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Abstract 

Accurate quantum chemical calculations on real-world magnetic systems are challenging, 

the inclusion of electron correlation being the bottleneck of such task. One method proposed 

to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem 

by dividing it into small fragments, which are treated in a highly accurate way, surrounded by 

an embedding included at an approximate level. For the vast family of medium-to-large sized 

polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties 

interesting. In this paper, we aim at assessing the quality of embedded fragment calculations 

by checking their ability to reproduce the electronic spectra of a complete system, here the 

mixed-metal series [MoxW6-xO19]4- (x=0-6). The microscopic parameters extracted from 

fragment calculations (electron hopping, inter-site electrostatic repulsion, local orbital energy, 

etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These 

energies are compared to the results of the highly accurate ab initio difference dedicated 

configuration interaction (DDCI) method on the complete system. In general, the model 

Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly 

reproduce the DDCI spectra. This is quite an important result since it can be generalized to 

any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in 

the series of molecules studied is rationalized upon the interplay of the parameters extracted. 
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Introduction 

Many strongly correlated systems exhibit quantum properties such as molecular 

magnetism,  colossal magnetoresistance,  superconductivity  or ferro-electricity,  that are of 1 2 3 4

the highest interest for technological applications: data and electrical storage, electron 

transport, spintronics, etc.  These properties are a consequence of complex electronic 5

structures, which require precise quantum chemical methods to be correctly modeled. The 

difference dedicated configuration interaction (DDCI) ,  is one of the most accurate methods 6 7

for reproducing such properties in this kind of systems. It has been successfully applied to 

half-filled or mixed-valence systems with one or more unpaired electrons per metal center: 

cuprates, -  vanadates, -  nickelates, ,  manganites, ,  cobalt oxides, -  ruthenium 8 9 10 11 12 13 14 15 16 17

complexes  and polyoxometalates (POMs). -  The computational cost of DDCI restricts its 18 19 20

use to systems with roughly 50 atoms when the number of unpaired electrons is small 

(maximum around 5), and even less atoms for systems with more unpaired electrons. An 

important saving in the computational burden can be obtained by using localized molecular 

orbitals (MO).  Indeed, the size of the CI matrix can be significantly reduced by only 21

considering the interaction between orbitals localized in the same spatial region, as done with 

the EXSCI method. -  This mainly permits us to treat larger systems with bulkier ligands, 22 23

although increasing the number of unpaired electrons remains problematic and hence this 

method is still limited to a small number of magnetic centers. 

The embedded fragment method is an elegant way to overcome this bottleneck. It has 

long been used, but mostly restricted to evaluate the hopping and magnetic coupling 

parameters t and J. In some cases, the accuracy of these values could be assessed by 

comparing to experimental data, mainly J in half-filled systems. Studies estimating other 

parameters are less frequent and direct validity checking of the extracted parameters has 

solely been based on the comparison of the results of fragments of increasing size. In some 

cases, indirect checks were done by comparison with experimental data. Instead of processing 

the whole system at once, the embedded fragment method makes an accurate evaluation of 

the interaction between magnetic centers concentrating on a smaller part of the structure. 

Typically, two interacting centers are selected and a fragment is built by adding the bridging 

ligand(s) and the first coordination sphere of the metal ion (Figure 1). The structure of the 

fragment is either extracted from experimental data (X-ray structures) or from the geometry 

optimization of the whole system with a density functional theory (DFT) calculation. The 
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isolated fragment does not warrant a correct description of the physics and, therefore, the 

main effects of the rest of the molecule/crystal have to be taken into account. This is done by 

means of an embedding. A simple yet efficient scheme consists in modeling the electric field 

by point charges and the short range Coulomb and exchange interactions of the fragment 

electrons with the nearby centers with effective potentials ,  situated at the positions of the 24 25

ions of the embedding. Other strategies generate a frozen density embedding  from the one-26

electron density obtained in a preceding DFT calculation of the whole system. It should be 

stressed that adding the embedding does not affect the computational time; all the 

computational effort can be devoted to the fragment, allowing the use of accurate methods 

and relatively large atomic basis sets. 

A crucial question that has to be addressed concerns the accuracy of the interactions 

extracted from embedded fragments and how they can reproduce experimental observations 

or accurate reference calculations. Are these interactions transferable to model the physics of 

the complete system? How important is the role of the embedding and how accurate is its 

representation with point charges  and potentials? These questions have been answered by 27

confronting the fragment results to periodic calculations ,  or, more often, by introducing 28 29

them in a model Hamiltonian (MH) that provides observable macroscopic properties that can 

be compared to experimental data such as absorption spectra, magnetic susceptibility curves, 

local spin density and others. ,  It has also been done by comparing the results obtained 30 31

from fragments of different size.26 In this case one can directly establish the transferability; if 
 4

 

Figure 1. Embedded fragment model to study the interaction between electrons on two metal 
centres. Coloured atoms constitute the fragment and the light-grey region is the embedding.



the values of the interactions are similar in both fragments, the effects of the atoms that are in 

the fragment or in the embedding depending on the size of the fragment are correctly modeled 

by Total Ion Potentials (TIPs) and charges. It is then possible to argue that the whole 

embedding fulfills its role. 

POMs attract attention in fields as different as medicine, (photo-)catalysis, green 

chemistry and spintronics. They are 0D systems containing up to few hundreds of metal 

centers.  Most of them can accommodate a large number of extra electrons, while keeping 32

their structure almost intact. This leads to versatile mixed-valence magnetic systems in which 

the extra electrons delocalize over the whole framework. In this article, we focus on Lindqvist 

POM structures with two extra unpaired electrons (2e) with respect to the natural form, 

namely |Mo6O19]4- and |Mo5WO19]4- (in short 2e-Mo6 and 2e-Mo5W, respectively). Although 

such 2e-reduced forms are thermodynamically unstable, they are excellent models to analyze 

the accuracy of the embedded fragment model since, contrarily to larger POMs, their 

moderate size allows a DDCI treatment of the whole molecule that can be used as reference. 

Figure 2 shows different pictorial representations of the Lindqvist architecture considered 

here consisting of an octahedral arrangement of six MO6 units connected by edges, with M = 

Mo or W. Derivatives containing V, Nb, Ti and other early transition metal atoms have also 

been reported. In fully oxidized form, Lindqvist anions contain WVI and MoVI free of valence 

metal electrons (d0 electronic configurations for all M). When it is reduced —

electrochemically or by some redox process implying another species— the extra electrons 

are formally occupying molecular orbitals that are combinations of metallic d atomic orbitals 

(including their delocalization tails on the oxo ligands). The most important parameters are 

the local orbital energy ε, the hopping integral t and the interactions between the extra 
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Figure 3. Schematic representation of the exchange transfer e.



electrons, namely, the magnetic coupling J, the exchange transfer e exemplified in Figure 3, 

and the inter-site electrostatic repulsion V (in fact the difference between the electrostatic 

repulsion of 2 electrons on nearest versus most separated metal centers). The corresponding 

model Hamiltonian is given in the Supporting Information (Figure S1). 

 

Theoretical background and computational details 

The 2e-reduced structures analyzed in this work were fully optimized at the DFT level using 

the ADF program. -  We considered the lowest MS = 1 solution using the unrestricted 33 34

formalism. The ideal maximal symmetry of the different architectures, Oh (M6) and C4v 

(M5M’), was used. We applied the BP86 functional  with triple-ζ + polarization Slater-type 35

atomic basis sets for all atoms and the frozen core approximation for the internal electrons of 

W (1s-4d), Mo (1s-3d) and O (1s). We applied scalar relativistic corrections to the core 

electrons by means of the zeroth-order regular approximation (ZORA)  with the core 36

potentials generated using the DIRAC program.43 To mimic the external stabilizing effects in 

solution we introduced the solvent effects of water via the conductor-like screening model 

(COSMO).  37

 For both the complete molecule and the fragment DDCI calculations, 3s3p2d Hay-

Wadt type atomic basis sets were used for Mo and W atoms and all but 14 electrons are 

modeled by an ECP. For O, a 3s2p atomic basis set is used.  As already reported in ref 39, the 38

value of the charges of the embedding is important. It has been shown that formal charges for 

M=O cationic molecular entities are too large and have to be reduced. A correct modelling of 

the electrostatic effect MoO4+ or WO4+ entities is achieved by assigning a +5 charge to 

Mo(VI) and W(VI) centers and -1 to terminal O(-II). For bridging O(-II), the formal charges 

has to be used. TIPs for O are taken from MgO.  No Mo(VI) or W(VI) TIPs are available but 39

their ionic radius is similar to that of Ga(III), around 65 pm. Then, Ga TIPs extracted from the 

K2NaGaF6 material are used.  40

 Dynamical polarization and correlation effects are incorporated using the DDCI 

method implemented in the CASDI code.  Since the DDCI method relies on the calculation 41

of different states that share similar spatial descriptions, one has to determine a common set of 

MOs first and then build the CI space. These orbitals are provided by diagonalizing the 

CAS+DDCI2 average density matrices of the 15 singlet and 15 triplet states that can be 

formed by distributing the 2 extra electrons over the 6 metal centers, excluding the states 
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where the 2 electrons are mainly on the same metal. For technical reasons it is not possible to 

handle the actual point group symmetry of these POMs and calculations are performed in D2h 

(Mo6) and C2v (Mo5W). Nevertheless, the averaging procedure ensures that the molecular 

orbitals have the symmetry characteristics of the higher point group. An equivalent selection 

criterion is used for dimer fragments: the singlet ground state and lowest triplet state for 

calculations with two extra electrons; and the two lowest doublet states for calculations with 

one extra electron. In the tetramer fragments, we have averaged over the six lowest singlet 

and 6 lowest triplet states for calculations with two extra electrons; and the four lowest 

doublet states for calculations with only one extra electron. Once a common set of orbitals 

was obtained, CAS+DDCI calculations are performed for the same states. 

 With the DDCI energies and wave functions at hand, the effective Hamiltonian 

procedure is used to extract the values of the interactions of the extra electrons. This 

procedure is extensively described in other articles (see refs. ,  and references therein) 42 43

and will only be shortly reviewed here. A model space has to be defined: for calculations on 

the whole POM, the model space contains all the “non-ionic” determinants that can be formed 

by distributing 2 electrons on the 6 metal centers under the restrictions of at most one electron 

per center; for dimer calculations with one (resp. two) extra electron(s), it consists of the two 

determinants  and  (resp.  and ) where a and b are the local magnetic 

orbitals of each metal center. Then, the elements of the effective Hamiltonian matrix are 

determined so that its eigenvalues coincide exactly with the DDCI energies of the states (30 

states for whole POM calculation, and so on) and its eigenvectors are the projection of the 

DDCI wave functions onto the model space. 

 The effective Hamiltonian matrix gives direct access to the value of the microscopic 

interactions of the extra electrons: the electron transfer t between orbitals a and b is the matrix 

element between  and  (or  and  for calculations with two extra 

electrons); the magnetic exchange J is equal to the matrix element between  and ; 

the electrostatic repulsion between sites A and B is the energy of ; the orbital energy 

difference ε between a and b is the difference between the energy of  and that of ; the 

exchange transfer e is the matrix element between  and . Instead of working with 

a⟩ b⟩ ab̄⟩ bā⟩

a⟩ b⟩ ac⟩ bc⟩

ab̄⟩ bā⟩

ab̄⟩
a⟩ b⟩

ab̄⟩ bc̄⟩
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the absolute value of the electrostatic repulsion, we define V as the energy difference of two 

determinants with the electrons localized on neighboring or more distant centers. This relative 

repulsion parameter takes into account all the physics due to electrostatic repulsion effects of 

the two extra electrons. 

The diagonalization of the model Hamiltonians has been done with the MVPACK 

program  or version 9 of Mathematica. 44

Results and discussion 

In nearly all studies that use embedded fragment calculations to determine the 

interactions, attention was only focused on the evaluation of t and J. The extraction of V and ε 

in POMs done by one of us deserves further analysis because of the approximate character of 

the extraction procedure.28 Furthermore, the exchange transfer parameter e is neglected in 

most of the models of mixed valence systems, whereas it is roughly of the order of J ,  and 45 46

has only been calculated in very few cases. The electronic structure is differently affected by 

each parameter and has to be emphasized: ε tends to localize the extra electrons on the most 

oxidant centres (for chemical or structural reasons), whereas t plays the same role as β in the 

well-known Hückel method and promotes electron delocalization. V tends to separate 

electrons and either reinforces the action of ε (trans-Mo2W4 structure, Figure S2c) or acts in 

opposition to it (cis-Mo2W4 form, Figure S2d). The J —usually antiferromagnetic— and e 

parameters favor the singlet with respect to triplet states, especially when the extra electrons 

are localized on close metal centers. Hence, it is obvious that the energy and nature (spin 

multiplicity, electron distribution) of the lowest states and thus the magnetic properties of 

reduced POMs (and of any mixed valence compound) are determined by a complex interplay 

of all these parameters and are very sensitive to their value. It is then required to calculate 

them accurately for evaluating and understanding the properties of such systems.  

Since in the vast majority of chemically interesting cases the compounds are too large to 

be fully treated by accurate computational methods, it is important to provide a strong 

grounding of the accuracy of embedded fragment evaluations of these parameters. We focus 

on the magnetic properties of the aforementioned 2e-reduced systems, and calculate the low-

energy electronic spectra (i.e. all singlet and triplet states formed by distributing two electrons 

over six centers, excluding double occupancy of any center) to assess the quality of the 

parameters extracted. The energy levels are directly obtained in the calculations on the 
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complete POM, while the embedded fragment calculations give access to the microscopic 

parameters listed above that are used in the model Hamiltonian. In addition to discussing the 

energy spectra, we also tentatively explain the nature of the lowest spin states of the [MoxW6-

xO19]4- POMs (with x = 0–6, Figure S2), at the end of this article. 

This series of Lindqvist POMs has been chosen because their moderate size makes DDCI 

calculations on the full molecule feasible, and thus the subsequent extraction of the effective 

parameters described above. In a second step, these parameters can be obtained also at the 

DDCI level but from fragment calculations, and then be compared with the former. As the 

same computational method, basis sets (for the atoms of the whole Lindqvist or fragment) and 

atom positions are used for a given POM, the comparison of the results gives a direct 

evaluation of the accuracy of the embedded fragment approach.  

[Mo6O19]4-. Let us start by examining the microscopic parameters extracted (Table 1) for the 

most symmetrical 2e-reduced Mo6O194- system (Figure S2a). We have used different fragment 

approaches, namely dimers (Mo2O10 for nearest-neighbors metal centers and Mo2O11 for 

farthest metal centers) and a tetramer (Mo4O17, the 4 Mo atoms forming a square). The results 

are compared to the reference values, extracted from the full system (Mo6O194-) with the same 

methodology. In all cases, the 1e- and the 2e-reduced systems are considered to check the 

stability of the extracted parameters, ideally the hopping integrals should not dependent on 

the number of unpaired electrons. Obviously, the bielectronic parameters J, e and V vanish for 

the 1e cases. The similar values obtained for the reference and the fragment calculations in 
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Table 1. Comparison of the values obtained for the microscopic interactions in Mo6O194- 
(meV) for fragments of different size. J and J' are nearest and next-nearest neighbor 
magnetic coupling parameters (negative J indicates antiferromagnetic coupling), t is the 
hopping integral and e parametrizes the singlet displacement process. Two values appear for 
t and e in full system calculations, depending on the relative position of the two electrons. 
See Figures S3 and S4 for details.  

 t t’ J J’ e e’ V 
Dimer, 1e/2e 361 -4 –75 0    
Tetramer, 1e 381 –120      

Tetramer, 2e 358 –121 –46 –5 –41 17 702 
Full system, 1e 387 –132      

Full system, 2e 371/344 –136 –60 –9 –45/–60 21 655 



Table 1 suggest that the size of the fragment only affects residually the parameters. It can also 

be seen that t and V clearly dominate over the others, and consequently, the electronic 

structure of the ground state is mainly a compromise between these two mechanisms inducing 

two highly delocalized electrons that are as far as possible from each other. Antiferromagnetic 

exchange plays only a minor role in the magnetic properties of the system. 

The reader can also observe that t’ and J’ (interactions between most separated metal 

centers) are smaller when extracted from a dimer than in the full system. The central O2- ion 

that mediates these interactions is linked to the six metal centers but four of them are in the 

embedding, which apparently affects the description of the interaction between metals on 

opposite sites of the complex. For the same reason but to a smaller extent, these two 

parameters are not so well calculated from the tetramer (two Mo atoms are in the embedding). 

Similarly, V is 7% larger when extracted from the tetramer (702 meV) than from the full 

molecule (655 meV), an evidence of a slight lack of shielding. Even if the physical 

mechanisms acting are different than for electron hoping or magnetic coupling, we can 

reasonably assume that this incorrect treatment is also a consequence of a poor description of 

two of the nearest-neighbors of the central O2- ion. On the contrary, fragment calculations do 

allow highly accurate evaluations of t and J between nearest metal centers, since all the 

nearest neighbors of the bridging O2- ion between the two metal centers are inside the 

fragment. These observations point out the importance of the shape of the fragment. 

Preferably all the atoms that connect the metal centers involved in the interaction should have 

the full coordination inside the cluster. This may seem a major problem, since all six metals 

centers should be in the cluster to evaluate t', J' and V. However, a six-coordinated bridging 

oxygen is only present in the Lindqvist POM. In any other POM the bridging oxygens have a 

two- or three-fold coordination and DDCI calculations on fragments with three and four metal 

centers can be done in an almost routine-like fashion, and even five-metal fragments are 

affordable. 

Table 1 also shows that the exchange transfer parameters e and e’ are almost identical 

when extracted from the tetramer (–41 and +17 meV) or from the whole molecule (–45 and 

+21 meV). e is on the same order of magnitude as J, as expected from the ratio of J/e = 2 

derived from a perturbative analysis of the Hubbard model.56 The positive value of e’ (whose 

perturbative estimate equals –t·t’/U) is a consequence of the opposite sign of t and t’. Finally, 

we can see that the hopping parameter t is very similar when extracted from 1e- or 2e-reduced 
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systems. The same is observed for t’, although t and t’ are opposite in sign and ~1/3 in 

magnitude. Hence it arises that hopping of one electron is marginally affected by the presence 

of the other extra electron.  

The next step consists in evaluating the impact of the value of the parameters on the 

spectrum of [Mo6O19]4-. Table 2 compares the DDCI reference spectrum calculated for the full 

molecule (first row) to the MH spectra, reported in the next rows for singlet and triplet states 

for different sets of parameters. The DDCI results show that the system exhibits strong 

antiferromagnetic coupling between the two extra electrons; the 1Ag state, taken as the energy 

reference, is well below the first excited 3Tu state. This is consistent with experiments on 

larger 2e-reduced POMs.  The large singlet-triplet gap is also reproduced by the MH 47

calculations: they suit perfectly the whole ab initio spectrum of the complete molecule when 

all model parameters are used. The energy gap between the ground singlet and the lowest 

triplet state is 202 meV and 198 meV for DDCI and MH calculation, respectively. The energy 

difference between the ground state and the highest triplet are also in good agreement: 2703 

and 2696 meV for DDCI and MH. This confirms that the low energy physics of the 2e-

reduced Lindqvist is governed by the interactions we consider in the model Hamiltonian. 

Besides these general observations, MH calculations can selectively establish the role of 

the parameters on the spectrum, providing information that cannot be assessed from the ab 

initio calculations. This analysis is reported in the lower rows of Table 2. If we impose e = e’ 

= 0 or even e = e’ = J = J’ = 0 in the MH calculation, we can see that the 1Ag – 3Tu gap is only 
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Table 2. Impact of the interactions on the energy levels (in meV) of [Mo6O19]4- obtained with 
MH calculations. The values are compared to the DDCI results. 

 1Ag 1Eg 1Tu 1Tg 1Eg 1Tu 1Ag 3Tu 3Ag 3Tu 3Tg 3Eg 
3Tu 

DDCI 0 187 937 1238 1584 1732 2983 202 335 769 1177 2416 
2706 

MH              
All parameters 0 192 879 1235 1527 1775 3063 198 343 759 1175 

2408 2703 
  e = e’ = 0 0 77 632 1048 1570 2008 3710 191 336 752 1168 

2401 2696 
   + J = J’ = 0 0 95 694 1110 1598 2070 3757 153 278 694 1110 

2342 2644 
   + effective t’s 0 167 848 1211 1601 1940 3407 179 483 848 1211 

2122 2500 
  t = t’ = 0 345 203 972 1032 863 552 0 232 912 912 912 

912 912 



weakly affected. That means that, quite paradoxically, the coupling between the two electrons 

remains strongly antiferromagnetic even if J = 0, which is usually (when AF) the leading 

interaction to stabilize singlet versus triplet states. Obviously, other energy differences are 

strongly affected by eliminating the e and J interactions, for instance the gap between the two 

lowest singlet states. Using effective t and t’ values, which absorb the effect of e into them, 

gives a good description of the energy levels except for those above 2 eV. The last but one 

row presents the spectrum putting all the hopping parameters t to zero. Although the singlet-

triplet gap is nearly identical to the DDCI value, it must be stressed that the analysis of the 

wave functions shows that the symmetry and the nature are completely different to that of the 

lowest states in the DDCI calculations. Hence, the coincidence is purely accidental and 

reveals the importance of the hopping processes. Similarly, the erroneous results obtained by 

putting V equal to zero (last row of Table 2) demonstrate the prominence of electron 

repulsion. 

The strong stabilization of the singlet state by t and V deserves some clarifications. A 

physical analysis of the mechanisms that make ferromagnetic and antiferromagnetic 

contributions to the coupling is provided in the following sections.  

[Mo5WO19]4-. Let us now focus on the [Mo5WO19]4- ion (Figure S2b). Given the lower 

electronegativity of W, it is expected that the two electrons will delocalize over the five Mo 

centers. Remarkably, DDCI points to a triplet 3A ground state and the first singlet state, 1A, is 

found at 78 meV. The most important effective parameters extracted from dimer and full 

system DDCI calculations can be found in Table 3; indices MoW, belt or belt-apex indicate t 

or J interactions between a belt Mo and W, between two belt Mo’s and between a belt Mo and 

the apical one, respectively. t’ is the value of the diagonal hopping integral in the belt. Due to 
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Table 3. Comparison of the values obtained for the microscopic interactions (in meV) in 
[Mo5WO19]4-  for fragments of different size. t, J and ε are measures of the hopping integral, 
the magnetic coupling and the orbital energy, respectively. V is a parameter for the electron 
repulsion. 

 tMoW tbelt tbelt-apex t’ JMoW Jbelt Jbelt-apex εW a εMo(apex) a 

V 
Dimer, 1e/2e 381 361 371  –137 –76 –91 1898 –743  
Full system, 1e 402 380 358 –132    2136 –803  

Full system, 2e 386 361 340 –136 –86 –56 –53 2103 –790 687 
a Values relative to the Mo(belt) orbital energy. 



the presence of a W center, an extra parameter (ε) is necessary to model the different orbital 

energies of the two metals. Moreover, the 4 Mo centers of the belt are structurally different to 

the Mo in the apex position. Hence, we have to consider εW and εMo, corresponding to the 

orbital energy of the W and the apex Mo relative to the orbital energy of the belt Mo atoms. 

Additionally, different V, e, and e’ have to be considered depending of the pairs of centers 

involved. All these parameters appear in the effective Hamiltonian matrix extracted from the 

DDCI wave functions and energies of the singlet and triplet states. As expected from the 

structure of the POM, the electrostatic repulsion is almost the same for any pair of close and 

any pair of distant metal centers. Then, only the difference of electrostatic repulsion inside the 

belt is reported. 

The principal parameters are again well reproduced when they are extracted from 

calculations on a dimer fragment, notably the three different t’s: Mo-W, Mo-Mo in the belt, 

and Mo(belt)-Mo(apical). All three hopping parameters are of the same order of magnitude. ε 

is also qualitatively well reproduced with the simplest fragment. This is to our knowledge the 

first time that the accuracy of such evaluation is checked. Most interestingly, ε is very positive 

for W, around 2 eV, and the apical Mo has a surprisingly low ε value. Then, the probability of 

finding WV in this system is very low, the extra electrons preferring to occupy the Mo 

positions, notably the apical one to form . Given that  is not expected if four 

Mobelt are still in oxidation state VI, the Mo5W system features one electron localized in the 

apical Mo and one electron delocalized over the four belt Mo atoms. Table 3 also shows that 

V, t and J are nearly the same as in the Mo6 complex and it can be concluded that these 

parameters are not strongly dependent on the metal nature. The larger ionic radius of W 

causes that the parameters related with electron hopping (t and J) are somewhat larger and 

more efficient when W is involved. 

The performance of the model parameters can be deduced from Table 4, which reports 

the DDCI and MH spectra of [Mo5WO19]4-. The latter has been obtained using a set of 9 

microscopic parameters, grouping similar parameters into one as specified in the footnote of 

Table 4. This is more instructive than using the whole set of 24 parameters and permits us to 

link the macroscopic parameters with the properties of the system. Both DDCI and MH 

calculations lead to the same triplet ground state. The MH predicts the first singlet 61 meV 

above in energy, which is slightly smaller than the exact 78 meV obtained from DDCI. This 

MoVapex MoIVapex
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difference is due to the simplified set of parameters, since nearly exact agreement for the 

triplet-to-lowest-singlet energy gap (80 meV) is obtained diagonalizing the MH with the full 

set of parameters. 

The ferromagnetic coupling in 2e-reduced Mo5W is very surprising as almost all reduced 

POMs present strong antiferromagnetic couplings there are very few examples of 

paramagnetic ,  or ferromagnetic ,  POMs. To ensure that the calculated ferromagnetic 48 49 50 51

nature of Mo5W is not an artifact caused by the geometry optimization of the MS = 1 state, we 

repeated the calculations with the MS = 0 closed-shell optimized geometry. In the MS = 1 case, 

one of the extra electrons localizes on the apical Mo ion. This favors a longer Mo=Oterminal 

bond and could in principle lead to an artificially low ε for this metal center. This localization 

is absent in the MS = 0 determinant. However, the results with the MS = 0 geometry are 

practically the same as for the MS = 1 geometry: εMo(ap) = –790 meV and tbelt-apex = 363 meV, 

to be compared with –743 meV and 371 meV from Table 3. The MS = 0 geometry also leads 

to a triplet ground state with a similar singlet-triplet gap.  

To rationalize the occurrence of a triplet ground state, we analyzed the role of the 

dominant ε, V and t parameters. The large positive value of εW permits us to exclude the 

determinants where an electron occupies the W site from the analysis. The remaining 

determinants can be divided into three groups, schematically represented in Figure 4. The 

determinants of type (a) are energetically favored by the low orbital energy of the apex Mo 

ion, while the electrons in the determinants of type (b) are more separated. The relative value 
 14

Table 4. Comparison of the relative energies of singlet and triplet states of Mo5WO194- 
obtained at the DDCI level and with a MH calculation. a 

 1A 1A 1A 1E 1A 1A 1E 1A 1A 1A 1E 1A 
DDCI 78 197 567 597 1104 1387 1520 2182 2270 3255 3462 

4414 
MH 61 259 646 646 1093 1561 1618 2205 2398 3295 3702 

4476 
             
 3A 3E 3E 3A 3A 3A 3E 3A 3A 3E 3A  
DDCI 0 218 585 1044 1309 1784 2032 2549 3481 3847 4715  
MH 0 297 619 1132 1387 1818 2084 2629 3562 3953 4818  

a A simplified set of parameters is used that does not distinguish the metal centres in intersite 
interactions: t, t’, e, e’, V, J and J’ are 360, –136, –70, 22, 687, –53 and –9, respectively. εW = 2100; 
εMo(ap) = –800. All values are in meV.



of ε  and V puts determinants (a) slightly lower in energy and, hence, we take these as 

reference. Determinants (b) lie at (–V–ε) = 103 meV and determinants (c) have an energy of ε 

= –790 meV with respect to determinants (a). 

To identify the mechanisms that contribute most to the triplet ground state of the Mo5W 

complex, we have constructed model Hamiltonians with tbelt, tbelt-ap, t', ε  and V in different 

model spaces spanned by determinants of a, b, c, (a+b), (a+c) and (a+b+c). The resulting 

energy levels are shown in Figure 6. Diagonalization of the simplest model spaces 

(determinants a, b or c) does not lift the degeneracy of singlet and triplet states. The lowest 

states are formed by a linear combination of (a) determinants under the action of the hopping 

parameter tbelt and have one electron localized on Moapex and the other delocalized over the 

belt. This shows that the hopping of one electron over the belt is not enough to create a 

singlet-triplet gap. The introduction of the interaction of determinants (a) and (b) in model 

space (a+b) leads to an important stabilization of the singlet state while the corresponding 

triplet is not affected. The electrons circulate in two triangles under the action of a positive 

tbelt-apex and a negative t’ (see Figure 5, left). As shown in Figure S5, the circular movement of 

two electrons on a triangle with two positive and one negative hopping parameter always 

leads to a singlet state and explains the antiferromagnetic contribution of the interaction of the 

(a) and (b) spaces. The interaction introduces a slight delocalization of the electron on Moapex 

over the belt. However, the wave function remains strongly dominated by the type (a) 

determinants.  
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Figure 4. Most probable distributions of two electrons in Mo5W (Mo: black, W: grey). The 
determinants are grouped in three families of increasing energy: (a) 1e in Moapex and 1e in (Mobelt)4, 
(b) 2e in (Mobelt)4 in next nearest neighbours, (c) 2e in (Mobelt)4 in nearest neighbours. 



The interaction of (a) and (c) in the (a+c) model space provides a strong stabilization of 

the lowest triplet by approximately 300 meV. Again, the interaction of (a) with (c) introduces 

a circulation of electrons on a triangle (four in this case, see Figure 5 right), but now the 

hopping parameters involved (tbelt and tbelt-apex) are positive and referring to Figure S6, this 

mechanism supports a triplet ground state. The diagonalization of the (a+b+c) model space 

does not introduce any new stabilization of the lowest triplet and singlet states; the final 

ground state has triplet spin coupling and a gap of 83 meV with the singlet, in good agreement 

with the DDCI calculation on the whole molecule. Hence, it can be concluded that despite 

being higher in energy, the determinants of type (c) play a key role in the ferromagnetic 

ground state of the Mo5W complex. Their dominance over the antiferromagnetic effect 

introduced by the lower-lying (b) determinants can be ascribed to i) the fact that the Mo5W 

complex has four triangles where the ferromagnetic mechanism is active and only two with an 

antiferromagnetic contribution, and ii) the relative values of t and t’ (|t| > |t’|). The 

antiferromagnetic mechanism involves t and t’ whereas the ferromagnetic contribution 

involves t only.    

An essential factor for the ferromagnetic nature of the complex is the localization of one 

of the electrons on the apical Mo ion due to the very negative value of εMo(ap). By gradually 

increasing this value, the weight of the (a)-type determinants in the wave function decreases, 

which is accompanied by a closure of the triplet-singlet gap. At εMo(ap) ≈ –400 meV, the singlet 

becomes the most stable state. 

[Mo4W2O19]4- to [MoW5O19]4-. Considering that model Hamiltonians are capable of 

reproducing the antiferromagnetic character of Mo6 and the ferromagnetic ground state of 
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Figure 5. Schematic representation of the circular movement of the two electrons due to t' and tbelt-
apex (left), and tbelt and tbelt-apex (right). The light sphere represent W, the darker ones Mo.



Mo5W, we conclude that the parameter extraction based on embedded dimers is sufficiently 

accurate. Moreover, the observation that the parameters extracted for Mo6 and Mo5W are 

similar suggests that they are transferable from one system to another. Therefore, we now 

analyze the nature of the ground state for the rest of the family (Mo4W2 to MoW5, Figure S2c-

i) using the parameters listed in Tables 2 and 3. The singlet-triplet splitting is determined by 

diagonalization of the corresponding model Hamiltonian for each member of the series and 

the results are compared to the Mo6 and Mo5W values in Table 5. 

 

  
Figure 6. Energy diagrams for Mo5W showing the triplet (red) and singlet (blue) states arising 
from each family of determinants. The final spectrum (a+b+c) is comparable to the values in Table 
4, with a triplet ground state. The vertical scales are in meV units.
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Because of the high W orbital energy, the two electrons in trans-Mo4W2 are effectively 

confined to the square formed by the four equatorial Mo ions. The large singlet stability in 

this molecule —in fact comparable to what is found for Mo6— is easily rationalized by 

considering the effect of the nearest-neighbors hopping t and the repulsion V. The lowest-

lying determinants can be divided into two groups. The first group consists of four 

determinants with the two electrons on the diagonal of the square. They form two singlets and 

two triplets, which are degenerate in the present t-V model. The determinants of the second 

group have the two electrons on neighboring centers and lie at an energy V with respect to the 

singlets and triplets of group 1. The two types of determinants interact via t and a second 

order perturbative evaluation of the t-V model Hamiltonian (see Figure S7) shows that the two 

triplet states are stabilized by 4t2/V, while one of the singlet states is lowered by 8t2/V. This 

strongly resembles the contribution of the well-known Anderson mechanism to the stability of 

the low-spin state in biradical systems for which this contribution reads 4t2/U, U being the on-

site repulsion, defined as the energy difference between the determinant with two electrons on 

neighboring sites and the determinant with two electrons localized on the same center. Since 

V is significantly smaller than U, the stabilization of the singlet in Mo4W2 is considerable. It 

is more complicated to give an explanation of the stability of the singlet in the cis-Mo4W2 

complex. ε favors the localization of the electrons on the Mo diametrically opposed to the W 

centers (Moopp) whereas V favors the localization on the two other centers. The former 

determinants are lower by about –2ε + V ≈ 900 meV compared to the latter ones and –ε + V ≈ 

200 meV lower compared to determinants with only one occupied Moopp. A perturbative 

decomposition shows that the third order contribution to the coupling (that only involves t 

hopping integrals) is antiferromagnetic (≈ –290 meV) whereas the fourth order contribution 

(involving one t’ integral) is ferromagnetic (≈ 100 meV). The net effect of these two 

contributions results in a singlet stability, in agreement with the value of Table 5. 

The mer- and fac-isomers of Mo3W3 show opposite spin stability. The former has a 

singlet ground state, whereas the latter shows triplet coupling. The origin of this difference 

lies in the topology of the two isomers. In the fac-isomer, the three Mo ions that share the two 

extra electrons lie on a face-triangle of the complex, activating the triplet stabilization found 

in Mo5W. Since the three Mo ions are equivalent, this circulation is not hindered by the 

localization of an electron on one of the centers as in Mo5W, and therefore more effective 

leading to a larger triplet-singlet gap. On the other hand, the hopping processes in the Mo3 
 18



triangle of the mer-isomer involve two positive and one negative t, leading to a singlet ground 

state. 

The cis and trans isomers of the Mo2W4 system show almost degenerate singlet and 

triplet states. This is a direct consequence of the high degree of localization of the electrons 

on the two Mo centers. The large value of εW nearly completely deactivates electron hopping 

and leads to very weakly interacting electrons. The electronic structure of the MoW5 complex 

is also dominated by two highly localized electrons. One electron naturally localizes on the 

Mo center, while the second one is basically confined to the W center on the opposite end of 

the complex due to the electron repulsion V. Finally, we observe a strong singlet stabilization 

in W6. This complex is practically equivalent to the Mo6 system, albeit the hopping parameter 

among the W atoms is larger than for Mo (440 meV instead of 371 meV), leading to a 

somewhat larger singlet-triplet gap.  

Conclusions 

The results described in this paper provide a firm basis for the extraction of a wide range 

of electronic structure parameters from embedded fragment calculations. The interactions 

between unpaired electrons in inorganic systems —hopping integral (t), magnetic coupling 

(J), exchange transfer (e), inter-site electrostatic repulsion (V) and local orbital energy (ε)— 

have been extracted from embedded fragments and compared with the outcomes of the whole 

system. The values obtained in both approaches are similar. This has important consequences 

since the interactions considered here appear in most compounds with interesting quantum 

properties: magnetism, superconductivity, giant or colossal magneto-resistivity, ferro-

electricity, etc. and are in general not easily extracted from the complete system. 

This work compares results obtained from embedded fragments to the benchmark values 

obtained by computing the whole system, providing a clear-cut accuracy check of the 
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Table 5. Energy difference (in meV) between the lowest singlet and triplet statesa predicted 
from MH calculations with the parameters extracted from Mo6 and Mo5W compounds. 

 Mo6 Mo5W Mo4W2 Mo3W3 Mo2W4 MoW5 W6 

   cis trans mer fac cis trans   
MH –198 61 –155 –193 –49 352 6 12 –29 –238 

a Negative values indicate a singlet ground state. 



embedded fragment method. Two Lindqvist POMs, namely Mo6O194- and Mo5W6O194- are 

selected for two reasons. In the first place, DDCI calculations are still feasible on the whole 

structure and, secondly, because these complexes exhibit all the interactions listed above. The 

calculated values are used to parameterize a model Hamiltonian, allowing us to obtain 

macroscopic properties that can be compared to experimental observations and to address the 

importance of the different interactions on these macroscopic properties. 

Finally, the special character of the electrostatic repulsion V has to be remarked. Contrary 

to ε, which is local and t, J and e, which decrease very rapidly with the distance between the 

metal centers, the electrostatic repulsion is intrinsically long-ranged. Therefore, it has to be 

evaluated for each pair of metal centers and cannot be determined only from fragments 

containing nearest or next-nearest neighbor metal centers. Actually, it requires fragments 

based on all pairs of metal centers and have to consider the shielding effect of all highly 

polarizable centers, O2- in the case of POMs. This evaluation is still a challenge for large 

systems: the simple 1/r evaluation of V that has been used up to now in POM studies is too 

crude (the shielding effects of the oxo anions are neglected), giving a value of 1260 meV that 

is almost twice the DDCI one (650–700 meV); a forthcoming paper will be devoted to this 

point. Also, in larger POMs, e and J will not play any role in the spectra, then we just have to 

focus on t, V and ε. Extracting t is not a problem, and ε is extracted simultaneously. 
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aā⟩

bb̄⟩
 Calzado, C. J.; Malrieu, J.-P. Phys. Rev. B 2001, 63, 214520.46

 Casañ-Pastor, N.; Baker, L. C. W. J. Am. Chem. Soc. 1992, 114, 10384-10394.47

 Bi L.-H.; Kortz U.; Dickman M. H.; Nellutla S.; Dalal N. S.; Nadjo L.; Prinz M.; Neumann 48

M. J. Clust. Sci. 2006, 17, 143-165.

 Suaud, N.; Masaro, Y.; Coronado, E.; Clemente-Juan, J. M.; Guihéry, N. Eur. J. Inorg. 49

Chem. 2009, 5109-5114.

 24



 Manos, M. J.; Tasiopoulos, A. J.; Tolis, E. J.; Lalioti, N.; Woollins, J. D.; Slawin, A. M. Z.; 50

Sigalas, M. P.; Kabanos, T. A. Chem. Eur. J. 2003, 9, 695-703. 

 Zueva, E.M.; Borshch, S.A.; Petrova, M. M.; Chermette, H.; Kuznetsov, A. M. Eur. J. 51

Inorg Chem. 2007, 4317-4325. 

 25


