There was a gap of at least 2 weeks between them, to avoid learning
effects. The viewing distance was fixed at 50 cm, and the observers
were allowed to rest whenever they wanted to avoid fatigue.

An analysis of the intra-observer consistency was performed using
the Wilcoxon signed rank test for matched-pair samples (consis-
tent results if p$ 0.05) by comparing the scores for each object size
and mA separately obtained in each session for AIDR 3D and
FBP.22 If one observer was inconsistent in his results between both
sessions for a given condition, that scoring was ruled out.16 The
average human observer performance was obtained as themean of
the PC values that passed the intra-observer tests for each condi-
tion. Finally, PC curves, as a function of the object diameter, were
obtained for each mA and either FBP or AIDR 3D.

Efficiency (h) calculation and agreement between
human and model observer
To obtain an efficiency (h) between the human observers and
the model in our experiments, PC values had to be transformed
into d9 applying Equation (4):12,23,24

d95
ffiffiffi
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p
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where F21(PC) is the inverse of the standard cumulative normal
distribution function.

Finally, h could be calculated to relate the average human ob-
server performance (d9human) to the model observer (d9NPWE) by
applying Equation (5) and using a least-squares procedure to fit
the data.12,19 The error bars used as weights in the linear fit were
estimated as 2s, where s is the standard deviation of the d9human

squared values. The efficiency h tallied the linear fit slope.
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To study the agreement of the NPWE and human observers, their
related PC values were compared using Bland–Altman plots using
EpiDat software.25 Additionally, Pearson’s product–moment
correlation coefficients (r) between human and model PC scor-
ings were calculated for both reconstruction methods and each
mA separately (perfect correlation if the absolute value of
r5 1.0).14

Psychometric fits and visibility thresholds
Psychometric fits were performed for the obtained PC profiles as
a function of the object diameter.26,27 For this 2-AFC experi-
ment, fitting curves according to Equation (6) were applied for

Figure 3. Interface of the two-alternative forced choice

software used for the human observer experiment. The

template (above) is shown together with signal and back-

ground samples extracted from the images.
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each mA and reconstruction set independently, for both the
average human and model observer.16 For the average human
observer, the error bars related to the PC values, previously
calculated, were used as weights in the fitting process based on
a least-squares procedure. The range of the fitting curves runs
from 0.5 (pure guessing) and 1.00 (certain detection).

PC5
0:5

11 e2 f log d
lð Þ1 0:5 (6)

where d represents the object diameter and f and l are the fitting
parameters. The steepness of the psychometric curve is de-
termined by f. The smallest object diameter, which matches the
proposed visibility threshold (PC5 75%) is l itself.

In the case of the NPWE, additional psychometric fits were per-
formed using the PC values corrected by the efficiency value h.

Image quality comparison between both
reconstruction algorithms
To analyse the effect of selecting FBP or AIDR 3D in LCDet
performance, two-tailed paired t-tests (a5 0.05) were per-
formed comparing d9 values obtained with NPWE model and all
contrast groups for the different mAs. Similar tests were also
performed using the PC values obtained for the 1% contrast
group and all mAs, by the human observers and the model
observer, respectively.22

Additionally, an estimation of the average noise value was
obtained for each mA and reconstructed image set. Pixel noise
was measured as the standard deviation (s) of the pixel values,
in three circular ROIs taken at the same locations as the Bg
samples, and the average noise value was calculated. A relative
difference value (%) between FBP and AIDR 3D sets was
obtained for each mA as ðsFBP 2sAIDR 3DÞ=sFBP. A repeated
measures analysis of variance (ANOVA) test was performed
between the noise measurements calculated for both algorithms
and each mA separately (significant differences if p# 0.05) in
the original images.

RESULTS
Analysing the signal and Bg samples before and after applying the
Bg corrections (to suppress undesired Bg trends and to wipe out
nearby objects), it was found that contrast varied ,5% in all cases.
The standard deviation of pixel values, which reflects the combined
effect of inhomogeneities and noise in the images, was also reduced
after applying these corrections in the range 4–10%. To depict the
effect on the images, in Figure 2, it can be seen on one of the signal
samples before and after this correction.

Model observer results
The NPWE model observer obtained higher d9 values with in-
creasing object contrast. Detectability also increased approxi-
mately linearly with object diameter. In Table 1, the slopes for the
linear fits performed for all the sets of d9 as a function of the object
diameter and the three contrast groups are summarized [95%
confidence interval (CI)]. The range of R2 for the linear fits was
0.907–0.995 for FBPand 0.890–0.993 for AIDR3D sets, respectively.

The influence of contrast and mAs in LCDet is shown in Table 1:
higher slopes are obtained with increasing contrast and mAs for
both FBP and AIDR 3D. Two-tailed paired t-tests (a5 0.05) were
performed comparing the d9 values related to the contrast groups
for both reconstruction methods and each mA separately. A sig-
nificant improvement in the detection of objects as contrast increased
was found (p# 0.05 in all cases). Similar tests were performed to
determine the differences in d9, with increasing mAs indicating that
NPWE showed a significant improvement in LCDet as tube current
increased for all contrast groups and both reconstruction algorithms
(p# 0.05).

Human observer results
To study human observers LCDet performance, 60,480 pairs of
images (for 1% contrast group in the Catphan phantom) were
analysed [15,120 (images scored by 1 observer) 3 4 (4 observ-
ers)]. From now on we will use the term “scoring” to refer to the
series of results for a given diameter, mAs and reconstruction
obtained by an observer.

The intra-observer variability test led to discard (p, 0.05) eight
individual pairs of scorings, three for FBP and five for AIDR 3D
(2.2% of all the scorings). The distribution of discarded scorings
by the four observers was 4, 3, 1 and 0, respectively. After fil-
tering the results, removing the inconsistent data, no significant
differences were found between the human scorings (p$ 0.05).

The psychometric fits obtained for the average human observer
based on the AIDR 3D scoring data (1% contrast) are illustrated
in Figure 4. The related R2

fitting values were in the ranges
0.743–0.945 for FPB reconstruction and 0.710–0.955 for AIDR
3D. The error of the mean PC value for the average human
observer for the different mA series (10, 20, 40, 150 and
250mAs) were in the ranges 0.2–18%; 0.8–12.5%; 0.8–17.8%;
0.7–16.7%; and 0.5–5% for AIDR 3D and 6.5–12.8%; 1.1–8.2%;
0.8–9.8%; 0.6–16.5% and 0.7–6.7% for FBP, respectively.

Efficiency calculation
Owing to the shape of the curve of d9 as a function of PC, it is
difficult to measure d9 when its value is above three, approxi-
mately (PC� 0.98) in a 2-AFC experiment.28,29 Only the human
PC values below this threshold were used to determine the ef-
ficiency of the NPWE model observer. In Figure 5, the d9 values
for the average human observer are plotted as a function of
NPWE models (both squared). The data related to all the mA
series for AIDR 3D and FBP for 1% contrast were taken into
account in this graph. The linear fit slope, which tallies the
efficiency, h, was 0.44 (0.42–0.46, 95% CI).

Visibility thresholds non–pre-whitening matched
filter with an eye filter and average human observer
The visibility thresholds l (related to PC5 75%, 95% CI) for
the 1% contrast group obtained by the average human observer
in the 10–250mA range are depicted in Table 2 together with the
NPWE model values, after correcting them by the efficiency
(h5 0.44). It can be seen that smaller objects could be detected
as mAs increased for both reconstruction algorithms by the
human and model observer.
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For NPWE, the visibility threshold l (related to PC5 75%)
increased dramatically with decreasing contrast (Table 3, 95%
CI) for both AIDR 3D and FBP. This effect was more evident
below ,150mA.

Analysis of agreement between non–pre-whitening
matched filter with an eye filter and human observer
The normalization of the NPWE results by the efficiency led to
a high correlation with the average human observer, for all mAs
and both reconstruction methods. The overall Pearson’s
product–moment correlation coefficients (considering all mAs)
calculated for 95% CI were 0.984 (0.972–0.991) and 0.984
(0.971–0.991) for AIDR 3D and FBP, respectively. The correla-
tions for 10, 20, 40, 150 and 250mA are shown in Table 2.
Figure 6 depicts the psychometric fits for the human observer
and the NPWE model (after the efficiency correction) as
a function of mAs for the FBP reconstructed sets.

Figure 7 shows the Bland–Altman plot performed for the PC
values obtained by the average human observer and the NPWE
model (after correction by efficiency) for AIDR 3D and FBP
altogether. It showed an excellent agreement with a mean ab-
solute difference, D, of 0.56 0.4%. The range of the differences,
given by (D22s, D1 2s) was (24.7%, 5.6%), where D is the
mean absolute difference and s is the standard deviation of
the differences between NPWE and human observers. For AIDR
3D images, the mean absolute difference (D) and the range of
the differences were 0.46 0.4% and 24.8%, 5.2%, respectively,
whereas for FBP sets they were 0.46 0.2% and 23.9%, 5.0%.

Image quality comparison between both
reconstruction algorithms
The repeated measures ANOVA test performed to analyse the
differences in the image noise when applying FBP or AIDR 3D
in the original images showed significant differences for all the
mA values (F. 113,985; p, 0.001). AIDR 3D produced a sig-
nificant reduction of noise compared with FBP of 51%, 43%,

Table 1. Slopes of the linear fits of detectability index (d9) as a function of object diameter for the tube current–time product (mA)
range and filtered back projection (FBP)/adaptive iterative dose reduction three dimensional (AIDR 3D) algorithm reconstructed
sets of images for the three contrast groups and non–pre-whitening matched filter with an eye filter model observer (values for
confidence interval595%). The results of two-tailed paired t-tests (significant differences for p#0.05) comparing FBP and AIDR
3D d9 values for each condition are also shown

Contrast
Tube current–time

product
10mA 20mA 40mA 150mA 250mA

1%

FBP 0.21 (0.20–0.22) 0.37 (0.35–0.40) 0.48 (0.46–0.50) 0.81 (0.80–0.83) 1.03 (0.99–1.07)

AIDR 3D 0.27 (0.25–0.28) 0.40 (0.37–0.43) 0.56 (0.54–0.58) 0.85 (0.83–0.86) 1.08 (1.03–1.13)

p-value 0.005 0.052 ,0.001 ,0.001 0.002

0.5%

FBP 0.10 (0.09–0.10) 0.19 (0.18–0.19) 0.22 (0.22–0.23) 0.38 (0.37–0.38) 0.60 (0.58–0.62)

AIDR 3D 0.11 (0.11–0.12) 0.18 (0.17–0.18) 0.25 (0.25–0.26) 0.39 (0.39–0.40) 0.63 (0.60–0.66)

p-value ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

0.3%

FBP 0.05 (0.05–0.05) 0.11 (0.11–0.11) 0.12 (0.11–0.12) 0.20 (0.19–0.20) 0.38 (0.37–0.39)

AIDR 3D 0.06 (0.06–0.06) 0.09 (0.08–0.09) 0.13 (0.13–0.14) 0.20 (0.20–0.21) 0.39 (0.38–0.40)

p-value 0.004 0.002 0.002 0.002 ,0.001

Figure 4. Psychometric fits [proportion correct (PC) as

a function of the object diameter] for the average human

observer and all tube current–time product (mA) for the

images reconstructed with adaptive iterative dose reduction

three dimensional algorithm and 1% contrast. The dots

represent the average human observer PC values.

Figure 5. Squared detectability index (d92) for the average

human observer as a function of the model observer [non–pre-

whitening matched filter with an eye filter (NPWE)]. The

efficiency h is given by the slope of the linear fit [95%

confidence interval (CI)].
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34%, 25% and 23% relative to FBP for 10, 20, 40, 150 and
250mA, respectively.

For the NPWE model, two-tailed paired t-tests (a5 0.05) were
performed comparing the d9 values obtained for FBP and AIDR
3D, each mA and all contrast groups. The related p-values for each
mA are shown in Table 1. Significant improvement (p# 0.05) was
shown with AIDR 3D for all mAs and contrast groups.

Figure 8 depicts the overall effect of selecting each re-
construction method on the NPWE LCDet performance show-
ing the psychometric fits for the 0.3% contrast group. R2 values
were in the range 0.995–0.960 for FPB and 0.993–0.953 for
AIDR 3D for all the contrast groups. This trend was the same for
the human observer (1% contrast).

For NPWE, the results of the two-tailed paired t-tests (a5 0.05)
performed for the PC values related to each mA comparing both
algorithms showed significant differences in all cases (p# 0.05).
For the human observer, significant differences (p, 0.05)
appeared for the lower mA series (10, 20 and 40mA). No sig-
nificant differences between both reconstruction methods were
found for the 150 and 250mA series (p-values of 0.05 and 0.06,
respectively).

DISCUSSION
The selected model observer NPWE reproduced the LCDet
performance trends of the average human observer as a function

of mAs. In this study, the model and human observers scored
the same sets of images (corrected to suppress undesired back-
ground trends). The model was more efficient than the human
observer to detect LC objects in FPB and AIDR 3D recon-
structed CT images. The calculated efficiency (0.44) is in the
range obtained by other authors (h� 0.5) when applying the
same model observer to other types of images.14,18,29 The
agreement between the model and human observer was excel-
lent at the dose range considered in this work (10–250mA) for
both reconstruction algorithms after applying the h factor, as
shown in Figure 6.

The efficiency was also calculated using all the human scorings
(without discarding any values owing to intra-observer in-
consistency), obtaining a slightly smaller h of 0.41 (0.39–0.43,
95% CI) in this case.

The Bland–Altman plot showed an excellent agreement
(D5 0.56 0.4%) between the human and NPWE, the range of
the differences being about 65%. This analysis was also per-
formed taking into account all the original human PC values to
study the effect or discarding data (owing to intra-observer in-
consistency) on the correlation between human and model. In
this case, the differences increased on average D521.0%6
0.7% and also in range 211.2% to 9.1%.

By analysing the slopes of d9 as a function of object diameter fits
(Table 1), it was shown that the NPWE model LCDet

Table 2. Visibility thresholds [proportion correct (PC)575%] for the average human and non–pre-whitening matched filter with an
eye filter (NPWE) (corrected by the efficiency) model observers and Pearson’s product-moment correlation coefficients (r) for their
PC values for all tube current–time products (mAs) and both reconstruction algorithms [filtered back projection (FBP) and adaptive
iterative dose reduction three dimensional (AIDR 3D) algorithm] (95% confidence interval)

l (mm) FBP Pearson coefficient
(r)

l (mm) AIDR 3D Pearson coefficient
(r)Average human NPWE Average human NPWE

10mA 6.5 (6.0–7.0) 6.8 (6.6–7.0) 0.969 (0.857–0.993) 6.8 (6.6–7.0) 6.0 (5.7–6.3) 0.988 (0.943–0.997)

20mA 4.5 (4.4–4.6) 4.6 (4.4–4.7) 0.983 (0.921–0.996) 4.6 (4.4–4.7) 4.3 (4.1–4.5) 0.978 (0.897–0.995)

40mA 3.6 (3.5–3.7) 3.8 (3.6–3.9) 0.984 (0.925–0.996) 3.8 (3.6–3.9) 3.2 (3.1–3.3) 0.991 (0.953–0.998)

150mA 2.9 (2.8–3.0) 2.5 (2.3–2.8) 0.996 (0.978–1.000) 2.5 (2.3–2.8) 2.3 (2.2–2.4) 0.989 (0.946–0.997)

250mA 1.9 (1.8–2.0) 2.0 (1.9–2.0) 0.997 (0.986–1.000) 2.0 (1.9–2.0) 1.8 (1.7–1.9) 0.994 (0.971–0.998)

Table 3. Visibility thresholds (related to proportion correct575%) for the non–pre-whitening matched filter with an eye filter model
and both reconstructions [filtered back projection (FBP) and adaptive iterative dose reduction three dimensional (AIDR 3D)
algorithm] for all the tube current–time product (mA) series and contrast groups (confidence interval595%)

l (mm) 1% contrast l (mm) 0.5% contrast l (mm) 0.3% contrast

FBP AIDR 3D FBP AIDR 3D FBP AIDR 3D

10mA 5.1 (5.0–5.3) 4.3 (4.2–4.4) 9.6 (9.3–9.9) 8.2 (7.9–8.5) 18.4 (17.8–18.9) 14.7 (14.3–15.1)

20mA 3.2 (3.2–3.3) 3.1 (3.0–3.1) 5.4 (5.2–5.6) 5.6 (5.5–5.8) 8.5 (8.2–8.7) 10.9 (10.5–11.4)

40mA 2.8 (2.7–2.9) 2.6 (2.5–2.7) 4.7 (4.5–4.9) 4.0 (3.9–4.1) 8.2 (7.9–8.5) 7.3 (7.1–7.5)

150mA 1.9 (1.9–1.9) 1.8 (1.8–1.8) 2.8 (2.7–2.9) 2.6 (2.5–2.7) 4.9 (4.7–5.1) 4.6 (4.5–4.8)

250mA 1.7 (1.7–1.7) 1.7 (1.7–1.7) 2.1 (2.0–2.1) 1.9 (1.9–2.0) 2.9 (2.9–3.0) 2.8 (2.7–2.8)
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performance significantly improved for all mAs and contrast
groups with AIDR 3D (p# 0.05). These trends were also
reflected in the psychometric fits for both, humans and model
(Figure 8), obtaining higher PC values with AIDR 3D. In gen-
eral, AIDR 3D showed an overall improvement in detectability
as object diameter increased, compared with FBP for the entire
dose range. The two-tailed t-tests performed for the PC values
and each mA showed significant improvement (p# 0.05) for the
NPWE when using AIDR 3D in all the dose range. For the
human observer, significant improvement was found only in the
range 10, 20 and 40 mA when applying the iterative algorithm.

The visibility thresholds for 1% contrast showed differences
between both reconstruction methods, with the same trends for
the model and human observers, but they were very subtle for
high mAs. It has been noted that for the human observers, no
significant differences between the algorithms were found be-
tween the PC values obtained for the higher mAs (150–250mA).

Selecting only one threshold value may lead to missing relevant
information related to LCDet performance, although it can be
helpful as a rough estimate to compare different protocols where
dose is changed significantly. As an alternative, the profiles
shown in Figure 8 and Bland–Altman plots represent a good tool
to study LCDet performance in CT.

In a previous study, a different and smaller set of images
reconstructed with AIDR 3D was compared with FBP for the
same mA range.5 The visibility thresholds obtained with NPWE
were slightly different then, but it has to be noted that a different
psychometric fit was used. In the present work, the selected
psychometric curve was a good candidate to be applied to both
sets of data (human and NPWE model).16

The undesired Bg trends in the images (white band) were sup-
pressed by applying a correction based on the creation of a thick
slice image. The transformations applied to the images to correct
these trends and to wipe out the nearby objects (to enable taking
samples of a reasonable and equal size for the human observer
study) did not affect substantially the CNR of the objects owing to
the low noise level of the thick slice. Despite being promising, the
effect was not of the same order for all the mA sets, and these
processes can still be optimized. Other studies opted for a different
strategy to perform 2-AFC human observer experiments based on
the entire Catphan image and covering the objects that were not
being scored by crops taken from the nearby background regions
in the image.30

The performed human observer study has some limitations. The
first one is the reduced number of observers (only four). To
obtain a good average of the human LCDet performance for the
proposed task, a statistical analysis was performed to remove the
inconsistent data. Even so, the study was quite complex to carry
out, owing to the high number of images and conditions ana-
lysed, although it was restricted only to the 1% contrast group.

The results shown in this work are based on geometrical
phantom images, which were modified (Bg correction), and its

Figure 6. Psychometric fits for the human (lines) and the

non–pre-whitening matched filter with an eye filter model

(dashed lines) based on the results for the filtered back

projection reconstructed images and all tube current–time

products (mAs) for 1% contrast objects. PC, proportion correct.

Figure 7. Bland–Altman plot of proportion correct (PC) differ-

ence between human and model observer (after correcting by

efficiency) for filtered back projection (FBP) ( ) and the adaptive

iterative dose reduction three dimensional (AIDR 3D) algorithm

( ). The black line represents the average absolute difference D

(0.5 6 0.4%); the two dash lines represent D 6 2s, where s is the

standard deviation of the differences, which are 24.7%, 5.6%.

NPWE, non-pre-whitening matched filter with an eye filter.

Figure 8. Psychometric fits of proportion correct (PC) as

a function of object diameter for non–pre-whitening matched

filter with an eye filter and both reconstructions filtered back

projection (FBP)/adaptive iterative dose reduction three di-

mensional (AIDR 3D) algorithm in all the tube current–time

products (mAs) range for 0.3% contrast.
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conclusions have to be taken cautiously and cannot be extrap-
olated directly to patient images. Model observers can be helpful
tools to analyse image quality in an objective and fast way and to
compare different CT scanners, protocols or reconstruction
algorithms in terms of image quality. The increasing complexity
and variety in the available CT protocols and reconstruction
algorithms makes the development of these automated methods
even more necessary.

CONCLUSIONS
The LCDet performance of human and a model observer
(NPWE) has been compared in this study analysing phantom
images reconstructed with AIDR 3D and FBP algorithms and
a range of mAs. The A 2-AFC study was carried out to estimate
the average human observer performance for an SKE/BKE task.
The NPWE model was more efficient than the average human
(h5 0.44) and showed an excellent agreement after the cor-
rection by the efficiency factor. Other alternatives to match the
model observer results in order to reproduce the human ob-
server performance are based on internal noise, which will be
explored in the near future. The iterative algorithm (AIDR 3D)
showed an overall improvement in LCDet, especially for low
mAs and low-contrast objects. The methodology that we have

developed for the human study can be used to perform analy-
sis with different types of medical images, not necessarily CT.
The proposed method can be adapted to other phantoms and
other model observers will be implemented to assess image
quality in an objective way. Applying the model observer to
more realistic diagnostic images based on anthropomorphic
phantoms or real patients will be one of the future applications
to investigate.
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