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The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists,

and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos

due to their link with cardiac arrhythmogenesis. In this paper, we study the spatiotemporal dynamics

of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue.

In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic

dynamics over wide ranges of parameters. We study these dynamics using global and local

Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes—or phase

reversals—low-periodic dynamics prevail, while away from the nodes, the dynamics tend to be

higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and

chaotic dynamics can also be observed in a detailed ionic model. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901728]

Sudden cardiac arrest causes over 300 000 deaths in the

United States each year. This represents roughly half of

all heart disease related deaths, making it the number

one cause of natural death.1,2 Ventricular fibrillation,

which is characterized by chaotic dynamics in heart tis-

sue, is almost always fatal. Both experimental
3–5

and

theoretical
6,7

studies have linked ventricular fibrillation

with spatially discordant alternans, an out-of-phase

period-doubling response of heart tissue to pathological

conditions such as rapid pacing.8–12 In this paper, we

investigate numerically a continuum coupled map model

for calcium-driven alternans in a one-dimensional cable

derived previously by the authors
13,14

and find coexisting

regions of multi-periodic and chaotic dynamics. This sys-

tem provides an example of nonlocally coupled identical

dynamical systems that self-organize in regions with dis-

tinct dynamical behaviors, systems, which have recently

attracted much attention.15

I. INTRODUCTION

Ventricular fibrillation (VF)–a cardiac arrhythmia that is

almost always fatal–is characterized by complex spatiotem-

poral dynamics that are thought to be chaotic.1,2 In particu-

lar, a phenomenon known as cardiac alternans, which is

characterized by beat-to-beat alternations (i.e., period 2

dynamics) in both electrical and chemical behaviors,8 has

been linked to VF and the onset of chaotic behavior such as

spiral wave re-entry by experimental3–5 and theoretical6,7

studies. The link between alternans and VF has been

strengthened by the observation that alternans can form

discordantly,9–12 meaning that different regions of tissue

alternate out-of-phase. Spatially, discordant alternans are

particularly dangerous due to their tendency to promote con-

duction block of activity near the nodal lines that separate

out-of-phase regions.2

In isolation, the onset of alternans in a single cardiac

cell corresponds to a period-doubling bifurcation in the beat-

to-beat voltage and calcium dynamics, usually measured by

the action potential duration (APD) and peak calcium

concentration (Ca).8 Importantly, this period-doubling bifur-

cation can be driven by an instability in either the voltage or

calcium dynamics.16–20 When realized in a cable or patch of

tissue, the spatiotemporal dynamics of calcium-driven alter-

nans differ qualitatively from those of voltage-driven alter-

nans.21,22 In particular, when alternans are calcium-driven,

the length scale of phase reversals between discordant

regions potentially becomes as small as the length scale of a

single cell.23 Recently, we developed a reduced model for

the spatiotemporal dynamics of calcium-driven alternans13,14

(henceforth referred to as the SCA model for spatiotemporal

calcium alternans model), which reproduces these findings

and shows that, for sufficiently large degrees of instability,

calcium-driven alternans admit spatially discontinuous

solutions—a class of solutions that is non-physical when

alternans are voltage-driven.

In this paper, we show that for a wide range of parame-

ters, the SCA model admits even more complex solutions. In

particular, solutions can display multiple periodicities of dif-

ferent orders and chaos—often simultaneously. For several

decades, complex periodic and chaotic dynamics in cardiac

tissue has been an important area of research due to its link

with VF. Such dynamics have been observed in both experi-

mental24,25 and numerical17 studies. Chaos has been

observed in the Echebarria–Karma model26,27 (an analogous

reduced model for voltage-driven alternans) arising from the

modulation of traveling wave patterns.28 In contrast, we

observe in the SCA model qualitatively different dynamics

that are spatially localized. Such solutions can be observed
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in detailed ionic models such as the Shiferaw-Fox model17,29

that was used in Ref. 14 as we demonstrate below. Similar

patterns consisting of bands of chaotic and regular dynamics,

known as the frozen random pattern,30 were observed origi-

nally by Kaneko31 in lattices of coupled chaotic maps.

Recently, there has been much renewed interest in similar

types of dynamics known as chimera states in the context of

coupled phase oscillators15 and more general dynamical sys-

tems.32,33 In this paper, we show how such patterns appear in

a model of spatiotemporal alternans dynamics, an example

of a continuum coupled map.34

The remainder of this paper is organized as follows. In

Sec. II, we summarize the model and the bifurcations studied

previously in Refs. 13 and 14. In Sec. III, we illustrate the

coexistence of chaotic and multi-periodic dynamics in the

model. We support our findings by computing both global

and local Lyapunov exponents and investigate the correla-

tions of trajectories along the cable. In Sec. IV, we present

simulations from a detailed ionic model, where chaotic and

multi-periodic dynamics can be easily observed. In Sec. V,

we conclude with a discussion of our results.

II. MODEL SUMMARY

The SCA model,13,14 which is based on the pioneering

restitution-based approach of Refs. 35 and 36 and extends

the amplitude equation of Refs. 26 and 27, consists of a sys-

tem of two integro-difference equations that model the beat-

to-beat evolution of the non-dimensional amplitudes of cal-

cium and voltage alternans along a one-dimensional cable,37

assuming a calcium-mediated instability. By convention, we

assume that the cable has length L with spatial coordinate x
� [0, L] denoting the position along the cable, and that the

cable is paced at the x¼ 0 end with period sBCL. The non-

dimensional amplitude of calcium and voltage alternans at

beat n and location x along the cable are denoted cn(x) and

an(x), respectively. Healthy period-one dynamics correspond

to an(x)� 0, cn(x)� 0, while an(x) 6¼ 0 or cn(x) 6¼ 0 indicate

alternans. In the SCA model, the beat-to-beat dynamics of

an(x) and cn(x) are governed by

cnþ1 xð Þ ¼ �rcn xð Þ þ c3
n xð Þ � aan xð Þ

þ a
K

ðx

0

e x0�xð Þ=Kan x0ð Þdx0; (1)

anþ1 xð Þ¼
ðL

0

G x;x0ð Þ �ban x0ð Þþ b
K

ðx0

0

e y�x0ð Þ=Kan yð Þdy

"

þ ccnþ1 x0ð Þ
�

dx0; (2)

where the parameters r and b are related to the single-cell,

uncoupled calcium and voltage dynamics, a and c represent

the strength of voltage-to-calcium and calcium-to-voltage

coupling, respectively, and K is a parameter related to the

restitution of conduction velocity. These parameters are sum-

marized in Table I and discussed in more detail in Appendix.

The dynamics of voltage alternans [Eq. (2)] are spatially

coupled by the Green’s function Gðx; x0Þ ¼ Gðx0 � xÞ
þGðx0 þ xÞ þ Gð2L� x0 � xÞ, where

G xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pn2

p e�x2=2n2

1þ wx

2n2
1� x2

n2

 !" #
: (3)

For a full derivation of the SCA model, see Refs. 13 and 14.

We note that the relatively simple system (1)–(3), in which

each cell is described by only two variables, reproduces non-

trivial effects observed also in much more complex ionic

model simulations, in which each cell is described by dozens

of variables.13,14

For simplicity, in this paper, we focus on the effects of

changing the main dynamical parameter r. To understand

the role of this parameter, note that in the absence of volt-

age alternans, an¼ 0 (such as when using a voltage clamp),

the single-cell dynamics of calcium alternans are modeled

by

cnþ1 ¼ �rcn þ c3
n; (4)

for which the no alternans solution (cn¼ 0) is stable for

0� r< 1. At r¼ 1, this solution loses stability and gives rise

to stable non-zero solutions for r> 1. The parameter r, thus,

can be interpreted as controlling the degree of instability in

the calcium cycling machinery of the cell. From now on, we

will study the effects of increasing r, while keeping the other

parameters constant.

The dynamics of the SCA model for relatively low val-

ues of r was studied in Refs. 13 and 14. As r is increased

from zero, three types of dynamics are observed: no alter-

nans, smooth wave patterns, and discontinuous patterns.

The no alternans solution, stable for sufficiently small r, is

given by c(x), a(x)� 0. The first bifurcation, corresponding

to the onset of alternans, separates the no alternans solu-

tions from the smooth wave pattern solutions. Smooth

wave pattern solutions can be either stationary or have a fi-

nite velocity, depending on whether the asymmetry of the

Green’s function [controlled by the parameter w in (3)] is

large or small, respectively. In the case of small or no

asymmetry, as we consider here, smooth wave patterns

have a finite velocity with which they move towards the

pacing site. Finally, at a second bifurcation, the smooth

wave patterns give way to solutions, where the calcium

profiles form discontinuous jumps at each phase reversal,

while the voltage profiles remain smooth. Furthermore,

these solutions are always stationary. In the remainder of

this paper, we will see that the SCA model admits even

more complex dynamics.

TABLE I. Description of SCA model parameters given by Eqs. (1)–(3) and

the values used in this paper.

Parameter Description Value

r Degree of calcium instability Varied

K Slope of conduction velocity restitution 30

b Slope of APD restitution 0

a Voltage! calcium coupling
ffiffiffiffiffiffiffi
0:3
p

c Calcium! voltage coupling
ffiffiffiffiffiffiffi
0:3
p

n Length scale of electronic coupling 1

x Asymmetry of electronic coupling 0
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III. COEXISTING CHAOTIC AND MULTIPERIODIC
DYNAMICS

We will now study the dynamics of the SCA model for

even larger values of the calcium-instability parameter r. In

particular, we find a wide parameter range that admits simul-

taneous multi-periodic and chaotic behavior that is spatially

localized. We will study these dynamics over a large range

of r values, while keeping all other parameters fixed. In par-

ticular, throughout this paper, we use K¼ 30, a; c ¼
ffiffiffiffiffiffiffi
0:3
p

,

b¼ 0, n¼ 1, and w¼ 0 and consider a cable of length

L¼ 20. Furthermore, we will consider initial conditions

defined randomly, drawing each point c0(x) uniformly from

[0.68, 1.08] if 6� x< 16, and otherwise draw c0(x) from

[�1.08, �0.68]. This choice is made to ensure the presence

of two nodes along the cable, one at x¼ 6 and the other at

x¼ 16. We emphasize here that dynamics similar to those

we will present can be observed for other choices of parame-

ters and initial conditions. Finally, to update Eqs. (1) and (2),

we evaluate each integral by discretizing the interval [0, 20]

using Dx¼ 0.004 and using the trapezoidal rule.

A. Chaos and multiple periodicities

We begin by presenting in Fig. 1 evidence from direct

numerical simulations of Eqs. (1) and (2) of coexisting cha-

otic and multi-periodic dynamics. In panels (a)–(f), we plot

cn(x) for n¼ 2001 to n¼ 2016 after discarding the initial

2000 beats for several values of r: r¼ 1.42, 1.62, 1.78, 1.80,

1.84, and 2.12. Thus, the plots show an approximation to an

attractor for each value of x. For purposes of visualization,

we mark the locations of the phase reversals at x¼ 6 and

x¼ 16 with dashed vertical lines. These profiles serve as

good examples for the increasingly complex behavior, we

observe for larger r values.

For r¼ 1.42, the steady-state dynamics are period-two

and fall into the category of solutions studied in Refs. 13 and

14. Next, at r¼ 1.62, we see that a section of cn(x) away

from the phase reversals has undergone a bifurcation. We

note, however, that the dynamics in these regions are not

period-four, but represent two separate branches of period-

two dynamics that are each realized by roughly half the

points along the cable due to the random initial conditions.

This interesting effect can be explained using the local

calcium map in Eq. (4) and will be discussed below. We

note that other branchings that we observe are, in fact, the

result of period-doubling bifurcations. In particular, for

r¼ 1.78 and r¼ 1.80, we observe solutions with high-order

periodicities away from the phase reversals but which remain

period-two near the phase reversals. Finally, for r¼ 1.84 and

r¼ 2.12, we observe chaotic behavior. At r¼ 1.84, the chaos

is localized to relatively small parts of the cable away from

the phase reversals, with multi-periodic behavior elsewhere.

Finally, chaos dominates for r¼ 2.12, with only small areas

of periodic behavior present near the phase reversals.

In addition to different types of dynamics coexisting in

different regions, different attractors can coexist in the same

region. More specifically, we find that in some regions of the

cable, there can be multiple attractors, which cn(x) can

approach as n!1 depending on the initial conditions. One

example is in Fig. 1(b) in the region 7 � x � 13. In this

region, there are two period-two orbits, so that, for a fixed

value of x, cn(x) alternates only between two values.

However, which periodic orbit cn(x) approaches depends

sensitively on the initial conditions, and, in our case, each of

the two periodic orbits is approached at roughly half the val-

ues of x. Therefore, the plot seems to show four curves even

though each point alternates at most between two values.

Another example occurs in Fig. 1(e) for 8 � x � 10, where a

chaotic attractor coexists with another which, although appa-

rently periodic, is upon close inspection (not shown) also

chaotic.

B. Local map dynamics

To gain some insight into the dynamics we have

observed, we examine in more detail the dynamics described

by the one-dimensional map in Eq. (4) as a function of the

FIG. 1. Coexisting chaotic and multi-periodic dynamics: Example steady-state calcium profiles c(x) obtained from direct simulation of Eqs. (1) and (2) for (a)

r¼ 1.42, (b) r¼ 1.62, (c) 1.78, (d) 1.80, (e) 1.84, and (f) 2.12. Steady-state is reached after a long transient of 2000 beats. Phase reversals at x¼ 6 and x¼ 16

are marked by vertical dashed lines.
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parameter r. For r � [0, 3], Eq. (4) maps the interval [�2, 2]

into itself. A straightforward analysis shows that for r �
[0, 1), the fixed-point solution c¼ 0 is stable and loses stabil-

ity at r1¼ 1. Immediately above r1, the period-two solution

c ¼ 6
ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

is stable, but then loses stability at r2¼ 2.

Interestingly, instead of a single period-four solution, two

stable period-two solutions are born, whose basins of stabil-

ity partition the interval [�2, 2]. This bistability is due to the

presence of two extremal points in the cubic map and is simi-

lar to the dynamics found in other one-dimensional

maps.38,39 While bistability between periodic and chaotic

dynamics is observed in these other maps, the symmetry in

Eq. (4) implies that both stable solutions are either both

periodic or both chaotic. These solutions, which are given by

c ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4
pp

=
ffiffiffi
2
p

, are themselves stable until

r3 ¼
ffiffiffi
5
p

, when two period-four solutions are born. As with

many other one-dimensional maps, this process of period-

doubling branchings continues as a cascade until the onset of

chaotic behavior.40

In Fig. 2, we illustrate the dynamics of the local map

with its bifurcation diagram. We highlight the splitting of

stable periodic solutions at r2¼ 2 by plotting one family in

blue and the other in red. Note, however, that solutions are

symmetric about c¼ 0. We also compute for each r value,

the Lyapunov exponent defined as

k ¼ lim
n!1

1

n
log2

jdcnj
jdc0j

; (5)

where dc0 is formally an infinitesimal perturbation to a solu-

tion in the attractor and dcn is the evolved perturbation after

n iterations, such that k describes the rate of divergence (or

convergence) of two nearby trajectories. In Fig. 2, we plot a

numerical approximation to k (bottom panel) below c (top

panel) as a function of r. From both the bifurcation diagram

and the Lyapunov exponent, we find that the onset of chaotic

behavior occurs at rc� 2.303.

C. Local and global Lyapunov exponents

We now return to the full system given by Eqs. (1) and

(2). Our objective, in this Section, is to quantify the

separation of the cable into distinct chaotic and periodic

regions. In order to do this, we define a local Lyapunov

exponent klocal(x) for every point x in the cable. For the pur-

poses of this paper, we will define the dynamics at a point to

be chaotic at a point x, if klocal(x)> 0. In addition to the local

Lyapunov exponent, we will also consider a global

Lyapunov exponent. To define these exponents, we consider

an infinitesimal perturbation dc0(x) to a solution c(x) in the

attractor. If dcn(x) denotes the evolution of the perturbation

forward in time n steps, we define the local Lyapunov expo-

nent as

klocal xð Þ ¼ lim
n!1

1

n
log2

jdcn xð Þj
jdc0 xð Þj : (6)

Importantly, klocal(x) depends on x and, therefore, allows us

to compare the dynamics at different points along the cable.

We can calculate also the global Lyapunov exponent,

denoted kglobal, as

kglobal ¼ lim
n!1

1

n
log2

kdcn xð Þk
kdc0 xð Þk

; (7)

where k � k represents the L2–norm, i.e., kcðxÞk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ L
0

c2ðxÞdx
q

. Thus, kglobal gives a single value that

describes the aggregate dynamics of cn(x) over the whole

cable. (Note that, since the choice of dc0(x) is arbitrary,

kglobal corresponds with probability one to the largest

Lyapunov exponent.)

In order to quantify the coexistence of chaos and regular

behavior observed in Fig. 1, we plot in Figs. 3(a)–3(c), the

c(x) attractors and the corresponding Lyapunov exponent

klocal(x) for r¼ 1.62, r¼ 1.84, and r¼ 2.12. Using klocal(x),

we identify which points along the cable display chaotic dy-

namics by checking if klocal(x)> 0 and indicate these areas

of the cable by coloring both c(x) and klocal(x) red.

Otherwise, we color both c(x) and klocal(x) blue. We remark

that, as discussed before, for some values of x, there are mul-

tiple coexisting attractors, and correspondingly there are

some regions that have multiple curves [e.g., around x¼ 10

in panels (a) and (b)].

For r¼ 1.62, no chaotic behavior is exhibited anywhere

in the cable. However, we observe that klocal(x) tends to zero

at the points corresponding to the branchings, analogous to

branchings of typical bifurcation diagrams (e.g., Fig. 2), and

klocal(x) is most negative close to the nodes at x¼ 6 and

x¼ 16. For r¼ 1.84 and r¼ 2.12, the chaotic regions as indi-

cated by klocal(x)> 0 agree with what one would expect from

observing the upper panels in Fig. 3. For r¼ 1.84, chaotic

behavior is limited to a relatively small fraction of the cable,

while for r¼ 2.12, it covers most of the cable.

To check that the full spatiotemporal system is also cha-

otic, we calculate the global Lyapunov exponent kglobal as

function of r, and plot it in Fig. 4. Here, we see that, on ag-

gregate, the dynamics transition from the non-chaotic regime

(kglobal< 0) at smaller r values, to the chaotic regime

(kglobal> 0) at larger r values. We checked that the range of

intermediate r values (approximately between r¼ 1.52 and

1.81), where kglobal remains very close to zero corresponds to
FIG. 2. Local map dynamics: Bifurcation diagram of steady-state solutions

and Lyapunov exponent for the one-dimensional local map given by Eq. (4).
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parameter values that yield multi-periodic behavior with one

or more branchings along the cable. We also note that kglobal

become positive when the first local chaotic regions in the

cable appear.

D. Trajectory correlations

We have found that at a given point x in the cable the

dynamics of cn(x) can have sensitive dependence on initial

conditions, suggesting chaotic dynamics. However, given

the nonlocal coupling present in Eqs. (1) and (2), it is

unclear whether the dynamics at different locations are

correlated. To investigate this further, we introduce the

marginal and joint occupation probabilities Px(c) and

Pxyðc; c0Þ. In particular, Px(c)dc gives the steady-state prob-

ability that cn(x) is between c and cþ dc, while

Pxyðc; c0Þdcdc0 is the steady-state probability that cn(x) and

c0nðyÞ are simultaneously between c and cþ dc and c0 and

c0 þ dc0, respectively. We are primarily concerned with

solutions, where chaos dominates the cable, so as an exam-

ple, we restrict our attention to the parameter value

r¼ 2.12 [see Fig. 1(f)].

We begin by computing the marginal and joint probabil-

ities distributions Px(c) and Pxyðc; c0Þ at points x¼ 10 and

y¼ 12 along the cable. In practice, we iterate the map (1)

and (2), sampling 107 iterations after discarding the initial

2000 steps, and calculating each distribution from the frac-

tion of iterations that fall into the appropriate bins of size

dc; dc0 ¼ 0:02. In Figs. 5(a) and 5(b), we plot the marginal

distribution Px(c) for x¼ 10 (blue circles) and 12 (red

crosses) and the joint distribution Pxyðc; c0Þ for x¼ 10 and

y¼ 12, respectively. Inspecting the marginal distributions

Px(c) in Fig. 5(a) first, the occupation probabilities computed

at x¼ 10 and 12 have similar but slightly different shapes. In

particular, for x¼ 12, the gap about c¼ 0 is wider and the

peaks are larger. Next, we observe some strong structural

correlations in the joint distribution Pxyðc; c0Þ. In particular,

the support of Pxyðc; c0Þ lies solely in the first and third quad-

rants, with Pxyðc; c0Þ ¼ 0 whenever c � c0 < 0. This effect

comes directly from the fact that both points x and y were

chosen from the same in-phase region along the cable. If, on

the other hand, x and y are chosen on opposite sides of a

node (e.g., x¼ 10 and y¼ 18), then the joint distribution flips

such that its support lies solely in the second and fourth

quadrants, with Pxyðc; c0Þ ¼ 0 whenever c � c0 > 0 (not

shown).

This strong structural effect present in the joint distribu-

tion implies that the occupation probabilities at different

points along the cable are correlated [i.e., the joint distribu-

tion cannot be separated into the product of the two marginal

distributions, Pxyðc; c0Þ 6¼ PxðcÞPyðc0Þ�. We now investigate

whether any further correlations exist past the shared/oppo-

site sign structure that is due to the switching inherent in the

system. To this end, we construct from the time series cn(x),

a new time series ~cnðxÞ ¼ jcnðxÞj and introduce the corre-

sponding marginal and joint distributions ~Pxð~cÞ and
~Pxyð~c; ~c0Þ analogous to those introduced above. Using the

same technique, we compute the marginal and joint distribu-

tions at the same points along the cable. We observe (not

shown) that the two distributions are very similar, with the

main difference being that ~Pxyð~c; ~c0Þ is coarser; an effect that

is simply due to sampling the joint distribution. To confirm

this, we calculate the Pearson correlation coefficient of the

two time series, given by q ¼ ½Eð~c~c0Þ � Eð~cÞEð~cÞ�=
½rð~cÞrð~c0Þ�, where E(�) and r(�) denote expected value and

standard deviation, respectively. We find that the correlation

coefficient is very small, q¼ 2.3� 10�4, confirming that

correlations are effectively zero. We have checked that the

correlation coefficient remains as small as long as x 6¼ y and

both x and y are both in a chaotic region. Thus, even though

the dynamics has a coherent large scale structure [e.g., Figs.

1(e) and 1(f)], the chaotic behavior at two different points

can be considered statistically independent.

FIG. 3. Local Lyapunov exponent: Steady-state calcium profiles c(x) with corresponding spatial Lyapunov exponents klocal(x) for (a) r¼ 1.62, (b) r¼ 1.84, and

(c) r¼ 2.12. Points displaying chaotic behavior, characterized by klocal(x)> 0, are colored red.

FIG. 4. Global Lyapunov exponent: Global Lyapunov exponent kglobal com-

puted over a range of r values.
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IV. CHAOTIC AND MULTI-PERIODIC DYNAMICS
IN A DETAILED IONIC MODEL

We now turn our attention to briefly study the dynamics

of a detailed ionic model. Specifically, we will demonstrate

that the chaotic and multi-periodic dynamics observed and

studied in the reduced model above can also be observed in

more complicated, biologically robust models. We consider

here the Shiferaw-Fox ionic model, which combines the cal-

cium cycling dynamics of Shiferaw et al.17 with the ionic

current dynamics of Fox et al.29 Importantly, the coupling

between detailed calcium and voltage dynamics given by the

Shiferaw-Fox model allows for a robust enough model to

produce calcium-driven alternans for relatively large param-

eter ranges.

We note that the choice of parameters and implementa-

tion we use here is the same as used in Refs. 14, 23, and 41

except when indicated. In the calcium-cycling dynamics of

the Shiferaw-Fox model, the primary mechanism for calcium

ions entering the cell cytoplasm, aside from the standard L-

type calcium current, is the release of stored calcium from

the sarcoplasmic reticulum (SR), a network of rigid tubule-

like structures that store calcium within the cell. This release

occurs via a positive-feedback process in response to the

activation of the L-type calcium current. In the Shiferaw-Fox

model, the rate of calcium release by this mechanism is

determined by a parameter u, where large (small) values typ-

ically correspond to more (less) instability in the calcium cy-

cling dynamics. To promote calcium instabilities, we choose

a relatively large release parameter of u¼ 30 ms�1. In addi-

tion, we use a relatively small voltage inactivation timescale,

sf¼ 38 ms, to ensure that voltage dynamics do not drive the

instability. To ensure that calcium-to-voltage coupling is

positive, we choose a relatively small calcium inactivation

exponent c¼ 0.5.17 Finally, we also increase the timescale sj

of the fast-sodium j-gate dynamics. This effectively

increases the slope of the conduction velocity restitution

curve (see Refs. 14, 21, and 41 for a discussion). Here, we

used sj 7! 8sj. In summary, our parameter choices are made

so that (i) alternans are calcium-driven, (ii) calcium-to-volt-

age coupling is positive, and (iii) the conduction velocity res-

titution curve is not flat.

We now present the results from simulations of the

Shiferaw-Fox model. We consider here a cable of length

8 cm using a discretization of Dx¼ 0.02 cm paced periodi-

cally at the end x¼ 0. In Fig. 6, we plot the steady-state peak

calcium concentration Ca(x) along the cable taken from the

last 32 beats after a transient of 2000 beats for simulations

paced at sBCL¼ 214 ms (a) and 200 ms (b). At sBCL¼ 214,

the dynamics along the cable are period-two near the nodes

and period-four and period-eight away from the nodes. (We

note that these are truly period-four solutions, not two differ-

ent period-two solutions.) At sBCL¼ 200 ms, the dynamics

become even more complicated. While low periodic behav-

ior still prevails near the nodes, we find additionally seg-

ments of the cable that have period-sixteen, period-thirty

two, and chaotic dynamics. Interestingly, the more compli-

cated dynamics, i.e., higher periodicities and chaos, tend to

occur towards the back end of the cable. Also, starting at

period-four, the dynamics in the top- and bottom-half

branches cross one another. Nonetheless, our results confirm

that the coexistence of multi-periodic and chaotic dynamics,

we have studied in the reduced model above [Eqs. (1) and

(2)] is not just an artifact, but can be realized in a biologi-

cally robust ionic model.

V. DISCUSSION

In this paper, we have numerically studied novel dynam-

ics that emerge from the SCA model for calcium-driven

alternans in a one dimensional cable of tissue.13,14 In particu-

lar, we have observed spatially localized chaotic and multi-

periodic behavior that often occurs simultaneously over a

wide range of parameters. To study these dynamics, we have

used both local and global Lyapunov exponents, as well as

investigated the occupation probabilities and the correlations

FIG. 5. Trajectory occupation proba-

bilities: (a) Marginal distribution Px(c)

and (b) joint distribution Pxyðc; c0Þ of

chaotic trajectories in the set at x¼ 10

and y¼ 12 for r¼ 2.12.

FIG. 6. Ionic model dynamics: Steady-

state dynamics of the Shiferaw-Fox

ionic model on a cable of length 8 cm

paced at sBCL¼ 214 ms (a) and 200 ms

(b). Shown are the last 32 beats after a

transient of 2000 beats in each case.
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between them for chaotic trajectories. Interestingly, as the

degree of calcium instability increases, the dynamics away

from phase reversals tends to be more complicated, resulting

in high-order periodicity and eventually chaos, while dynam-

ics near the node tends to be simpler, often period-two.

We have complemented our analysis of the reduced

model with numerical simulations of the Shiferaw-Fox ionic

model, a biologically robust model that has a detailed

description of the intracellular calcium cycling dynamics. In

particular, we showed that coexisting multi-periodic and cha-

otic dynamics can be observed in a cable for a reasonable set

of parameters.

Theoretical efforts to eliminate alternans by implement-

ing control algorithms are generally focused on the suppres-

sion of a relatively small number of unstable modes in the

weakly nonlinear regime.42 In the strongly nonlinear regime

analyzed here, the vanishing correlation length that we

observed suggests that chaos is of very high dimensionality

and that these methods would not be effective. However, we

note that the parameters in which localized chaos are present

are somewhat extreme.

Our work shows that the SCA model is an example of a

system of non-locally coupled dynamical systems that,

despite being defined identically, self-organize into spatially

localized regions with distinct dynamical behavior. These

kinds of systems have recently attracted much attention, in

particular, in systems of coupled oscillators, where they have

become known as chimera states.15 Our results, following

Refs. 32 and 33, suggest that the idea of a chimera state can

be generalized to a larger class of dynamical systems that

display much wider ranges of dynamical behavior than just

synchronization and incoherence. Finally, we believe that

the possibility of such dynamics possibly existing in physi-

cally relevant models of cardiac tissue is interesting for the

cardiac dynamics community, and potentially relevant to the

design of alternans control protocols.
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APPENDIX: MODEL PARAMETERS

In this Appendix section, we briefly describe the param-

eters of the SCA model given by Eqs. (1)–(3). For more

detail on the derivation of the SCA model and the parame-

ters, see Refs. 13 and 14. In Table I, we summarize all model

parameters.

Recall that the main parameter varied in this paper is r,

which controls the single cell calcium dynamics as described

in Eq. (4). In principle, a coefficient g> 0 of the cubic term

can be included, i.e., c3 7! gc3, however, here we choose

g¼ 1 for simplicity. The parameter K relates to the conduc-

tion velocity (CV) restitution along the cable. In short, the

CV, or wave front propagation speed with which a stimulus

travels through tissue at a particular point depends on the

local diastolic interval, i.e., the time spent depolarized after

the previous stimulus has passed. CV depends on the

diastolic interval through a nonlinear function cv(d) that is

typically monotonically increasing with but levels off for

large d. In particular, since alternans cause the diastolic

interval to vary along the cable, so does the CV, giving rise

to an effect that is captured by the K�1
Ð x

0
eðx

0�xÞ=Kanðx0Þdx0

terms in Eqs. (1) and (2), where K ¼ cv2ðd	Þ=2cv0ðd	Þ and

d* is the diastolic interval at the onset of alternans.

Typically, K is large so that K�1 
 1. Here, we have used

K¼ 30.

The parameter b describes the effect of APD restitution,

i.e., the dependence of voltage alternans on the voltage alter-

nans at the previous beat. Because we are interested in

calcium-driven alternans, b should be chosen to be less than

one. For simplicity, and since we have verified14 that this

does not change the qualitative behavior of the model, we

use b¼ 0. The parameters a and c describe the bi-direction

voltage ! calcium and calcium ! voltage coupling of the

system. Here, we have used a ¼ c ¼
ffiffiffiffiffiffiffi
0:3
p

.

Finally, the parameters n and w relate to the Green’s

function Gðx; x0Þ ¼ Gðx0 � xÞ þ Gðx0 þ xÞ þ Gð2L� x0 � xÞ
that appears in Eq. (2), whose shape is described by Eq. (3).

The parameter n is a length scale that describes the width of

G(x), and physically indicates the length scale of electrotonic

coupling, i.e., the spatial coupling that is due to the diffusion

of voltage across tissue. The parameter w is also a length

scale, but has a different meaning. In particular, note that for

w¼ 0, the Green’s function is simply a Gaussian kernel.

Positive w [which appears in only odd powers in Eq. (3)],

thus, creates an asymmetry in the electrotonic coupling.

Physically, this corresponds to the symmetry-breaking effect

of a stimulus propagating in a given direction, here the posi-

tive direction from x¼ 0 to x¼L. Here, we use n¼ 1 and

w¼ 0 for simplicity.
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