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Abstract

The magnetic coupling in transition metal compounds with more than one unpaired
electron per magnetic center has been studied with multiconfigurational perturbation
theory. The usual shortcomings of these methodologies (severe underestimation of the
magnetic coupling) have been overcome by describing the Slater determinants with a set
of molecular orbitals that maximally resemble the natural orbitals of a high-level mul-
ticonfigurational reference configuration interaction calculation. These orbitals have
significant delocalization tails onto the bridging ligands and largely increase the cou-
pling strengths in the perturbative calculation.
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Taking into account the ionic state in the optimization procedure of the molecular orbitals
results in slightly more delocalized magnetic orbitals, and hence, repairs the underestimation
of the magnetic coupling commonly observed for multiconfigurational perturbation theory.
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Introduction

The calculation of accurate magnetic coupling constants has been a relevant theoretical

problem for many years. The smallness of the energy differences and the antagonist physical

effects involved in the interaction between spin moments make this a challenging topic for

theoreticians. The difference dedicated configuration interaction (DDCI) method1,2 has been

proven capable to produce coupling strengths in good agreement with the experimental

findings for binuclear complexes and, more recently, also for polynuclear systems.3 Due to

the variational nature of the method, DDCI can be applied with a minimal complete active

space configuration interaction (CASCI) reference wave function, which makes it easy to use

and attractive from a conceptual point of view.4–6 However, the high computational cost

associated with DDCI calculations makes the method less suitable for systems with large

ligands, many magnetic centers, or many unpaired electrons per magnetic center. Several

variants of DDCI were developed in order to reduce the computational cost for such large

systems, obtaining promising results.7–12

A second family of methods commonly used in the calculation of magnetic couplings

are those based on multiconfigurational reference perturbation theory (MRPT). Applied

to second order (MRPT2), these methods provide a computationally efficient alternative to

DDCI extending the applicability range of the ab initio methods to larger systems. Although

MRPT2 gives in general a rather reasonable description, there are some points that need

to be carefully addressed in order to extract relevant conclusions from the perturbative

treatment of the magnetic coupling. In the first place, one should be aware of the possible

appearance of intruder states, and special attention in the definition of Ĥ(0) must be taken.

Compared to DDCI, MRPT2 results may show a strong dependence on the size of the active

space, usually requiring the inclusion of ligand orbitals and a second set of magnetic orbitals

in order to obtain quantitative results.13,14 Calculations based on a minimal active space

reference wave function tend to underestimate the coupling strength by ∼60-80%.

A recent study on the role of the magnetic orbitals in the perturbative calculation of the

magnetic coupling has identified the origin of the inability of MRPT2 methods to correctly

estimate the J value in the nature of the starting MOs and has also proposed a pragmatic
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strategy to improve the values on binuclear copper complexes without the necessity of ex-

tending the active space.15 The strategy is based on the observation that the natural DDCI

magnetic orbitals are significantly more delocalized than the corresponding ones obtained

from the bare CAS description of the system.16 Using the natural DDCI orbitals to express

the minimal active space reference wave function for a perturbative treatment of the dynamic

electron correlation greatly improves the calculated magnetic couplings, but such approach

is of course not very efficient. The scheme proposed in Ref. 15 describes how one can obtain

a set of orbitals that maximally resembles the natural DDCI orbitals without going beyond

the minimal active space description. Instead of optimizing the orbitals for the ground state

triplet or singlet (or an average of them), the reference wave function is obtained as a state

average (SA) of two singlet states. The first one is the ground state singlet dominated by

configurations with one unpaired electron per magnetic site (neutral singlet), and the second

state is the so-called ionic singlet, which is dominated by configurations where the unpaired

electron of one magnetic site is transferred to the other. Because of the double occupancy

of the magnetic orbitals in the ionic singlet, the inclusion of this state in the orbital opti-

mization procedure results in a set of orbitals with a higher degree of delocalization than

the standard procedure. The optimal ratio between neutral and ionic states was determined

by maximizing the overlap of the SA optimized magnetic orbitals with the natural DDCI

orbitals. A ratio of 70% - 30% was found to give maximum overlap in a representative series

of binuclear copper complexes and this ratio also turned out to provide accurate magnetic

couplings when used in the perturbative treatment of the dynamic electron correlation based

on a minimal active space.

The idea of this work is to extend the strategy to systems with more than two unpaired

electrons. The main focus is on complexes with two magnetic orbitals per center, giving

rise to a local magnetic moment of S = 1, but we also report a case with larger local spin

moments. The S = 1 systems are still tractable with DDCI, and hence, we can establish

the validity of the strategy by calculating the overlap with the natural DDCI orbitals. The

applicability of the strategy to systems other than the previously tested binuclear copper

complexes, is an important step towards a simple and computationally efficient scheme based

on a minimal active space description in systems where DDCI cannot be applied anymore.
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Molecular complexes and computational details

A simple yet accurate phenomenological Hamiltonian that accounts for the coupling between

the local spin angular moments Si and Sj was first introduced by Heisenberg as

Ĥ = −JŜi · Ŝj (1)

where Ŝi is the total spin operator of site i and J parametrizes the coupling strength.

Negative J-values correspond to antiferromagnetic coupling. In the complexes considered

here, each Ni(II) ion has a triplet ground state, giving rise to quintet, triplet and singlet

states when coupled to the other Ni(II) ion in the complex. The Heisenberg Hamiltonian

predicts a regular energy spacing between these three states, known as the Landé pattern:

E(S − 1)− E(S) = JS (2)

To investigate the importance of the deviations to the Heisenberg Hamiltonian, we calculated

J from the energy difference of singlet and triplet, and triplet and quintet

E(S = 0)− E(S = 1) = J (3)

1

2
(E(S = 1)− E(S = 2)) = J (4)

When the two J values are equal the states follow the so called ”Heisenberg behavior”.

Otherwise one should either extend the model Hamiltonian with biquadratic interactions

terms,6,17–19 (which are usually very small18,20,21) or put doubts on the reliability of the

computational scheme.14

As test systems for magnetic coupling between sites with spin angular moments S = 1,

we selected a series of binuclear Ni(II) systems with different bridges, represented in Figure

1. The structure of the complexes was taken from x-ray crystallographic data and (when

necessary) slightly modified to adapt it to a specific symmetric point group. Previous studies

suggest that small geometrical changes to symmetrize the structure do not significantly affect

the calculated coupling strength.22,23

First, we present two complexes which have a double end-to-end azido bridge between

the Ni(II). The general formula is [Ni(µ1,3-N3)(R)]2+2 , where the external ligands are R =
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5,5,7,12,12,14-hexamethyltetraazacylotetradecane (1a) and 1,2-diaminopropane (1b). Both

compounds have a strong antiferromagnetic coupling (J) of −75.1 and −114.5 cm−1 respec-

tively,24,25 and they differ in the dihedral angle between the Ni(II) coordination spheres with

respect to the bridge.25,26 To facilitate the calculations we have replaced the external ligands

with NH3 groups. As for the symmetrization, this only has a weak influence on the calculated

coupling.23

[Ni2(dien)2(H2O)2(ox)]+2 (dien = diethylenetriamine, ox = oxalate) (2) with J = −28.8

cm−1 has an oxalato-bridge.27 More complex bridges are found in the complexes 3-5. First we

consider [Ni2(PHP6Me)Cl(H20)4]
3+ (PHP6Me = 1,4-bis((6-methylpyridine-2-carboxaldimino)

amino)phthalazine) (3)28 with J = −25.98 cm−1 and [Ni2(ppd)2(H20)4]
4+ (ppd = 3,6-bis(1’-

pyrazolyl)pyridazine) (4)29 with J = −29.6 cm−1. The Ni(II) ions in [Ni2L2(O2CPh)(H2O)2]+

(L = 2-[(3-Methylamino-propyl imino)-methyl]-phenoxide) (5)30 with J = −16.48 cm−1 are

coupled through a triple bridge: one carboxylate group and two alkoxo groups. Finally, the

Ni(II) ions in La2NiO4 (6) are connected by an O2− ion. The linear Ni–O–Ni pathway gives

rise to a very strong coupling (J = −240 cm−1). The coupling in this extended system was

calculated using a Ni2O11 fragment embedded in a set of point charges and total ion poten-

tials simulating the Madelung potential of the infinite crystal and the short-range Coulomb

and exchange interactions with the surrounding, respectively.

The orbital optimizations and CASPT2 calculations were performed using Molcas.31

The Casdi program32,33 was used to perform the DDCI calculations and the NEVPT2 results

were obtained with the computer code developed at the University of Ferrara.34 Relativistic

Atomic Natural Orbitals (ANO-RCC) basis sets were used, contracted to [2s] for H, [3s,2p]

for C and N in external ligands, [3s,2p,1d] for O and bridging C and N, [4s,3p,1d] for Cl and

[5s,4p,3d] for Ni. The DDCI calculations are at the limit of what is still feasible, especially for

the complexes with voluminous ligands. To reduce the number of inactive (virtual) MOs and

consequently the size of the DDCI space, we apply the dedicated orbital transformation7,35

to order the MOs by decreasing importance for the energy differences.36 The less important

MOs were excluded from the generation of the CI expansion. To avoid any bias towards a

particular spin state in the DDCI calculations, we used the iterative DDCI scheme.37 The

results are made independent of the starting orbital set by constructing average natural
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orbitals by diagonalizing the triplet-quintet average DDCI density matrix and perform a

new DDCI step with the average orbitals. The process is iterated until the energy difference

becomes constant, normally in three or four steps.

The original zeroth-order Hamiltonian38 was used in CASPT2 because this choice has

been shown to be more adequate for magnetic couplings than the present zeroth-order Hamil-

tonian39 based on the IPEA=0.25 Hartree parameter. The zeroth-order Hamiltonian of

n-electron valence PT2 (NEVPT2)40–43 is based on Dyall’s model Hamiltonian,44 which

contains all two-electron interactions among the active electrons. We have used both the

strongly-contracted (SC) and partially-contracted (PC) variant of NEVPT2.

State average methodology

The reference wave function for the DDCI and MRPT2 calculations was obtained at the

CASSCF level. Binuclear Ni(II) compounds present 2 magnetic orbitals and 2 electrons

per metal atom. Therefore the minimal active space required has 4 electrons in 4 orbitals,

CAS(4,4). The compounds present a Ci symmetry point group, except 4 which has C2v.

Figure 2 shows the magnetic orbitals of gerade (g) symmetry, a combination of 3dxy (a) and

3dz2 (b) Ni orbitals. According to previous studies, the former has a higher contribution to

the spin coupling due to the favorable delocalization in the plane containing the nickel and

the bridge atoms.18

To obtain a test set of molecular orbitals with a larger degree of delocalization an excited

electronic state with ionic character has to be identified. However, due to the size of the

active space, a large number of ionic singlet states appear in the calculation, in contrast to

the copper case where at most two ionic states are possible. Moreover, local excited states

(d-d transitions) also form part of the CAS space. Therefore, the first step was to identify

the states which were relevant for the magnetic coupling under study.

To facilitate the analysis of the electronic states the symmetry adapted magnetic orbitals

were transformed to local atomic-like orbitals by a unitary transformation based on the

projection of a model vector in the active space.10 Orbitals localized on the left/right Ni(II)

ion are labelled with A and B, respectively. The ground state (11Ag) is dominated by
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the configuration state functions with one electron in each magnetic orbital arising from

the MS = 0,±1 components of the local triplet states. This ”neutral” character of the

ground state is also present in the first nine excited singlet states. All these states have

multiconfigurational character and are dominated by configurations in which an electron is

transferred from one magnetic orbitals to the other on the same site. Their energy is in

the region between 4 and 10 eV above the ground state. The next excited singlet state is

at 26 eV above the ground state at CASSCF level. This ionic state (81Ag) is basically a

combination of two configurations; one with two electrons in A3dxy and two singlet coupled

electrons in A3dz2
and B3dxy , and the other with two electrons in B3dxy and two singlet coupled

electrons in A3dxy and B3dz2
. That is, one of the 3dz2 orbitals loses its electron in favor of the

other atom’s 3dxy orbital. Close in energy we found similar ionic states with configurations

where the 3dz2 orbitals are doubly occupied instead of the 3dxy ones. Finally, more than 90

eV above the ground state there are two doubly ionic states with configurations where the

4 electrons belong to a single atom. Taking into account that the 3dxy orbitals are more

important for the spin coupling than the 3dz2 ones, we selected the first ionic gerade state

for the SA-CASSCF calculations, obtaining a set of MOs from wave functions with a mixing

of 50% 11Ag / 50% 81Ag (W = 50%) up to 90% 11Ag / 10% 81Ag (W = 90%) following the

recipe applied for the Cu(II) binuclear complexes.15

The overlap of the magnetic orbitals obtained in the SA-CASSCF with different weights

of ionic state (S) with the natural DDCI orbitals (N) is calculated by

ovl(S,N) =

√∑
i∈S

∑
j∈N | < i|j > |2

n
(5)

where n is the total number of magnetic orbitals (four in this case) and i and j are the

SA-CASSCF and IDDCI magnetic orbitals, respectively. This ensures that the calculated

overlap does not depend on the particular representation of the magnetic orbitals (localized-

delocalized and redundant orbital rotations in the active space).

8



Results

Table 1 shows the magnetic coupling constant J for systems 1a, 2 and 3 using the state

specific CASSCF(4,4) molecular orbitals. As stated before, NEVPT2 couplings with these

MOs are weaker than the IDDCI result, which in turn is in rather good agreement with

experiment. Small differences may arise from the symmetrization, modelling of the external

ligands and truncation of the MO space after the dedicated orbital transformation. The

CASPT2 estimates of J obtained from E(S)-E(T) are reasonable. If we analyze the devi-

ation from the Heisenberg behavior, we observe that NEVPT2 results nicely fit the Landé

pattern, while CASPT2 shows unrealistic deviations. For these systems, the number of

determinants in the singlet DDCI functions are rather large (≈ 1.0 × 108) and it becomes

computationally quite expensive to obtain IDDCI converged energies for the singlets. Hence,

we cannot directly access the degree of deviation from Heisenberg at this level of calculation.

However, previous theoretical studies on system 1a26 and related complexes14,21 show that

the deviations obtained in DDCI are in general small. This suggest that the deviations to

the Heisenberg behavior observed with CASPT2 are not physically grounded, as previously

concluded for other complexes.14,45,46

To decide on the optimal weight of the ionic state in the SA-CASSCF orbital optimization,

we have calculated the overlap of the magnetic orbitals for different weights of the neutral

state (W ). Table 2 shows how the overlap of the SA-CASSCF and IDDCI natural magnetic

orbitals evolves as function of W . The trend is more or less uniform for all the compounds,

increasing with the neutral % until reaching a maximum and then decreasing again for

smaller weights of the ionic state. This ”inverted parabola” shape is consistent with the

previous copper study. The maximum is located in the region between W = 70 to 80, with

an overlap quite close to 1, as found for the copper complexes.

This is also illustrated in Figure 3, where it can be clearly seen that the singlet state

CASSCF 3dxy orbital is more compact, more localized on the metals, than the IDDCI natural

orbital. As stated before, this difference is crucial when working with MRPT2 methods. We

can also see that the SA-CASSCF orbital is quite similar to the IDDCI natural orbital.

In Table 3, we present the NEVPT2 results for systems 1a, 2 and 3 obtained with the
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cited SA-CASSCF MOs, focusing on the optimal range W = 70− 80% based on the overlap

analysis. As in the case of the Cu(II) dinuclear complexes,15 a decrease of the neutral

weight (W ) in the SA orbitals leads to an increase of the antiferromagnetic character of the

coupling. The calculated values reach a nearly exact coincidence with the IDDCI estimates

around W = 70%; for 1 at slightly larger value and for 2 at somewhat smaller W . This is

the same percentage of neutral/ionic mixing found for Cu compounds.

Furthermore, the results in Table 3 show that the Landé pattern for the splitting of

the three spin states is maintained for all weights in the NEVPT2 calculations. Using SA-

CASSCF orbitals to express the reference wave functions for CASPT2 does not lead to an

improved description. The deviations to the Heisenberg behavior remain (become more

pronounced) and the calculated J-values are not better than those obtained with state-

specific orbitals using the singlet-triplet energy difference to determine J .

Table 4 shows the magnetic coupling constant with state specific and SA-CASSCF MOs

(W = 70−80%) for complexes 1b and 4-6. In line with the analysis for 1a, 2 and 3, the same

pattern is observed, that is, (i) too small values for CASCI and NEVPT2 with state specific

MOs, (ii) reasonable agreement with IDDCI and experiment for CASPT2 when state-specific

orbitals are used only if the singlet-triplet energy difference is considered, (iii) significant

improvement when NEVPT2 is applied with SA-CASSCF(W = 70%) orbitals, (iv) and non-

negligible deviations to Heisenberg in the CASPT2 spectrum. The large coupling between

the Ni(II) ions in La2NiO4 crystal (6) is also reasonably reproduced with NEVPT2 based on

SA-CASSCF(W = 70%) orbitals. In this case small deviations from the Landé pattern are

observed. These deviations were reported for DDCI calculations as well and were ascribed to

a non-negligible contribution of biquadratic interactions caused by relatively low-lying local

non-Hund states.18

Finally, we compare the performance of the different methods taking into account the

percentage error with the experimental values. Table 5 shows the percentage difference be-

tween the calculated and experimental J values. First of all, we can see the good performance

of singlet-triplet CASPT2 using state specific MOs, with an average error of 27%. In addi-

tion to the methodological drawbacks (possibility of intruder states, choice of zeroth-order

Hamiltonian), it is also worth mentioning again that CASPT2 does not follow the Landé
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pattern expected from the Heisenberg behavior and in cases with weak coupling the ground

state is not always the correct one and one faces serious problems to decide on the nature

of the coupling, ferro- or antiferromagnetic.14 Moreover, it can be anticipated that CASPT2

will be less suitable for antiferromagnetic systems with many unpaired electrons. In these

cases, J is only accessible from the energy difference between the states with the highest

spin multiplicity due to the size of the active space for low-spin coupled states. However, the

large deviations in the Landé pattern for these states observed here makes such approach

highly unreliable.

As stated before state specific PC-NEVPT2 performs poorly in our study (average of

70% error) but the use of SA-CASSCF MOs with a 70% of neutral weight greatly improves

the results of this method (33% error) and results become comparable to CASPT2 with

the advantage of Heisenberg behavior and no appearance of intruder states. Finally, we

need to mention the IDDCI performance (24% error) which is slightly bigger than generally

obtained with this method in other compounds. The IDDCI results are directly affected by

the approximations made in this work, namely a removal of virtual orbitals to reduce the

space of determinants to make the calculations of the biggest systems tractable.

Concluding remarks

In this work we expand the study of the role of magnetic orbitals in the calculation of

MRPT2 methods. After the cited results on copper, the natural choice was to focus on

nickel binuclear complexes as the next step in complexity. The study covers a wide range of

antiferromagnetically coupled compounds with different bridge types, which serve as a good

testing ground. The results are promising as we show that PC-NEVPT2 can be greatly

improved using a set of MOs that are easy to obtain but have the same characteristics

as the natural orbitals determined via a computationally expensive scheme. The proposed

strategy has an outstanding ”accuracy / computational cost” ratio, which might lead this

computational scheme to a further wide use.

Concerning the CASPT2 results, we found that reasonable results are obtained using

single-state optimized orbitals and no improvement is observed when the SA-CASSCF are
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used. However, calculations have to be done with great care since intruder states may appear,

a non standard zeroth Hamiltonian has to be employed and last but not least, deviations to

the Landé pattern are intrinsic to the method. A second inconvenience of CASPT2 is that for

the coupling in binuclear Cu2+ complexes the single-state orbitals obtained from a minimal

active space does not provide equally good results as observed in the present work for the

Ni complexes. To circumvent the drastic increase of the size of the CAS when considering

system with more unpaired electrons, it is often recommended to leave behind the concept

of a complete active space and rely on restricted active space SCF (RASSCF),47 occupation

restricted multiple active space (ORMAS)48,49 or variants of the generalized active space

SCF (GASSCF)50,51 approach. This would indeed widen the applicability range of ab initio

wave function based methods, but the drawbacks lined-out for CASPT2 will also show up

for RASPT2, the implementation of MRPT2 with a RASSCF reference wave function.52

Although the complexity of the technique presented in this work increases with the num-

ber of unpaired electrons and magnetic centers –there will be more and more roots between

the magnetically interesting neutral state and the first ionic state– our future work will be

focused on the application to more complex systems, where DDCI calculations are definitely

out of the question. A first step in this direction has been taken already. Triggered by the

recent study of a binuclear Cr(III) complex by means of the Density Matrix Renormalization

Group (DMRG) technique,53 we have further tested our methodology for this model system

([Cr2O(NH3)10]
4+) with 6 unpaired electrons. Following exactly the same strategy as for the

Ni complexes, the PC-NEVPT2 result for J is -300 cm−1 using SA-CASSCF orbitals with

W = 70%, in very good agreement with the DMRG results.54 The estimates of the J-value

derived from singlet-triplet, triplet-quintet and quintet-heptuplet energy differences are all

very similar, no significant deviations from the Landé pattern were observed, in contrast to

the DMRG results reported by Harris et al.

The work reported here on the dinuclear Ni(II) complexes and the preliminary result

for the Cr-complex with six unpaired electrons is of course only a first step in the direction

towards a general method applicable to (virtually) any polynuclear complex with localized

spin moments. However, the extension of the original proposal –applied only to systems

with two S = 1
2

spin moments– to systems with S = 1 (and even higher in the Cr case)

12



establishes as a general feature that the poor quality of the single-state optimized CASSCF

orbitals causes severe underestimations of magnetic coupling strengths with MRPT2, in

particular NEVPT2. This failure is largely remedied by using a molecular orbital set that

resembles as much as possible IDDCI the natural orbitals, which are slightly more delocalized

in nature. This can be considered as the main conclusion of our work and the state-average

strategy that we developed to obtain a set of molecular orbital that maximally resembles the

IDDCI natural orbitals has been demonstrated to be applicable beyond the previous tested

S = 1
2
-systems. This does not automatically ensure that the same strategy can be applied to

any polynuclear system and we recognize that further work has to be done on the strategies

to improve the quality of the molecular orbitals that span the reference wave function for

the MRPT2 treatment of the electron correlation.
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Figure 1: Structures of the systems of study. Color coding for the atoms: nickel, green;

carbon, black; oxygen, red; nitrogen, blue; chlorine, yellow; hydrogen, white; lanthanum,

grey.

Figure 2: Symmetry-adapted g magnetic orbitals for system 1b. (Isovalue = 0.03)

Figure 3: Symmetry-adapted gerade magnetic orbital of 3dxy character of complex 1b for

singlet state specific CASSCF (a), SA-CASSCF (W = 70) (b) and IDDCI Natural Orbitals

(c). (Isovalue = 0.03)
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Table 1: Magnetic coupling constant J(cm−1) calculated using state specific CASSCF(4,4)

MOs for complexes 1a, 2 and 3. The J-values refer to E(S)-E(T) and [E(T)-E(Q)]/2, except

for IDDCI where only the latter is reported.

1a 2 3

CASCI -10 / -11 -4 / -3 -2 / -2

CASPT2 -62 / -48 -22 / -17 -20 / -13

SC-NEVPT2 -27 / -24 -7 / -6 -6 / -5

PC-NEVPT2 -29 / -26 -7 / -7 -7 / -6

IDDCI -65 -21 -15

Exp. -75.1 -28.8 -26

Table 2: Overlap of the magnetic SA-CASSCF and IDDCI natural orbitals for different

weights (W , %) of the neutral state used in the orbital optimization. W = 100% correspond

to the singlet ground state MOs. The maximum overlap is marked in bold.

W 1a 1b 2 3 4 5 6

50 0.9675 0.9722 0.9903 0.9905 0.9845 0.9919 0.9891

60 0.9913 0.9914 0.9950 0.9959 0.9947 0.9959 0.9951

65 0.9950 0.9947 0.9959 0.9975 0.9965 0.9966 0.9969

70 0.9962 0.9959 0.9962 0.9984 0.9971 0.9967 0.9981

75 0.9962 0.9961 0.9960 0.9989 0.9968 0.9964 0.9986

80 0.9957 0.9958 0.9956 0.9991 0.9962 0.9960 0.9987

90 0.9938 0.9946 0.9939 0.9987 0.9938 0.9944 0.9977

100 0.9918 0.9929 0.9925 0.9979 0.9919 0.9930 0.9967
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Table 3: PC-NEVPT2 magnetic coupling constants J (cm−1) for 1a, 2 and 3 as function of

the weight of the neutral state W (%) used in the SA-CASSCF(4,4) orbital optimization.

The values refer to E(S)-E(T) and [E(T)-E(Q)]/2.

W 1a 2 3

65 -125 / -126 -21 / -21 -21 / -20

70 -81 / -81 -17 / -17 -15 / -15

75 -56 / -56 -14 / -14 -11 / -11

80 -41 / -41 -12 / -12 -9 / -9

IDDCI -65 -21 -15

Table 4: Magnetic coupling constant J(cm−1) calculated for systems 1b and 4-6. The values

refer to E(S)-E(T) and [E(T)-E(Q)]/2.

1b 4 5 6

CASCI -14 / -13 -5 / -4 1 / 1 -76 / -70

CASPT2 -87 / -68 -23 / -16 -5 / -1 -219 / -206

SC-NEVPT2 -24 / -23 -12 / -11 4 / 2 -162 / -147

PC-NEVPT2 -27 / -27 -13 / -12 1 / 2 -168 / -154

IDDCI -94 -19 3 -228

W PC-NEVPT2 with SA-CASSCF MOs

70 -53 / -52 -21 / -21 -9 / -9 -206 / -214

75 -42 / -42 -17 / -17 -5 / -5 -177 / -183

80 -37 / -36 -14 / -14 -3 / -3 -155 / -160

Exp. -115 -29.6 -16.5 -242
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Table 5: Percentage errors (%) for the different methods used in this work.

State Specific State Average1

CASPT2 PC-NEVPT2 PC-NEVPT2 IDDCI

1a 17 61 8 13

1b 24 76 54 18

2 24 76 41 27

3 23 77 42 42

4 22 59 29 36

5 70 112 45 -

6 10 31 13 6

Average 272 70 33 24
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