ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

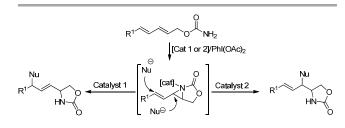
Rhodium-catalyzed Regio- and Stereoselective Oxyamination of Dienes via Tandem Aziridination/Ring-opening of Dienyl Carbamates

Joan Guasch,^a Yolanda Díaz,^a Isabel Matheu^{*a} and Sergio Castillón^{*a}

75

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The reaction of dienyl carbamates with PhI(OR)₂ in the presence of rhodium catalysts affords vinyl aziridines which are *in situ* regio– and stereoselectively opened to afford ¹⁰ oxyamination products resulting from a selective S_N^2 (Rh₂(OAc)₄/PhI(OPiv)₂) or S_N^2 ? (Rh₂(OPiv)₄/PhI(OAc)₂) opening. The scope and limitations of this tandem process are described.


- Vinyl aziridines are key starting intermediates for the synthesis 15 of a diversity of functionalized nitrogen-containing products through nucleophilic ring opening processes.¹ Thus, the nucleophilic ring opening of vinylaziridines could proceed through either $S_N 2$ (B) or $S_N 2$ ' (A) processes (Scheme 1).² They also undergo isomerization and cycloaddition reactions affording 20 a wide range of heterocycles through tandem opening/cyclization
- processes usually catalyzed by transition metal complexes.¹

$$\underset{R_{1}}{\overset{Nu}{\underset{R_{3}}{\overset{}}{\overset{}}}} \overset{NHR_{2}}{\underset{R_{3}}{\overset{A}{\overset{}}}} \overset{A}{\underset{S_{N}2}{\overset{}}} \overset{NR_{2}}{\underset{B}{\overset{}}} \overset{B}{\underset{R_{3}}{\overset{}}} \overset{Nu}{\underset{R_{3}}{\overset{}}} \overset{NHR_{2}}{\underset{R_{3}}{\overset{}}}$$

25 Scheme 1. Pathways for the ring-opening of vinylaziridines.

In vinylaziridines ring opening, the selective weakening of the allylic C-N bond by π C=C- σ *C-N overlap³ intrinsically directs the nucleophilic addition through A and B pathways. An ³⁰ S_N2'path is observed with organocopper reagents,⁴ whereas oxygen-centered nucleophiles,⁵ halogens⁶ and sulfur-stabilized carbanions,^{3,7} lead preferentially to S_N2 products. The latter examples suggest that the regioselectivity of the ring opening reactions of vinylaziridines is governed mainly by the type of ³⁵ nucleophile. However, vinylaziridine substitution, catalysts⁸ and solvent also play a role in the regioselective opening control. In this sense, controlling the regioselective opening of vinylaziridines remains an unachieved challenge.

Ring-opening reactions of vinylaziridines with oxygen ⁴⁰ nucleophiles constitute a useful pathway for the stereoselective synthesis of unsaturated aminoalcohols.^{5,9,5d} We recently developed an efficient silver-catalyzed regio- and stereospecific aziridination of dienols, that allowed an easy access to sphingosine.¹⁰ The regioselectivity obtained in the aziridination ⁴⁵ reaction (9:1) was remarkable. However, we considered that it could be improved by performing an intramolecular version of the reaction. Intramolecular aziridination using sulfamates,¹¹ sulfonamides,¹² sulfonimidamides,¹³ carbamates¹⁴ and tosylcarbamates¹⁵ as nitrene precursors catalyzed by copper or ⁵⁰ rhodium complexes has been reported. However, there are no examples of their application in the synthesis of vinylaziridines.

Scheme 2. Tandem intramolecular aziridination-ring opening.

⁵⁵ In this communication we report the first tandem transition metal-catalyzed intramolecular aziridination of dienes followed by a regiocontrolled ring-opening with oxygen nucleophiles. The metal catalyst plays a double role, as a nitrene stabilizing agent in the aziridination reaction and eventually as a Lewis acid in the ⁶⁰ nucleophilic ring opening process (Scheme 2).

At the outset of this study we focused on the intramolecular aziridination of carbamate 1 (Table 1). Initially, Cu, Ag and Rh were tested as catalysts in the presence of iodobenzene diacetate (PhI(OAc)₂) and MgO at 20°C.¹⁶ In all cases the formation of ⁶⁵ acetates **3a** and **3b** was observed. These compounds arise from the transient vinylaziridine **2** and subsequent S_N2 and S_N2', respectively, ring opening by the acetate group released in the formation of the nitrene transfer reagent.^{14a,b} Both reactions were stereoselective, affording a single diastereomer (See Scheme 3 ⁷⁰ and supplementary information for the determination of relative configuration of compound **3b**). The best results were obtained using catalytic amounts of dirhodium tetraacetate which afforded acetates **3a** and **3b** in good yield with a regioisomeric ratio of 75:25 (Table 1, entry 1).

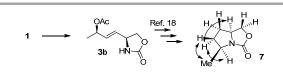
hemComm Accepted Manuscript

This journal is © The Royal Society of Chemistry [year]

50

Table 1. Tandem intramolecular aziridination/ring opening of **1** with different nitrene sources using Rh(II)carboxylate as catalysts. Optimization of the reaction conditions.^a

	0 ∕_0∕_NH₂ -	Rh ₂ (L) ₄ PhI(OR) ₂ , Mg	0 3a R 4a R 5a R	=Piv	OR HNY 3b R=Ac 4b R=Piv 5b R=Bz 6b R=CF ₃ CO
Entry	R	L	Products	Conv. ^b (Yield) ^c (%)	Regiosel. a,b ratio ^b (%)
1	Ac	OAc	3a,b	95(87)	75:25
2	Piv	OAc	4a,b	$>99(89)^{d}$	91:9
3	Bz	OAc	5a,b	>99(91)	66:34
4	CF ₃ CO	OAc	6a,b	>99(0)	
5	Ac	OPiv	3a,b	>99 (82)	10:90
6	Piv	OPiv	4a,b	>99(61)	15: 85
7	Bz	OPiv	5a,b	>99(82)	14:86
8	CF ₃ CO	OPiv	6a,b	>99(0)	
9 ^e	Ac	OPiv	3a,b	>99	18:82
10 ^f	Ac	OPiv	3a,b	>99(74)	<5:95


⁵ ^aAll reactions were performed with a catalyst/1/PhI(OR)₂/MgO molar ratio of 0.1: 1: 2: 3.3 in a 0.05M substrate solution in CH₂Cl₂. T= 20°C, t= 24 h for Rh₂(OAc)₄ and 48h for Rh₂(OPiv)₄. ^b Determined by ¹H NMR. ^c Isolated yields (combination of regioisomers). ^d Compouns **3a,b** were also obtained in 8% yield. ^e Temperature 45°C. ^f Temperature 5°C.

- Replacing PhI(OAc)₂ by PhI(OPiv)₂ (Table 1, entry 2), products 4a and 4b were obtained with a significant increase in the regioisomeric ratio up to 91:9. In this case, minor amounts of the acetate derivatives 3 were also obtained. The acetate groups in products 3 must proceed from the rhodium acetate complex. In
- ¹⁵ order to avoid their formation we decided to test the corresponding rhodium pivalate complex. To our delight, using $Rh_2(OPiv)_4$ as the catalyst, a reversion of the regioselectivity was obtained with a 4a/4b (S_N2/S_N2^2) ratio of 15:85 (Table 1, entry 6). The effect of the nucleophile and the catalyst on the regioselectivity was then
- ²⁰ evaluated by modifying the iodine(III) oxidant and the carboxylate group in the catalyst (Table 1). When the reaction was carried out with different iodine(III) reagents catalyzed by Rh₂(OAc)₄ (Table 1, entries 1-4), the regioselectivity appeared to arise mainly from the properties of the nucleophile. Thus, the preferences towards
- $_{25}$ S_N2 attack of three carboxylates can be related to their respective nucleophilicity. On the other hand, when the reaction was catalyzed by the more sterically demanding Rh₂(OPiv)₄ (Table 1, entries 5-10) S_N2' attack was preferentially produced, and the character of *O*-nucleophile did not have influence on the
- ³⁰ regioselectivity. Comparing entries 2 and 6 it is evident that the catalyst is responsible for the control of the regioselectivity, which could be initially explained considering that the metal complex remains linked to nitrogen after the aziridination¹⁷ activating the opening process. The effect of the temperature was then evaluated ³⁵ and when the reaction was carried out at 5°C a remarkable

 $S_N 2/S_N 2^2 = \langle 5 \rangle \langle 95 \rangle$ of compounds **3a,b** was obtained (Table 1, entries 9, 10).

When the trifluoroacetate iodobenzene was used, no reaction was observed regardless of the catalyst (Table 1, entries 4 and 8).

⁴⁰ For determining the relative configuration of stereocentres in the S_N2' products, compound **3b** was transformed into the bicyclic compound **7** following a modified reported procedure¹⁸ (See Scheme 3 and supporting information). From NOE experiments on **7** it can be inferred that the proton on the bridge ⁴⁵ and the methyl group were *anti*, involving a *syn* orientation of amino and acetate group in compound **3b**. This fact is not consistent with the classical *anti* stereochemical outcome of an intermolecular S_N2' process. An explanation is proposed in Scheme 4.

Scheme 3. Determination of relative configuration of 3b.

To explore the scope and the limitations of this methodology, 55 we applied it to a variety of differently configured and functionalized dienyl carbamates (Figure 1, Table 2). Carbamates were easily synthesized from the corresponding dienols through the carbamovlation process described by Kocovsky.¹⁹ Tandem aziridination/opening of substrates 8, 9 with a trans/trans 60 configuration of the double bonds (Table 2, entries 1-4) provided an excellent regiocontrol with both catalytic systems affording products resulting from an S_N2 attack under conditions A (14a, 16a), and from an $S_N 2$ ' attack under conditions B (15b, 17b). When the diene was substituted by a phenyl group (10) (Table 2, 65 entries 5, 6) selectivity with both catalytic systems decreased probably due to the high reactivity of the transient phenylsubstituted vinylaziridine. It is worth mentioning the unexpected effect of the methyl substituent at C-4 in the regioselective outcome. Thus, unexpectedly, when the reaction was conducted 70 with carbamate 11, either employing Rh₂(OAc)₄, and especially $Rh_2(OPiv)_4$, the S_N2' attack was preferred over the S_N2 (Table 2, entries 7, 8). We explored next the reaction of *trans-cis* and *cis*cis dienyl carbamates 12 and 13, related to carbamate 1 but with different configurations in the double bonds (Table 2, entries 9-75 12). The regioisomers resulting from an S_N2 attack were obtained in selectivities similar to those obtained with the trans-trans dienes, while those resulting from SN2' attack suffered a moderate drop. Compounds obtained from carbamate 13 by aziridination and S_N2' opening proved to be identical to 3b (entry ⁸⁰ 12) and **4b** (entry 11), which indicates that the reaction follows a similar stereochemical pathway regardless of the double bond configuration. Products 21b and 22b, obtained from 12, showed very similar ¹H and ¹³C NMR spectra compared to **4b** and **3b**, respectively. To elucidate whether related products were 85 configurationally identical, compounds 22b and 3b were hydrolyzed and the resulting products were treated with Mosher acid chloride to give selectively the esters. The NMR spectra of

2 | Journal Name, [year], [vol], 00-00

ChemComm

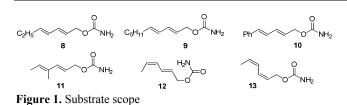
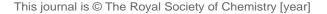
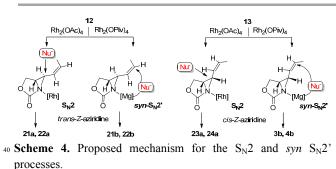
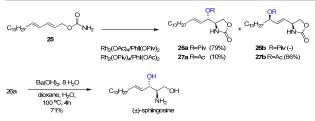
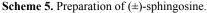



 Table 2. Tandem intramolecular aziridination/ring opening. Scope.^a


Entry	SM	Со	nd. ^a	Prod	ucts	Yield ^b (%)	a,b ratio ^c (%)
1	8	А	 14a	0	OPiv HN 14b	72	86:14
2	8	В			OAC HN 15b OPiv	65	10:90
3	9	А	C5H11 10	JAC		71	91:9
4	9	В	C ₅ H ₁₁ 17a	HN C		76	13:87
5	10	А	Ph 🔨 18a	OPiv		54	70/30
6	10	В	Ph 🔨 19a	QAc HN-C	Ph HN 19b	60	28/72
7^d	11	А	20a			71	25:75
8	11	$\mathop{\mathbf{B}}_{d}$	20a	QAc HN 6		68	10:90
9	12	A	21a	Piv HN-C	OPiv HN 21b	56	90/10
10	12	В	22a	QAC HN		64	39/61
11	13	A	23a		OPiv HN- 4b	74	90:10
12	13	В	24a			71	36:64

^a Conditions A: Rh₂(OAc)₄/substrate/PhI(OPiv)₂/MgO (0.1:1:2:3.3) in a
 s 0.05M solution in CH₂Cl₂, T= 20 °C, t= 48h. Conditions B: Rh₂(OPiv)₄/substrate/PhI(OAc)₂/MgO (0.1: 1:2:3.3) in a 0.05M solution in CH₂Cl₂, T = 5°C, t= 24 h. ^b Isolated yields (combination of regioisomers). ^c Determined by ¹H NMR. ^dPhI(OAc)₂ was used instead of PhI(OPiv)₂ since yields were better and selectivity similar.


- ¹⁰ the obtained products showed significant differences, proving that both compounds were different. Since a *syn*-relative configuration was confirmed for product **3b** by NOE experiments (Scheme 3), an *anti*-relative configuration was attributed to compound **22b**.^{2,4}
- ¹⁵ Compounds **3b**, **4b** and **14b-22b** result from a syn-S_N2^{\circ} process. Scheme 4 shows a plausible mechanism to explain both the regioselectivity and the *syn*-nature of this process. The *syn* process can be justified by a directed transfer of carboxylate from



- the metal coordinated to the carbamate function. In fact, the ²⁰ coordination of rhodium to the aziridinic nitrogen,^{11c} or the directing effect of cations in the opening of aziridines had already been reported.²⁰ Looking for information about this process we carried out the reaction of **1** with $Rh_2(OPiv)_4$ as catalyst, under the optimized reaction conditions using sodium, potassium and
- $_{25}$ cesium carbonate as a base, and we observed 3a/3b ratios $(S_{\rm N}2/S_{\rm N}2')$ of 9:91, 37:63 and 86:14, respectively. These results clearly show the role of cation in the control of regio– and stereoselectivity, which suggest that magnesium must play a determining role in the $S_{\rm N}2'$ process.
- ³⁰ In this context, the strong preference for the $S_N 2$ attack in the $Rh_2(OAc)_4$ -catalysed process can be rationalized considering that rhodium remains coordinated to nitrogen, and Mg(OCOR)₂ opens the activated aziridine through an $S_N 2$ process. On the other hand, the sterically more demanding $Rh_2(OPiv)_4$ can be easily released ³⁵ from the coordination to nitrogen, which enables Mg(OCOR)₂ to coordinate the carbamate function and direct the attack of the carboxylate through a *syn*- $S_N 2$ manner.

The procedure developed can provide a straightforward access to sphingosine and derivatives. With this purpose diene **25** was ⁴⁵ treated with Rh₂(OAc)₄/PhI(OPiv)₂ under the optimized reaction condions to afford **26a** in a 79% yield. When the catalytic system Rh₂(OPiv)₄/PhI(OAc)₂ was used, compound **27b** was obtained in 66% yield, together with minor amounts of **27a** (10%) (Scheme 5). Treatment of compound **26a** in basic medium afforded ⁵⁰ sphingosine.²¹ Thus, sphingosine was synthesized in two steps from the dienyl carbamate **25** in a 56% overall yield.

In conclusion, tandem intramolecular aziridination/ring opening of dienol carbamates was regioselectively performed by selecting the rhodium catalysts and the iodine(III) oxidizing reagent. The carboxylate present in the iodine(III) reagent released during the reaction behaves as a nucleophile opening the aziridine intermediate. The use of Rh₂(OAc)₄ affords products resulting from an S_N2 attack and the rhodium catalysts plays a double role, first promoting the metalonitrene formation and second as a Lewis acid in the $S_{\rm N}2$ opening process. On the contrary, when $Rh_2(OPiv)_4$ was used as the catalyst, products resulting from an $S_{\rm N}2^{\circ}$ attack were selectively obtained. The bulkiness of

- $_{\rm S}$ Rh₂(OPiv)₄ might favor the de-coordination from the aziridinic nitrogen, leaving place for coordination of magnesium, which would direct carboxylate attack in a *syn* S_N2' fashion. The efficiency of the reaction is strongly affected by the presence of substituents in the intermediate framework of the diene system,
- ¹⁰ and the product resulting from $S_N 2$ ' attack is obtained with both catalytic systems if a methyl group is present at C-4. The synthetic procedure developed in this work has allowed the synthesis of sphingosine in only two steps from the starting dienyl carbamate.
- ¹⁵ Acknowledgments: Authors thank Ministerio de Economía y Competitividad, Spain (grant DGI CTQ2011-22872-BQU). J.G. thanks Generalitat de Catalunya for fellowship.

Notes and references

^a Department of Química Analítica i Química Orgànica, Universitat 20 Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain

E-mail: <u>sergio.castillon@urv.cat</u>, maribel.matheu@urv.cat †*Electronic* Supplementary Information (ESI) available: [Characterization data of main products prepared and ¹H and ¹³C NMR, as well as the procedure for determining the relative configuration of 25 S_N^2 products]. See DOI: 10.1039/b000000x

- ¹ a) Ohno, H. Chem. Rev. 2014, DOI: 10.1021/cr400543u. b) G. Deguirez, U. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7895. b) H. Pellissier, Tetrahedron 2010, 66, 1509-1555.
- ² A. Toda, H. Aoyama, N. Mimura, H. Ohno, N. Fujii, T. Ibuka, J. Org. Chem. 1998, 63, 7053-7061.
- ³ S. Carballares, D. Craig, C, J. T. Hyland, P. Lu, T. Mathie, A. P. J. White, *Chem. Commun.* 2009, 451-453.
- ⁴ a) N. Fujii, K. Nakai, H. Tamamura, N. Otaka, N. Mimura, Y. Miwa, T. Taga, Y. Yamamoto, T. Ibuka, *J. Chem. Soc., Perkin Trans. 1* 1995, 1359-1371. b) P. Wipf, P. C. Fritch, *J. Org. Chem.* 1994, **59**, 4875-4886.
- ⁵ a) F. A. Davis, G. V. Reddy, *Tetrahedron Lett.* 1996, **37**, 4349-4352.
 b) R. S. Atkinson, W. T. Gatrell, A. P. Ayscough, *Tetrahedron Lett.* 1998, **39**, 4377-4380.
 c) B. Olofsson, P. Somfai, *J. Org. Chem.* 2003, **68**, 2514-2517.
 d) W. Disadee, T. Ishikawa, *J. Org. Chem.* 2005, **70**, 9399-9404.
- ⁶ G. Righi, C. Potini, P. Bovicelli, *Tetrahedron Lett.* 2002, **43**, 5867.
- ⁷ D. Craig, T. Mathie, N. T. H. Tholen, *Tetrahedron* 2010, **66**, 6376-6382.
- ⁸ a) B. M. Trost, D. R. Fandrick, T. Brodmann, D. T. Stiles, *Angew. Chem. Int. Ed.* 2007, **46**, 6123-6125. b) S. Crotti, F. Bertolini, F, Macchia, M. Pineschi, *Org. Lett.* 2009, **11**, 3762-3765.
- ⁹ For a review about the synthesis of sphingosines see: J. A. Morales-Serna, J. Llaveria, Díaz, Y., M. I. Matheu, S. Castillon, *Curr. Org. Chem.* 2010, 14, 2483-2521.
- ¹⁰ a) J. Llaveria, A. Beltrán, M. M. Díaz-Requejo, M. I. Matheu, S. Castillon, P. J. Pérez, Angew. Chem Int. Ed. 2010, **49**, 7092-7095. b) J. Llaveria, A. Beltrán, W. M. C. Sameera, A. Locati, M. M. Díaz-Requejo, M. I Matheu, S. Castillón, F. Maseras, P. J. Pérez, J. Am. Chem. Soc. 2014, **136**, 5342-5350.
- ¹¹ a) F. Duran, L. Leman, A. Ghini, G. Burton, P. Dauban, R. H. Dodd, Org. Lett. 2002, 4, 2481-2485. b) R. Lorpitthaya, Z. Z. Xie, J. L. Kuo, X. W. Liu, Chem. Eur. J. 2008, 14, 1561-1570. c) G. Malik, A. Estéoule, P. Retailleau, P. Dauban, P. J. Org. Chem. 2011, 76, 7438-7448. d) D. E. Olson, A. Maruniak, S. Malhorta, B. M. Trost, J. Du Bois, Org. Lett. 2011, 13, 3336-3339. e) C. S. Adams, L. A. Boralsky, I. A. Guzei, J. M. Schomaker, J. Am. Chem. Soc. 2012, 134, 10807-10810.

- ¹² a) P. Dauban, R. Dodd, R. Org. Lett. 2000, 2, 2327-2329. b) P. Dauban, L. Sanière, T. Aurélie, R. H. Dodd, J. Am. Chem. Soc. 2001, 123, 7707-7708. c) J. L. Liang, S. X. Yuan, P. W. H. Chan, C. M. Che, Org. Lett. 2002, 4, 4507-4510. d) J. L. Liang, S. X. Yuan, J. S. Huang, C. M. Che, J. Org. Chem. 2004, 69, 3610-3619. e) P. Liu, E. L. M. Wong, A. W. H. Yuen, C. M. Che, Org. Lett 2008, 10, 3275-3278.
- ¹³ a) P. H. Di-Chenna, F. R. Peillard, P. Dauban, R. H. Dodd, *Org. Lett.* 2004, **6**, 4503-4505. b) F. R. Peillard, P. H. Di Chenna, C. Liang, C. Lescot, F. Collet, R. H. Dodd, P. Dauban, *Tetrahedron: Asymmetry* 2011, **21**, 1447-1457.
- ¹⁴ a) E. Levites-Agababa, E. Menhaji, L. N. Perlson, C. M. Rojas, Org. Lett. 2002, **4**, 863-865. b) A. Padwa, T. Stengel, Org. Lett. 2002, **4**, 2137-2139. c) A. Padwa, A. C. Flick, C. A. Leverett, T. Stengel, J. Org. Chem. 2004, **69**, 6377-6386. d) C. J. Hayes, P. W. Beavis, L. A. Humphries, Chem. Commun. 2006, 4501-4502. e) R. Gupta, K. M. Sogi, S. E. Bernard, J. D. Decatur, C. M. Rojas, Org. Lett. 2009, **11**, 1527-1530. f) L. A. Boralsky, D. Marston, R. D. Grigg, J. C. Hershberger, J. M. Schomaker, Org. Lett. 2011, **13**, 1924-1927. g) J. W. Rigoli, C.D. Weatherly, B. T. Vo, S. Neale, A. R. Meis, J. M. Schomaker, Org. Lett. 2013, **15**, 290-293.
- ¹⁵ a) H. Lebel, K. Huard, S. Lectard, J. Am. Chem. Soc. 2005, **127**, 14198-14199. b) L. Renmao, S. R. Herron, S. A. Fleming, J. Org. Chem. 2007, **72**, 5587-5591. c) H. Lebel, S. Lectard, M. Parmentier, Org. Lett. 2007, **9**, 4797-4800.
- ¹⁶ C. G. Espino, P. M. When, J. Chow, J. Du Bois, J. Am. Chem. Soc. 2001, **123**, 6935-6936.
- ¹⁷ X. Lin, Y. Xi, J. Sun, Comp. Theor. Chem. 2012, 999, 74-82.
- ¹⁸ J. E. Backvall, H. Schine, Z. E. Renko J. Org. Chem. 1990, 55, 826-831.
- ¹⁹ P. Kocovsky, Tetrahedron Lett. 1986, 27, 5521- 5524.
- ²⁰ a) V. Di Bussolo, M.R. Romano, M. Pineschi, P. Crotti, *Org. Lett.*2005, 7, 1299-1302. b) V. Di Bussolo, M. R. Romano, L. Favero, M.
 Pineschi, P. Crotti, *J. Org. Chem.* 2006, **71**, 1696-1699. c) V. Di
 Bussolo, A. Fiasella, L. Favero, F. Bertolini, P. Crotti, *Org. Lett.* 2009, **11**, 2675-2678. d) V. Di Bussolo, L. Checchia, M. R. Romano, L.
 Favero, M. Pineschi, P. Crotti, *Tetrahedron* 2010, **66**, 689-697.
- ²¹ S. H. Rosenberg, K. W. Woods, H. D. Kleinert, H. Stein, H. N. Nellans, D. J. Hoffman, S. G. Spanton, R. A. Pyter, J. Cohen, D. A. Egan, J. J. Plattner, T. J. Perun J. Med. Chem. 1989, **32**, 1371-1378.

4 | *Journal Name*, [year], [vol], 00–00