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Abstract 

Tracking the trajectories of individual droplets in Lagrangian numerical simulations 

of electrosprays involves a large number of computations, due to the calculation of 

the electrostatic repulsion force between droplets (space charge force). Two strategies 

are proposed in this study to reduce such number while preserving accuracy. In 

one strategy, the force contribution from distant droplets is simplified by 

replacing the droplet charges belonging to small volumes or cells within the spray 

with a single charge per cell located at the cell's center-of-charge. In the other strategy, 

the integration of the droplets' motion in different axial regions of the spray is carried 

out using two very different time steps, using higher time resolution where the 

electrical force variation sensed by the droplets is larger. With these methods the 

CPU time was shortened by a factor of 39 (from 1658 to 42 hours), in a simulation of 

an electrospray characterized by a count mean diameter (CMD) of 8.84 micro-meter 

and around 26000 droplets in the steady state. In another spray, comprising about 3400 

droplets (CMD=32 micro-meter), the CPU time was reduced by a factor of 4.4. In 

this case, the CPU reduction is smaller because the proposed methodologies become 

less efficient with a smaller number of droplets. This study is also concerned with the 

selection of a proper integration time step. We show that an acceptable upper bound to 

the time step is based on the proper description of numerical collisions between 

electrospray droplets. Interestingly, in both systems simulated, a similar maximum 

acceptable time step is found (2 micro-seconds). 
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1. Introduction

Electrospraying of liquids is a useful methodology to produce and control fine 

electrically-charged droplets. The methodology has been used in diverse applications 

including the production of thin and uniform coatings (Leeuwenburgh et al. 2006; 

Jaworek, 2007; De Jonge et al., 2009; Roncallo et al., 2010; Martin et al 2010), 

nanoparticle production (Barrero & Loscertales, 2007), space thrusters (Gamero-

Castaño, 2008; Krpoun & Shea, 2009), and mass spectrometry (Fenn, 2003).  

To electrospray a liquid in a gas environment, the liquid is emitted out of a 

capillary protrusion or tube set at a high voltage relative to a nearby electrode, such as a 

plate. Depending on the applied voltage, liquid flow rate, electrode configuration and 

the mechanical and electrical properties of the liquid, the electrospray can display 

different functioning modes (Cloupeau & Prunet-Foch, 1994). The so called cone-jet 

mode is usually the preferred mode as it produces uniform droplet sizes in a robust 

configuration. In this mode, a stable liquid meniscus, called Taylor cone, is formed at 

the tip of the capillary tube, and a jet is ejected from the cone apex. Upon break up, the 

jet leads to highly electrically charged droplets which travel through the gas phase 

driven by the electric field due to the electrodes and by the Coulombic repulsion 

between the droplets. Basic phenomena involved in the Taylor cone structure has been 

the subject of numerous studies (Fernández de la Mora & Loscertales, 1994; Gañan-

Calvo, 2004; Higuera & Barrero, 2005; Fernández de la Mora, 2007; and others), 

whereas the dynamics of the formed droplets has received less attention, and is the 

focus of the present work.  

The first detailed simulation of droplet dynamics in an electrospray was reported 

by Gañan-Calvo et al. (1994), who solved for each emitted droplet its momentum 

equation which included the electrical forces produced by the external field (due to the 

electrodes) and by the space charge (droplet-droplet Coulombic repulsion, including 

image charges at the plate), as well as the drag force due to friction between the droplets 

and the gas. The set of ODEs was solved using a modified Euler scheme for two test 

cases, each involving between 300 and 400 droplets. The numerical results were 

compared with experimental results to illustrate several electrosprays' spatial and 

statistical characteristics.  

A similar approach was used by Hartman et al. (1999) to simulate the evolution of 

ethylene glycol droplets sprayed at various flow rates and nozzle-to-plate electrical 
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potentials. Only the droplet-droplet interactions for nearby droplets were considered in 

order to save computation time. After comparing their numerical simulation and 

experimental results they concluded for bimodal sprays that the droplet electrical charge 

scaled with the diameter raised to the 1.5 power, consistently with the experimental 

results of Tang and Gomez (1994). In addition, both Tang and Gomez (1994) and 

Hartman et al. (1999) concluded that the axial velocity of the surrounding gas at the 

spray axis can be significant (34% of the droplet axial velocity in the first study and 

32% in the second). On the other hand, Gañán-Calvo et al. (1994) had made an order of 

magnitude analysis and concluded for their sprays that the characteristic gas velocity 

could be neglected compared to the droplet velocities. In general, however, the coupled 

motions of the two phases (gas and droplets) should be included in electrospray models. 

Wilhelm et al. (2003) extended the Lagrangian model developed by Gañán-Calvo 

et al. (1994), adding droplet mass and heat transfer effects due to evaporation and the 

presence of a heated impinging plate. In their sprays, evaporation did not influence 

significantly droplet transport, but affected final droplet diameter and salt concentration. 

In a later study, Wilhelm and Madler (2006) applied the model to two distinct 

electrospray modes: the cone-jet and the intermittent multi-jet.  

To understand and control film formation by electrospray, Rietveld et al. (2006) 

also used the model developed by Gañán-Calvo et al. (1994), except they did not 

consider the electrical forces between droplets under the assumption that they cancel out 

in the axial direction. This assumption conveniently reduced the computational effort, 

but is questionable in general.  

Oh et al. (2008) analyzed the deposition characteristics from a twin nozzle 

electrospray configuration using the Lagrangian model. The ODE was integrated using 

the fourth-order Runge–Kutta method considering that the electrical forces were 

constant during an integration time step. In their different computational experiments 

there were between 3300 and 14500 droplets in the computational domain. This 

Lagrangian model was later applied to predict the deposition patterns obtained when a 

twin-nozzle electrospraying system is moved parallel to a collection plate (Jung et al., 

2010).  

Deng and Gomez (2007) noted the difficulties with Lagrangian models because, 

as a result of the droplet-droplet force calculations, the overall simulation time (CPU 

time) scales with N2, where N is the number of droplets in the computational domain. 

To overcome this difficulty, they developed an alternative model in which the 
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computation of the droplet-droplet forces was simplified by modeling the spray space 

charge with a uniform line-of-charge on the spray axis. By this approach, they could 

capture the plume shape and other characteristics in a single electrospray. They later on 

applied this approximation to a system of multiplexed electrosprays with average 

primary droplet diameter around 11 micro-meters. It should be noted, however, that 

their system includes an extractor electrode between the Taylor cone and the spray 

plume, which provides a quasi constant droplet velocity. Also, for the multiplexed 

electrosprays the spray plume growth is limited by the presence of the other plumes. 

Both conditions (quasi constant drop velocity and small plume spread) help fulfill the 

assumptions of the uniform line-of-charge model. However, not all electrospray systems 

satisfy these conditions. 

Recently, Yang et al. (2011) solved the Lagrangian-model droplet dynamics for 

the case of multiplexed electrosprays using a Personal Super Computer, based on 

Graphics Processing Units (GPUs), having a theoretical computational power of ~10 

Tera FLOPS. The model allowed for tracking millions of droplet trajectories, and 

provided spray cloud structure and deposition patterns in good agreement with 

experimental results. 

The aforementioned Lagrangian simulation studies have considered sprays with 

average droplet diameters equal or above 10 micro-meters, with the exception of 

Rietveld et al. (2006), who regarded much smaller diameters but ignored the droplet-

droplet force calculations. On the other hand, most electrospray systems of 

technological interest generate droplets with average diameter in the micron or 

submicron range. The smaller droplet electrical mobilities of such systems result in 

denser sprays, with droplet numbers that can easily exceed N~104. Without the use of a 

Super Computer, simulating such systems can take very long CPU times, eventually 

making simulations impractical as a predictive tool.  

This N-square challenge is compounded by the need to identify a short enough 

time step for accurately tracking the droplets trajectories, especially near the emission 

point, where their velocities are high and the electrical force changes rapidly. Thus far, 

the time step is usually estimated using ad-hoc criteria (such as some fraction of the jet 

break up time), and is proven suitable by trial and error. This is a time consuming 

strategy for highly populated sprays, for which it would be useful to have a procedure to 

anticipate, at least, the order of magnitude of the integration time step.  
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In the present study, we have aimed to address both of these challenges. The first 

objective is thus to find a procedure to estimate an upper bound time step compatible 

with a realistic simulation of the electrospray droplets dynamics. The second and main 

objective is to propose and evaluate numerical strategies designed to speed up the 

simulations, by simplifying the droplet-droplet interaction calculations without 

compromising accuracy. In the first strategy, the number of droplet-to-distant droplet 

force computations is reduced by replacing the droplet point charges in the various 

distant regions of the spray by a much smaller number of lumped charges. The second 

strategy considers different time steps for different zones of the electrospray, in order to 

only track with high time resolution (with a small integration time step) the fastest 

droplets in the spray, while tracking the slower droplets much less frequently. The 

effectiveness of these two approaches has been quantified for two electrospray systems 

taken from the experimental literature.  

 

 

2 Governing Equations and Numerical Procedures: Base Code 

 

A base code for computing the droplet trajectories was developed before 

implementing numerical efficient strategies (described in Section 3). The base code is 

build upon a simple physical model of the simulated electrosprays, and accounts for all 

of the droplet-droplet electrostatic interactions responsible for the inefficiency in 

Lagrangian calculations of electrosprays. In this section, (i) we describe the model and 

the numerical procedures included in this base code, (ii) we introduce the electric 

variation time as a characteristic time to which the integration time step should scale, 

and (iii) we report on our code verification results.  

 

2.1 Model 

 

We integrate the equations of motion of electrospray droplets in the commonly 

encountered electrode configuration comprising a capillary tube (of semi-infinite 

length) that faces a planar collection plate (of infinite extent). The motion of a spray 

droplet i is described by its position vector Ri and velocity vector Vi, which are 

functions of time (t), and are obtained by solving its equations of motion  
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where Ai is the acceleration, i.e. the sum of forces acting on droplet i divided by its 

mass. The electrospray systems considered here comprise non-evaporating spherical 

droplets that interact with each other electrostatically, though not aerodynamically, and 

experience drag from the surrounding gas, which is assumed to be still air at normal 

conditions (1 atm, 20ºC). The droplet charge is assumed to remain constant in time and 

to stay uniformly distributed on the drop surface (i.e. resulting in a point-charge electric 

field). Under these constraints, Eq. (1b) becomes:  
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where di is the droplet diameter (m), d is the liquid density (kg/m3), g is the gas 

density (kg/m3), CDi is the drag coefficient, qi is the droplet electrical charge (C), Eext is 

the external electric field created by the potential difference between the electrodes 

(V/m), Rij = Ri - Rj is the displacement between the position vectors of droplets j 

[Rj = (xj, yj, zj)] and i (m), and RiJ = Ri - RJ is the displacement between the position 

vectors of the image of droplet j in the plate [RJ = (xj, yj, 2H - zj)] and droplet i (m) 

(where H is the separation between the capillary tip and the plate),  is the air 

permittivity (taken as 8.854×10-12 A·s/V·m), and N is the total number of droplets in the 

plume. The drag coefficient in (2) has been calculated as  

 

 2Re1
Re

24
i

i

iD bC   (3) 

 

where b = 0.1104, and which is valid for 5000Re  giii dV   (g is the gas kinematic 

viscosity) (Abraham 1970). 

 As stated in the introduction, the velocity of the surrounding gas can impact the 

droplet dynamics. Predicting the interactions between droplets and the gas phase would 

require solving the coupled equations governing droplet and gas phase dynamics. 
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Although this is out of the scope of this study, the numerical strategies herein developed 

for the droplet dynamics can be easily extended to include the gas phase velocity 

effects.  

Solving Eqs. (1a,b) depends on having prior knowledge of different parameters 

and initial conditions. In addition to the aforementioned gas and liquid properties, these 

include Eext, the droplet diameter and droplet charge joint distribution function, and the 

droplet coordinates and velocity vector at the emission point.  

In this work, the external field, Eext, was obtained from its electrical potential, , 

as 

 

extE  (4) 

 

and the electrical potential was computed by solving Gauss' Law in terms of the Laplace 

equation 

 

02    (5) 

 

between the needle and the plate, for boundary conditions  = 0 at the needle and 

Taylor cone external surfaces,  = 0 V at the collection plate, 0 z at z = -10H, and 

0 r at r = 10H. These two last boundary conditions were located sufficiently far 

from the spray, where they will not affect the external field values in the zone of forces 

calculation. Eq. (5) was discretized in cylindrical coordinates using the finite volume 

technique and was solved numerically on a very fine non-homogeneous grid. It should 

be noted that the influence of the droplet space charge on the needle surface charge 

distribution was neglected, whereas its effect on the collection plate was considered via 

image droplets as indicated in Eq. (2). 

The droplets' diameters and electric charge should ideally be assigned in the code 

by randomly sampling the joint distribution function for droplet diameter and charge 

(constrained to additional rules of jet breakup, such as the alternation of primary and 

satellite droplets for Rayleigh breakup). Unfortunately, the joint distribution function 

has been investigated only for few electrosprays (de Juan and Fernández de la Mora, 

1997; Gamero-Castaño, 2008). On the other hand, the diameter distribution is reported 

more often, and, furthermore, the mean droplet diameter has been shown to be predicted 
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by dimensional relationships (Fernandez de la Mora & Loscertales, 1994; Gañan-Calvo 

et al, 1997; Gañán-Calvo, 2004). Therefore, our code assumes a known droplet diameter 

distribution, from which droplets are created (i.e. randomly sampled). As droplets are 

created in a time step, they consume the liquid volume allocated for emission. As soon 

as a new droplet has a volume larger than the remaining volume budget, the creation of 

droplets stops. Such droplet is saved for emission at the start of the following time step. 

The volume allocated for emission is Q×Δt (where Q is the jet volumetric flow rate) 

plus the difference between the allocated and the actually emitted volumes of the 

previous time step; thus ensuring mass conservation. Note that rejecting this last droplet 

would result in a biased emission towards small droplets.  

To every drop diameter created, an electric charge qi is then assigned based on 

assumptions for the charge density (droplet charge per unit volume, )(6 3

iiqi dq   ). 

Based on an experimental investigation of the droplet diameter-charge joint distribution 

function, de Juan & Fernández de la Mora (1997) suggested that while for primary 

droplets 3

ii dq  is almost constant (indicating frozen charge during jet break-up in their 

sprays), the charge density of the satellite droplets and products of Coulomb explosions 

should be higher than for primary droplets. Gamero-Castaño (2008) confirmed these 

conclusions based on specific charge data for electrosprays in vacuum. Tang and 

Gomez (1994), one of the cases simulated in the present work, report the average charge 

densities and diameters for the primary and for the satellite droplets, which are scaled as 

5.1

modemod, ~ deq , where "mode" refers to either "primary" or "satellite". In the other case 

simulated in the present work, Park et al. (2004), satellite droplets were not identified in 

the droplet size distribution, which was reported as a lognormal. In this case, we use the 

relationship qi = constant = I/Q (where I is the electrical current intensity).  

Finally, to solve Eqs. (1a,b), the initial condition of each droplet is taken based on 

the velocity and position of the jet where it breaks up to form the droplets. The jet speed 

is not available usually, and must be estimated from the volumetric flow rate of liquid 

and the assumed or measured jet diameter. Here, the jet diameter was obtained from the 

count-mean droplet diameter d  (or that for the primary droplets, in case of a bimodal 

distribution), according to the classical Rayleigh equation, 89.1dd jet  , derived for 

uncharged jets (Chandrasekhar, 1981). It has been observed experimentally that this 
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relationship is very similar for charged as for uncharged jets (Jones & Thong, 1971; 

Tang & Gomez, 1994; Rosell-Llompart & Fernandez de la Mora, 1994).  

Positioning the emitted droplets into the system requires further rules which are 

associated to the jet break up dynamics. Instead of such detailed information, we follow 

some logical rules, which, admitedly, suffer from some degree of arbitrariness. The 

initial axial coordinates of the droplets are distributed within an interval that starts at a 

distance l0 from the end of the capillary tube. The length of this interval is equal to the 

jet speed times the time step duration. The transversal droplet emission coordinates (xi, 

yi) have been extracted from a Gaussian random distribution with zero average and 

standard deviation equal to two average droplet diameters. This small disturbance 

introduces the initial asymmetry that prevents emitting all the droplets into the same 

trajectory on the exact axis.  

 

 

2.2 Integration scheme 

 

Researchers in the field of Brownian Dynamics have developed several 

integration schemes for solving the Langevin equation, which faces the same main 

problem as Eqs. (1a,b), namely, that the electrical force calculations are the most 

computationally expensive part of the simulation. We have adopted the explicit 

integration of the drag force proposed by Ermak & Buckholz (1980).  

Viscous drag forces and electrical forces in Eq. (2) can be implicitly written as 

 

ii mtd

d elec

iii FVV



 (6) 

 

where mi is the mass of drop i and  
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2
2 Re118 igidi bd   (7) 

 

is the drop viscous relaxation time, which tends to be independent of velocity as the 

Reynolds number decreases, g is the dynamic viscosity of the surrounding gas 

(N·s/m2). 
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Eq. (6) can be integrated twice at each time step from t to t + t, under the 

assumption that electrical forces ( elec

iF ) and i remain constant in this time period, 

leading to 
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To integrate Eq. (6) for the velocity at the end of the time step, the average between the 

electrical force values at the beginning and at the end of the time step is taken as the 

constant electrical force, to obtain 
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Equations (8) and (9) are the basis of the Brownian Dynamics algorithm known as 

Ermak, which is recognized as being simple, efficient and accurate (Thalmann and 

Farago, 2007). Moreover, when the electrospray comprises small enough droplets for 

which Brownian movement is significant, Eqs. (8) and (9) should incorporate the 

stochastic terms that have been removed in this implementation (Ermak & Buckholz, 

1980). 

 

 

2.3 Time step selection 

 

The ability of Eqs. (8,9) to accurately track a droplet trajectory depends on 

whether the time step t is small enough to ensure negligible changes of the electrical 

forces and of i (which is not constant but, rather, dependent on Vi through Eq. (7)). In 

Eqs. (8) and (9) the value of i at the beginning of the time step is taken as the 

representative constant value along the integration. To evaluate the error introduced by 

assuming its constancy, Eq. (6) has been integrated without the electrical forces term 

under two scenarios: (i) considering i constant, and (ii) taking the two first terms of the 

Taylor expansion of Vii as dependent on Vi according Eq. (7). Upon comparing the 

two solutions we conclude that the error introduced by considering i to be constant is 
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not significant as long as t < i and Rei is low or moderate. For example, when 

t /i = 0.01, the local error is 0.001% for Rei = 10, rises to 0.003% when Rei = 100, and 

is still as low as 0.3% when t /i = 0.10 and Rei = 100. 

Once the constancy of i is assumed, the only limitation in the integration 

procedure for Eq. (2) is the assumption that the electrical force sensed by the droplet 

remains constant during the time step. We define the characteristic time for variation of 

the electrical force, here named electric variation time, tev,i, as the time that droplet i 

located at position (xi, yi, zi) would need to sense a 100% difference on the electrical 

force that is acting upon it, under the conditions prevailing at (xi, yi, zi), which is given 

as  
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This tev,i value is a function of time and position. Its order of magnitude can be 

estimated along the centerline, a priori of a simulation, by neglecting the effect of the 

space charge, as 
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where CLzextE ,,  is the axial component of the external electric field along the centerline, 

and CLzv ,  is the axial velocity of a single droplet of average diameter computed along 

the central axis, considering only its drag and external electric field forces. Its minimum 

value, tev,min, is located at the axial emission point, where the external field gradients are 

maximum while the droplets' velocity varies slowly:  
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where v0 is the jet velocity. The time step t should be a fraction of tev,min such as to 

ensure a nearly constant elec

iF during the integration step.  

 

 

2.4 Numerical code verification 

 

Our base code based on the integration scheme described in section 2.2 has been 

verified using the parameters and system characteristics initially reported by Gañan-

Calvo et al. (1994) and later on used by Wilhelm et al. (2003) to validate their code 

(Table 1). The external field of the system was calculated using the same approximation 

as used by these authors, instead of as outlined in section 2.1.  

Eqs. (8) and (9) have been applied with a time step of t = 10-6 s. We have tested 

that a t = 2x10-6 s does not appreciably change the results. Fig. 1 shows the evolution 

of the liquid flow collected on the collection plate. To filter out the natural large 

fluctuations arising from the individual droplets impinging on the plate, the flow has 

been transformed using a Symmetrical Moving Average filter with a time width equal to 

the time taken by the first emitted droplets to travel from the emission point to the 

collection plate, in this case 2.5×10-3 s.  

We consider that the system has achieved the steady state as soon as the averaged 

impinging flow exceeds the emitted flow, which occurs at tss = 0.013 s (Fig. 1). Beyond 

this time, the averaged number of droplets in the spray plume equals 498.2.  

Wilhelm et al., (2003) pointed out that the simulation results are sensitive to the 

simulated jet break-up position. However, neither Gañan-Calvo et al. (1994) nor 

Wilhelm et al. (2003) reported the numerical value of the jet break-up position. We have 

found best agreement with Wilhelm et al.'s simulation for l0 = 0.38 mm. Figs. 2a-f 

compare the results of Wilhelm et al (left side) with ours (right side) for: the spatial 

location of the droplets for a given snapshot (Fig. 2a,b), the plume average axial 

velocity as a function of the axial coordinate (Fig. 2c,d), and the axial velocity 

distribution at three axial positions (Fig. 2e,f). We conclude that our simulations agree 

reasonably well with the reported results by Wilhelm et al. (2003). It should be noted 

that the droplets acceleration towards the collection plate by image force attraction is 

unappreciable in both our simulations and Wilhelm et al.'s, in contrast to Gañan-Calvo 

et al.'s (Figs. 2c,d).  



 13 

 

 

3. Numerically Efficient Approaches 

 

As mentioned in the Introduction section, fully accounting for the droplet-droplet 

electrical interactions consumes most of the CPU time, because N×(N-1)/2 droplet-to-

droplet force calculations must be performed at each time step. The two numerical 

strategies that are proposed here to speed the computation (reduce the CPU time) are 

named Lumped Space Charge (LSC), and Zonal Time Steps (ZTS).  

 

 

3.1 Lumped Space Charge approach (LSC) 

 

Similar computational challenges to those faced here have previously been 

addressed in other fields. For the gravitational N-body problem, Appel (1985) and 

Barnes and Hut (1986) suggested numerical strategies aimed at grouping the effect of 

distant bodies. These authors represented the universe as a tree-like structure with 

hierarchic subdivisions, taking advantage of the tendency of the bodies to cluster in 

some regions while leaving other regions empty. With this methodology, the 

computation time increases as N×logN instead of N2. Similar approaches have been 

used in the field of Molecular Dynamics Simulation in the technique known as PPPM 

(particle-particle/particle mesh) proposed by Eastwood and Hockney (1974).  

Based on these successes, we have developed the Lumped Space Charge (LSC) 

approach, in which the force due to distant droplets on a given droplet is accounted for 

by lumping the charges of distant droplets into a smaller number of representative 

charges. The spray plume is subdivided into cells, and to each cell a lumped point 

charge (cell charge) is assigned whose magnitude equals the sum of the droplet charges 

within the cell, and whose position is the center of charge 
chc

pnm ,,R  defined as 

 










pnma

a

pnma

aa

chc

pnm
q

q

,,

,,

,,

R

R  (13) 

 

Here indices (m, n, p) identify the cell in question, while index a identifies the droplets 

within the cell.  
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Our cell grid generation exploits the cylindrical symmetry of the electrodes and of 

the electrospray (statistically). First a number Ns of equal thickness slices are created 

along the z direction between the emission point, z = l0, and the collection plate, z = H 

(Fig. 3a). Next, each slice is cut into a number Nr of concentric rings up to the edge of 

the spray envelope (Fig. 3b); thus, Nr =Nr (m), where m =1,…, Ns. Finally, each ring is 

cut along the angular direction into N equally spaced cells. Within this configuration, 

each droplet belongs to a cell (m, n, p) where 1  m  Ns, 1  n  Nr (m), 1  p  N.  

The space charge force on a droplet i belonging to a cell (m, n, p) is computed in 

two steps: (i) droplet-by-droplet for droplets (and their images) belonging to the same 

cell or to neighboring cells, and (ii) droplet-by-cell for distant cells (as well as the 

image of the cell charge). The neighboring cells of cell (m, n, p) are those cells sharing 

with it a face, an edge, or a vertex. When the (m, n, p) cell touches the z-axis, this 

scheme wrongly considers as distant, droplets which are spatially quite near (typically 

for droplets in (m, 1, p) and (m, 2, p-2)). To avoid this problem, the neighboring cells of 

n = 1 cells include all cells in the second ring (n = 2) within the same cell slice m, as 

well as in one slice above and one slice below (m+1 and m-1).  

The total number of cells,  



sN

m

rct mNNN
1


 is chosen trying to maximize 

computer efficiency (i.e. reduce the number of space charge force calculations). Given 

the total number of droplets in the electrospray plume N and the number of cells 

neighboring each cell Nnc (assumed constant for the sake of simplicity), the total number 

of droplet-cell calculations is approximated as   tcnctc NNNNN  1 , where it has 

further been assumed that nctc NN  . In addition, the total number of droplet-to-droplet 

calculations can be estimated as    tcnc NNNN 2)1(  , where a homogeneous droplet 

number per cell tcNN is assumed. Under these assumptions, the optimum number of 

cells which minimizes the total number of point-charge force calculations, namely 

   tcnctc NNNNNN 2)1(  , equals 

 

N
N

N nc
tc

2

)1( 
  (14) 
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Using a representative value for the neighboring cell number of Nnc  26, Eq. (14) 

suggests an optimum number of cells, Ntc, between 580 and 1160 when the total number 

of droplets, N, ranges from 25000 to 100000.  

In this work we have found that N = 16 and Ns = 10 are adequate. To obtain Nr, 

rings are formed in the following way. The slice containing the maximum radius of the 

spray plume is identified, and the thickness of most external ring is set equal to the slice 

height, while the remainder ring faces in this slice are set at radii satisfying 

constant1  


nn rr . Here, the constant exponent  controls the cell morphology (e.g., 

 = 2 forms rings with equal base area, and  = 1 equally spaced rings). Preliminary 

electrical force calculations for the test cases presented later, indicated that  = 1.1 

reduces the overall error in the electrical force calculations. Finally, this ring structure is 

transferred to the other slices (see Fig. 3a). In sum, the parameters defining the cell grid 

chosen in this study are: N = 16, Ns = 10,  = 1.1. 

Finally, it should be noted that the overall cell arrangement is a dynamic structure 

that is rebuilt periodically, adapting to the plume geometry as it evolves in time. 

Consequently, preparing the cell lists and adapting the cell structure to the spray plume 

is CPU time consuming. In order to save time, the cell lists and the grid structure are not 

updated at each time step, but only after the fastest droplet in the system has travelled a 

fraction of the slices height in the axial direction. In preliminary calculations a fraction 

of 20% of the slice height did not significantly affect the space-charge force calculation. 

Therefore, to ensure accuracy, we have used a fraction of 10% in the simulations. 

 

 

 

3.2 Zonal Time Steps approach (ZTS) 

 

As discussed in section 2.3, the appropriate time step for the simulation is, 

evidently, dependent on the droplets velocities and the electric field variation with 

position. For the electrospray configuration studied here (one capillary tube and a 

collection plate), the droplets move fastest near the capillary end, where they experience 

a rapidly changing electric field. Further downstream, however, the droplets are moving 

much slower, and the field changes more slowly. This picture is supported by the 

numerical simulations of Gañan-Calvo et al. (1994) and Wilhelm et al. (2003), and by 
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the experimental results of Tang and Gomez (1994), in which the droplets' axial 

velocity reaches a maximum close to the emission point. Therefore, and according to 

the arguments of section 2.3, it is clear that the time step size used in our numerical 

scheme is restricted by the conditions prevailing close to the emission point, while, 

away from this region, much longer time steps could be used without compromising the 

accuracy of the integration.  

In the Zonal Time Steps (ZTS) approach, the spray is divided into a Zone I 

located close to the emission point, where a small time step (tI) is used, and a Zone II 

located downstream of Zone I, where a multiple of tI is used as time step (tII). In 

order to define these regions without actually carrying out the complete simulation 

using the Base Code, the droplet's velocity is first estimated by solving Eqs. (2) and (1a) 

for a droplet of average diameter injected at the axis center, without considering the 

space charge contribution to the electric field; namely, neglecting the third and fourth 

terms of the RHS of Eq. (2).  

As implemented here, we take advantage of the LSC cell structure, and procedure 

for computing electrical forces between droplets. The boundary between Zones I and II 

is chosen as that between slices mI and mI+1, such that within mI the estimated tev at the 

centerline has decreased two orders of magnitude from its maximum value. Then, the 

ZTS code proceeds in a loop. First, the droplets belonging Zone I are advanced (tII/tI 

– 1) times with a time step tI, with the electrical forces in Eqs. (8) and (9) calculated 

by the LSC procedure. Then, all the droplets in the system are advanced once by the 

LSC procedure, with a time step tI if the droplet belongs to Zone I or tII if the droplet 

belongs to Zone II.  

 

4. Results and discussion 

 

The model described in section 2 has been applied with and without the LSC and 

ZTS techniques described in section 3, in order to quantify the savings in computer 

resource they bring about. In order to simulate realistic situations, two test cases have 

been chosen from the experimental literature, for which droplet evaporation is 

negligible. Their geometrical and operating parameters, and liquid properties are 

provided in Table 1. Case I corresponds to an experiment reported by Park et al. (2004) 

in which ethanol was electrosprayed at 20 L/min, and the droplet size distribution was 

determined by laser diffraction and had a count mean diameter of 8.84 m. Case II 
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corresponds to the experiment reported by Tang and Gomez (1994), in which the 

structure of an electrospray of heptane at a flow rate of 167 L/min was determined by 

Phase Doppler Anemometry. The bimodal distribution of droplet diameters comprised 

quasi monodisperse primary droplets averaging 32.4 µm in diameter. All simulations 

were run on a processor on a computation rack, an Intel(R) Xeon(TM) at 2.73 GHz.  

 

 

4.1 Case I 

 

(i) Complete simulation and time step selection using the Base Code 

 

A key aspect of this computer simulation is the time needed to reach the steady 

state from a no-droplet condition at the beginning of the simulation. In the previous 

literature on computer simulation of electrosprays, the transient formation of the 

electrospray plume is not highlighted, probably because it took a small fraction of the 

total simulated time. On the other hand, Case I includes many more droplets (about 

26000 in the steady state) and a large number of spray realizations must be sampled 

when interrogating the steady state for spray variables. After determining that the 

transient takes tss = 0.093 s (as determined by the procedure explained in section 2.4), 

we have chosen a total simulated time of 0.2 s.  

In order to select the longest time step Δt that results in accurate droplets 

dynamics calculations for this system, we initially searched for an output variable that is 

sensitive to the time step by performing simulations with different time steps within the 

range 5×10-7 < Δt < 2×10-5 s. Output variables describing droplet distribution (such as 

radial flux distribution on the plate, droplets velocity distribution within the plume, and 

location of the plume envelope) turned out to have low sensitivity to Δt. On the other 

hand, snapshots of the droplets' position in the steady plume revealed droplets outside of 

the plume envelope, which increased in number as Δt increased. Such "outlier droplets" 

are clearly visible in the snapshots shown in Fig. 4 for time steps of 1×10-6, 2×10-6 and 

5×10-6 s. Analysis of the trajectories of these droplets prior to becoming outliers reveals 

that they were approached by other droplets to unrealistically short separations, and, as 

a result of the high repulsion forces, were accelerated wildly and thrown out of the spray 

plume. Notice that the Ermak integration scheme assumes that the forces remain 

constant and equal to their value at the beginning of the time step (see Eq.(8)). 
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Therefore, when a large time step is used, two droplets that collide at time t + Δt may 

have barely noticed their mutual repulsion force at time t. In such collisions the 

conservation principles of momentum and energy are grossly violated, as they are 

numerical artifacts (not real). 

The frequency of occurrence of such numerical collisions can be used for 

determining the largest time step consistent with accurate simulations. We have 

quantified these collisions at different time steps, by counting all droplet pairs 

characterized by a separation of their centers smaller than one count mean diameter at 

the end of each time step. These collision detection counts normalized per 1000 time 

steps are plotted in Fig. 5a as function of time step for 5×10-7 ≤ Δt ≤ 2×10-5 s. As initial 

condition in these simulations, we have used the droplets' positions and velocities at 

t = 0.2 s simulated using Δt = 1×10-6 s (as in Fig. 4a). They were then run for the period 

0.20 < t < 0.25 s using the different time steps. Fig. 5a shows that the collision detection 

rate decreases as the time step decreases, as expected, but levels out to a non-zero value 

for small Δt's, of approximately 11 counts/1000 steps. Such residual collisions are not 

numerical artifacts; rather, collision events taking place inside the numerical 

electrospray plume. Although the numerical results suggest the possibility of real 

collisions, these numerical events could also be consequence of the droplet injection 

rules and other simplifications within the model (Eqs (2)-(5)). As Δt decreases, the 

residual collisions eventually become sampled during several consecutive time steps, 

while the sampling frequency grows in inverse proportion to the decrease in Δt, thus 

leading to the constant Δt-independent asymptote shown in Fig. 5a. Because during 

residual collisions the interactions involve the most rapid changes in electric field 

experienced by any droplets in the spray, a suitable criterion for choosing an appropriate 

Δt can be based on proximity to the low-Δt asymptote of the collision count. By 

applying this criterion to Fig. 5a, we conclude that an appropriate Δt for this system 

should not exceed 2×10-6 s.  

To further build upon this rationale, in Fig. 5b we have graphed the average 

number of time steps needed to describe each collision event for the same simulations 

as in Fig. 5a. When Δt > 2×10-6 s this number is almost one, indicating that Δt is not 

short enough to describe the details of each collision event (as they are detected only 

once). For Δt ≤ 2×10-6 s, on the other hand, the average number of time steps increases 

above 1, becoming almost 4 for Δt = 5×10-7 s, as residual collisions are tracked. 

Therefore, Δt = 2×10-6 s has been chosen as the maximum acceptable time step.  
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In line with the arguments presented in section 2.3, we have checked that this 

maximum time step is a small fraction of the characteristic time for variation of the 

electric force, tev,min (Eq. (11)). Indeed, for this system tev,min = 1.05×10-5 s.  

In addition, the accuracy of the integration scheme depends on the near constancy 

of i during the integration, as argued in section 2.2. For these simulations, on average 

i = 1.3×10-4 s, fulfilling also the requirement of i >> t.  

The fraction of droplets involved in residual collisions in these simulations was 

0.4 %, with 3200 residual collisions/s. When using t = 10-5 s almost all collisions 

occurred close to the droplet emission point, with the farthest collision recorded at z = 

6.1 mm and the maximum collision rate being located at z = 1 mm (the emission being 

at z = l0 = 0.5 mm). 

 

 

(ii) Simulations with LSC and ZTS strategies 

 

The CPU times needed to perform the complete simulations of Figs. 4a-c with 

time steps of 1×10-6, 2×10-6 and 5×10-6 s, were 1658, 835 and 341 hours for a system 

simulated time of 0.2 s (including the transient). These times are impractical for an 

acceptable accuracy (34.8 days at time steps of 2×10-6 s). With the lumped space charge 

field procedure (LSC) described in section 3.1, the 0.2 s system simulation using t = 

1×10-6 s took a CPU time of 254 h, namely a reduction by a factor ~6.5 from the 1658 

hours needed for the complete simulation. To assess the goodness of the LSC 

simulation, we have compared the mass fluxes impinging on the counterplate using the 

LSC technique and without using it (LSC Code versus Base Code). To avoid the spray 

transient, we took 500 snapshots uniformly distributed within the steady state period 

between 0.1 and 0.2 s to calculate the fluxes. Fig. 6 shows that the mass flux profile is 

almost identical in both cases, except possibly near r = 0, where the area used to 

compute the mass flux tends to zero as r  0 (symmetry axis), and, consequently, the 

uncertainty on the computed flux increases. In addition, the central region collected 

relatively few droplets. A total of 80698 droplets (80701 using the LSC technique) 

impinged on the plate in the period from 0.1 to 0.2 s, while only 45 (46 using the LSC 

technique) were collected in the area used to calculate the flux at r = 0. Because the 

mass flux is an average property, it does not inform about property fluctuations such as 
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droplet velocity, which, for instance, must be considered when predicting the structure 

of coatings. The two insets in Fig. 6 show that the probability density function of 

droplet axial velocities near the collector obtained by the three numerical methods are 

comparable.  

The CPU time reduction achieved with the LSC Code is further improved with the 

Zonal Time Steps (ZTS) approach (section 3.2). Zone I has been located in the region 

l0 < z < 0.0064 m, coinciding with the boundaries between second and third cell slices, 

and Zone II in 0.0064 < z < 0.03 m (to the collection plate). The time step values chosen 

are ΔtI = 1×10-6 s for Zone I, and ΔtII = 10×ΔtI = 1×10-5 s for Zone II. 

Simulating the first 0.2 s of system time by the ZTS Code took 42 hours of CPU 

time, a factor of 39.5 times shorter than the complete simulation at Δt= 1×10-6 s. Fig. 6 

shows that the mass flux distribution from this simulation is quite close to those for the 

LSC approximation and the complete simulation. The maximum discrepancy in mass 

flux with the complete simulation is 16% at r = 0.001 m. It appears that the fact of 

freezing the droplets in Zone II when using the small time steps, results in a tendency to 

keep the droplets closer to the z-axis. The mass flux distribution in Fig. 6 for the 

complete and ZTS simulations result in the same impinging mass flow rate, in which the 

higher ZTS flux near the axis is compensated by its lower flux near the plume edge. 

 

 

4.2 Case II 

 

(i) Complete simulation and time step selection using the Base Code 

 

Tang and Gomez's 1994 experimental study, chosen as second case study (Table 

1), helped quantify the mechanisms that govern the droplet formation and the spray 

structure, and provides measurements of the droplet distribution statistics for both 

primary and satellite droplets, while reporting radial and axial distributions of droplet 

diameter, number density and axial velocity, which can be useful for comparison with 

our numerical simulations. The diameter distributions for the primary and satellite 

droplets were taken as reported in Fig. 4a and 6a in Tang and Gomez's paper. In the 

code, the satellite droplets were created between primary droplets, with a ratio of 

number of satellites to primaries of 6:10.  

To identify the appropriate time step for the numerical integration of the droplet 

motions, we ran the complete simulation in the range 5×10-7 s < Δt < 5×10-5 s, again for 



 21 

a total system simulated time of 0.2 s. Fig. 7 shows the t = 0.2 s snapshots for Δt = 

5×10-5 s and 5×10-7 s. Both simulations capture the plume structure reported by Tang & 

Gomez (1994), with a central plume formed by primary droplets and a shroud of 

satellite droplets. However, while the shroud's outer boundary is sharp for Δt = 5×10-7 s, 

the simulation using Δt = 5×10-5 s shows a diffuse boundary and the presence of many 

outlier droplets, both satellites and primaries. As noted earlier, the presence of outliers 

suggests an excessive time step, and the presence of artifact collisions. The variation of 

the collision rate and the average number of time steps taken by a collision event are 

presented in Figs. 8a,b. Fig. 8a shows that the collision rate for time steps under 

about Δt = 2×10-6 s becomes asymptotically constant, with a value around 1.3 

collisions/1000 steps associated to residual collisions. In Fig. 8b, the average number of 

collisions describing each collision event increases rapidly from unity as the collision 

rate in Fig. 8a approaches its horizontal asymptote, below Δt = 2×10-6. Higher Δt values 

result in an average number of steps per collision event very close to 1, not enough to 

properly track the numerical collisions. In conclusion, it seems that the maximum time 

step for a proper simulation of the droplets dynamics in Case II is Δt = 2×10-6 s, which, 

interestingly enough, is the same value as was found for Case I. This maximum 

allowable time step is now only 1.2% of the characteristic time for variation of the 

electric field tev,min (= 1.6×10-4 s). In conclusion, again in this case tev,min is a suitable 

upper bound to the appropriate times step. This is because the electric field variations 

experienced by droplets during artifact collisions are much greater than merely as a 

result of variations of the external field.  

In this system i = 5.1×10-4 s on average, while, because of the bimodal character 

of the droplet size distribution, the average value is i = 1.3×10-3 s for the primary 

droplets and i = 1.4×10-4 s for the satellites. In any case, these average values are well 

above the maximum time step Δt = 2×10-6 s, suggesting that the drag force calculation 

is well approximated.  

To check the goodness of this simulation in describing the real system, Figs. 9a,b 

compare our radial distributions of droplet diameters and of number density against the 

experimental data by Tang & Gomez (1994). In both sets, the measured average droplet 

diameter remains almost constant till r ~ 0.003 mm, and decreases beyond this position. 

In the zone 0.0055 < r < 0.0065 m, there is no agreement because no droplets were 

detected in the numerical simulations. Beyond r = 0.0065 m, the trend is recovered 
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although the experimental diameters are significantly smaller than those from the 

simulation. The reason for these disagreements is clarified by the radial distribution of 

the number density presented in Fig. 9b, which shows that the shroud of satellite 

droplets in the simulation is clearly shifted outward with respect to the real spray. 

Interestingly, the absolute value of the two relative maxima is very similar in both the 

experiment and the simulation. The central maximum, corresponding to the primary 

droplets, is experimentally located at r = 0.002 m, while the simulation has it at r = 

0.0025m. The second peak was determined experimentally at around r = 0.007 m, while 

the simulation shows it at r = 0.0095 m. Thus, the simulation reproduces the main 

characteristics of the experimental system, although the plume shroud composed of 

satellite droplets is displaced radially outwards by about 2 or 3 mm with respect to the 

experimental data. One possible explanation for this effect is that our current numerical 

model does not take into account the effect of the axial wind created by the droplets, 

which was reported to be significant by Tang and Gomez (1994).  

 

 

(ii) Simulations with the LSC and ZTS strategies 

 

The CPU time required to run the complete simulation to system time t = 0.2 s 

with Δt = 1×10-6 s was 34.5 h. Use of the LSC methodology reduced this time by a 

factor of 1.25 only (having taken 27.7 h). The maximum reduction can be estimated 

considering the number of point-charge electrical force calculations given in section 3.1. 

The ratio of such calculations between the complete simulation and LSC is given as 

    tcnctc NNNNN 2)1(1  . In this case, N = 3430 droplets and Ntc = 752 cells, 

which results in a maximum reduction of only 2.1. Therefore, the actual CPU time 

reduction is 60% of this maximum. Note that in Case I, the maximum reduction would 

similarly be estimated at 10.3, and that the actual reduction was also about 60% of this 

value.  

As in Case I, the mass flux profile for the LSC simulation is very similar to the 

complete simulation profile, as shown in Fig. 10. 

The system was also simulated with the ZTS procedure, using ΔtI  = 1×10-6 s  in 

region z < 0.0107 m and ΔtII = 1×10-5 s for z > 0.0107 m. With this procedure the total 

CPU simulation time was 7.8 h, a factor of 4.4 reduction relative to the complete 

simulation. Fig. 10 shows the radial profile of the mass deposition flux resulting from 
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this procedure, showing good agreement with the complete simulation, although with 

higher flux in the center of the plume, as noted earlier also in Case I. As for Case I, all 

three methods lead to similar droplet axial velocity fluctuations near the collector, as 

can be seen in the insets of Fig. 10. 

Table 2 summarizes the CPU times obtained with the various code configurations 

for both cases studied. The differences in numerical efficiency between the two study 

cases support the expectation that as the number of droplets in the plume increases 

(finer droplets), the proposed LSC and ZTS procedures become more effective.  

 

 

5. Conclusions 

 

In Lagrangian simulations of electrosprays droplets dynamics, most of the 

computation CPU time is spent determining the electrical repulsion forces between 

droplets (space charge force). Such simulations can take an impractical long time when 

the spray comprises a large number of droplets N, for example, greater than several 

thousands. This is especially relevant when independent system realizations are needed 

for statistical averaging under steady state. In one case simulated in this study, where N 

exceeded 2.5×104 in the steady state, simulations took almost 10 weeks to simulate 0.2 

seconds of system time.  

We have assessed the efficiency of two numerical strategies designed to reduce 

the CPU time, while preserving accuracy. Both strategies are aimed at reducing the 

number of computations of the space charge force. Our first numerical strategy, called 

Lumped Space Charge (LSC) approach, is based on lumping droplets together in 

various cell volumes in the spray, and in computing only once the force from all 

droplets within each cell onto each distant droplet from the cell. The LSC 

approximation reduced the CPU time by a factor of 6.5 when simulating Case I, which 

is characterized by ~26000 droplet spray count in the steady state, and by a lognormal 

distribution of droplet diameters with count mean of 8.84 μm. This factor was improved 

to 39.5 by an evolution of the LSC approximation called the Zonal Time Step (ZTS) 

approach, which uses different integration time steps in different regions of the spray 

(shorter ones near the emission point).  
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For Case II, an electrospray comprising a bimodal droplet distribution, with 32.4 

μm count mean primary droplet diameter, and 3430 droplets in the steady state, the CPU 

time was reduced by a factor of 1.25 with LSC, and of 4.4 with ZTS. These factors are 

lower with respect to Case I because the LSC and ZTS approximations become 

computationally more efficient as the number of droplets increases.  

In both Cases I and II, the mass fluxes arriving at the collection plate have small 

differences between the approximate and the complete Lagrangian simulations, 

indicating very little loss of accuracy when using LSC.  

Numerical collisions between droplets were identified in both of these sprays 

(Cases I and II). Because droplets undergoing collisions experience the largest 

variations in electric field, the capture of an average collision in consecutive time steps 

has been used as a criterion to select the integration time step. The largest acceptable 

time step describing such events was around 2 μs in both spray systems studied.  
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Table 1. Liquid and electrospray system properties. 

 

 

 Verification 

system 

Case I Case II 

Liquid density (kg/m3),  685 789.4 685 

Liquid flow rate (m3/s), Q 2.4×10-9 0.333×10-9 2.78×10-9 

Outer needle diameter (m) 1×10-3 9×10-4 4.5×10-4 

Needle to plate distance (m), H 0.03 0.03 0.03 

Needle to plate potential (V), 0 5200 4000 5000 

Electric current intensity (A), I 45×10-9 37.4×10-9 n.g.¥ 

Primary droplet diameter, count 

mean (m), d   

38×10-6 8.84×10-6 3.24×10-5 

Primary drop diameter, RMS (%)  4 20.9 2.02 

Satellite droplet diameter, count 

mean (m) 

n.a.§ n.a.§ 9.93×10-6 

Satellite drop diameter, RMS (%) n.a.§ n.a.§ 25% 

Jet break up position (mm), l0 0.38 0.5# 2.4£ 

References 

Gañan-Calvo 

et al., (1994); 

Wilhelm et 

al., (2003) 

Park et al., 

(2004) 

Tang and 

Gomez, (1994) 

§n.a.: not applicable. 
¥n.g.: not given. 
#This value is chosen ad hoc at 13.5× d  plus the Taylor cone height (0.39 mm).  
£Taken from Fig. 7 of Tang and Gomez (1994). 
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Table 2. CPU time needed to perform the electrospray dynamics simulation from an 

initial condition of zero spray droplets until t = 0.2 s, using different methodologies and 

time steps. 

 

 

 

Case Methodology t (s) CPU time (h) 

I complete simulation 110-6 1658 

  210-6 835 

  510-6 341 

 LSC 110-6 254 

 ZTS 110-6 * 42 

II complete simulation 510-7 69 

  110-6 34.5 

  210-6 17 

  510-6 7 

  110-5 3.5 

  210-5 2 

  510-5 1 

 LSC 110-6 27.7 

 ZTS 110-6 * 7.8 

 
*In ZTS the listed value is tI; while tII = tI ×10. 
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FIGURES

 
Fig. 1. Evolution of the impinging flow for the simulation of the code verification case.  
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Fig. 2. Comparison between the code verification results reported by Wilhem et al. 

(2003) [a, c, e] and the present simulations [b, d, f]. Snapshot of the droplets spatial 

distribution (a, b). Transverse average axial velocity variation along the axis (c, d). 

Radial distribution of the axial velocity at different axial positions (e, f). 
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Fig. 3. Example cell grid configuration used in the LSC methodology. (a) Lateral view 

of an actual droplets snapshot (left) and its slices and ring divisions (right). (b) Sectional 

view showing ring and angular divisions for the slice closest to the collecting plate. 
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Fig. 4. Snapshots of the droplets positions at t = 0.2 s for Case I simulations using 

different t. 
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Fig. 5. Analysis of droplet collisions (as defined in text) for the steady state conditions 

of Case I. Simulations for 0.2 <t < 0.25 s. (a) Collision detections each thousand steps 

for different t's. (b) Average number of consecutive time steps t in which collision 

events are found for different t's. 
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Fig. 6. Radial distribution of the mass flux due to droplets impinging on the collection 

plate, using different simulation methods for Case I. Insets show the p.d.f. (s/m) of axial 

droplet velocity located within 0.028< z < 0.029 m, and 0.004 < r < 0.005 m (left) and 

0.020 < r < 0.021 m (right). 

 

 

 
Fig. 7. Snapshots of the droplets positions at t = 0.2 s for Case II simulations for 

t = 5×10-5 and t = 5×10-7 s. Dot diameter is proportional to actual droplet diameter.  
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Fig. 8. Analysis of droplet collisions (as defined in text) for the steady state conditions 

of Case II. Simulations for 0.0 <t < 0.20 s. (a) Collision detections each thousand steps 

for different t. (b) Average number of consecutive time steps t in which collision 

events are found. 
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Fig. 9. Comparison of Case II complete simulation (using Base Code) versus 

experimental results: (a) Droplets average diameter; (b) Droplets number density versus 

radial coordinate and at z = 0.012 mm from the capillary tube exit. 
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Fig. 10. Radial distribution of the mass flux due to droplets impinging on the collection 

plate, using different simulation methods for Case II. Insets show the p.d.f. (s/m) of 

axial droplet velocity located within 0.028< z < 0.029 m, and 0.004 < r < 0.005 m (left) 

and 0.013 < r < 0.014 m (right). 


