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Abstract: De Montjoye et al. (1) claim that most individuals can be reidentified from a de-
identified transaction database, and that anonymization mechanisms are not effective against 
reidentification. We demonstrate that these claims are due to a misconception of the 
reidentification attack, a poor anonymization and a disregard of 40 years of anonymization 
literature. We also show how proper anonymization can be performed.  

One Sentence Summary: We demonstrate that previous reidentifications claimed for 
transaction data were due to poor anonymization, and we show how to properly anonymize data. 
Main Text:  
De Montjoye et al. (1) (dM from now) concluded that, for most customers in a de-identified 
credit card transaction database, knowing the spatiotemporal features of four purchases by the 
customer was enough to reidentify her. Reidentification was measured according to “unicity” (2) 
(a neologism for the plain old uniqueness notion) which, given a number of personal features 
assumed known to an attacker, counts the number of individuals for whom these features are 
unique. 

First, dM’s reidentification figures are probably overestimated, because their database of 1.1 
million customers seems only a fraction of the population of an undisclosed country 
(presumably, several millions). Unfortunately, dM did not make their dataset public, which 
prevents reproducing their results. As highlighted by Barth-Jones et al. (3), with a non-
exhaustive sample, an individual’s sample uniqueness/unicity does not imply population 
uniqueness and, hence, does not allow unequivocal reidentification; assuming otherwise clearly 
overestimates the reidentification risk. Moreover, not even population uniqueness automatically 
yields reidentification: the attacker still needs to link the records with unique features to external 
identified data sources (e.g., electoral rolls).  

To reduce the high “unicity” in their database, dM implemented some [un-referenced] 
“anonymization” strategies to coarsen data (such as clustering locations) that fell short of 
sufficiently reducing “unicity”. From this, dM drew bold conclusions about the ineffectiveness of 
anonymization methods and highlighted the need for “more research in computational privacy”. 

We must recall that reidentification risk in data releases has been treated in the statistical 
disclosure control (4,5) and privacy-preserving data publishing (6) literatures for nearly four 



decades. As a result, a broad choice of anonymization methods exists, which dM systematically 
overlook. These usually suppress personal identifiers (such as passport numbers) and mask 
quasi-identifiers (QIs). The latter are those attributes (such as zipcode, job or birthdate) each of 
which does not uniquely identify the subject, but whose combination may. Since QIs may be 
present in public non-confidential databases (like electoral rolls) together with some identifiers 
(like passport number), it is crucial to mask them to avoid reidentification. It is easy to see that 
reidentification via QIs (studied at least since 1988 (7) and popularized by the k-anonymity 
model (8)) is equivalent to the “unicity” idea re-discovered by dM in 2013 (2); that is, a subject 
whose QI values are unique in a dataset risks being reidentified.  

Data coarsening is indeed a method often used in anonymization to mask QIs (8). However, dM 
concluded that their coarsening-based anonymization was ineffective. This is unsurprising 
because they coarsened attributes independently and used value ranges fixed ex ante, which is 
naïve and inappropriate for at least two reasons: (i) to offer true anonymity guarantees, 
coarsening should be based on the actual distribution of the dataset (i.e., a fixed range may 
contain a single value among those in the dataset); (ii) independently coarsening each QI 
attribute cannot ensure unique QI value combinations disappear (coarsening must consider all 
QIs together).  

To illustrate the effectiveness of sound anonymization, the simple and well-known k-anonymity 
notion is enough. In a k-anonymous dataset, records should not include strict identifiers, and 
each record should be indistinguishable from, at least, k-1 other ones regarding QI values. Thus, 
the probability of reidentification of any individual is 1/k. Hence, for k>1, this probability is less 
than 1 for all records, thereby ensuring zero unequivocal reidentifications. Moreover, by tuning 
k, we can also tune the level of exposure of individuals.  

dM’s data being withheld, we were forced to look for a dataset with similar structure and 
“unicity”/reidentification risk properties to show the effectiveness of k-anonymity. We chose a 
synthetically generated version SPD of a publicly available patient discharge dataset that 
includes the nearly 4 million patients admitted in 2009 to Californian hospitals (see details in the 
supplementary materials (9)). This dataset includes a set of spatiotemporal features of the 
patients and, unlike dM’s dataset, it covers the whole population of 2009 Californian patients; 
hence, uniqueness in this dataset truly quantifies the population reidentification risk (see (9)). As 
shown in Figure 1 the high risk reached for the SPD dataset when the attacker knows all the 
patient’s features (75%) is coherent with the high (even though overestimated) “unicities” 
reported by dM. 

 



 
Fig. 1. Reidentification risk in the SPD dataset depending on the attributes known by the attacker. 
 

We enforced k-anonymity by grouping records with similar QIs (census+spatiotemporal 
features) in clusters of k or more, and generalizing/coarsening their QI values to their common 
range (9). Figure 2 compares the risk of unequivocal reidentification and correct random 
reidentification of k-anonymity vs. a naïve coarsening similar to dM’s, with “fixed” intervals 
covering 1/32, 1/16 and 1/8 of the domain ranges of the attributes (see (9)). Unlike naïve 
coarsening, k-anonymity yields zero unequivocal reidentifications and a rate 1/k of correct 
random reidentifications when the attacker knows all QIs.  



 
Fig. 2. Reidentification risk and information loss for k-anonymity and naïve coarsening.  

 

Furthermore, anonymized data should also retain analytical utility, which ultimately justifies data 
publishing. With k-anonymity, data utility is retained by grouping similar records together and 
by masking only those that do not fulfill the privacy criterion (dM’s naïve coarsening fails to do 
either). Moreover, the trade-off between privacy and utility can be balanced by adjusting k. To 
illustrate, we have measured the information loss incurred by masking as the average distance 
between the SPD dataset and its anonymized versions (9). Figure 2 shows that 2-anonymity not 
only yields less reidentifications, but also less information loss than the safest naïve coarsening.  

In addition to k-anonymity, there is much more in the anonymization literature. Specifically, 
extensions of k-anonymity (e.g., t-closeness (10)) also address attribute disclosure, which occurs 
if the values of the confidential attributes within a group of records sharing all QI values are too 
close. In (9) we report how t-closeness mitigates attribute disclosure by using the algorithm we 
proposed in (11).  Moreover, the current research agenda includes more challenging scenarios, 
like big data anonymization (in which scalability and linkability preservation are crucial) (12, 
13), streaming data anonymization (14) and local or co-utile collaborative anonymization by the 
data subjects themselves (15). 

In conclusion, data owners and subjects can be reassured that sound anonymization 
methodologies exist to produce useful anonymized data that can be safely shared for research. 
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Supplementary Materials 
 
Background and Motivation. 
 
The availability of data on individuals (such as electronic healthcare records, census information, 
etc.) is of utmost importance in many areas of research, especially in fundamentally empirical 
disciplines studying humans and their behavior (health sciences, social sciences, etc.). Because 
of the inherent sensitivity of many of these data, they should be appropriately transformed before 
release in order to protect the privacy of the persons to whom they correspond (data subjects). 
The main objective should be to prevent anyone from reidentifying a subject from her released 
record, because this would disclose the subject’s confidential information (salaries, diagnoses, 
etc.). This process, known as data de-identification or anonymization, has been challenged by 
recent studies (1, 2), which claim that knowing a small amount of personal information on an 
individual is enough to reidentify her.  

Specifically, in the study by de Montjoye et al. (1) (dM in the sequel), the authors 
concluded that, for most customers in a de-identified credit card transaction database, knowing 
the shop (location), date and the price of four purchases by the customer was enough to 
reidentify her. Reidentification risk was measured according to “unicity” (2) (a neologism for the 
plain old uniqueness notion) which, given a number of personal features assumed known to an 
external entity (an attacker), counts the number of individuals having a unique combination of 
these features. Because of the high “unicity” observed in a sample of the de-identified dataset 
used in their study, dM implemented some additional anonymization strategies to reduce the 
detail of data (such as clustering shops) which fell short of sufficiently reducing “unicity”. From 
this, dM drew worrisome conclusions about the effectiveness of anonymization methods for data 
release, like “This means that these [de-identified financial] data can probably be relatively 
easily reidentified if released in a simple anonymized form and that they can probably not be 
anonymized by simply coarsening of the data”. Such conclusions have triggered a plethora of 
bold media statements such as “relying on anonymization algorithms to scrub our personal 
information […] is not currently a viable solution” (3), “the old model of anonymity doesn’t 
seem to be the right model when we are talking about large-scale metadata” (4), “the open 
sharing of [de-identified metadata] datasets is not the future” (5) “Credit card study blows holes 
in anonymity” (6), etc. In view of the alleged lack of effective anonymization solutions, dM also 
highlighted the need to develop “privacy-conscientious technologies, as well as the need for 
more research in computational privacy” and “to reform our data protection mechanisms beyond 
anonymity and toward a more quantitative assessment of the likelihood of reidentification”. 

Data owners (and subjects!) may be dissuaded by the above statements from releasing 
any data on individuals (also known as microdata), which would be catastrophic for many 
research efforts (7), let alone the open data initiatives promoted by administrations for the sake 
of transparency and economic growth (e.g., the U.S. Open Government Initiative). Moreover, the 
general public may become persuaded that anonymization cannot cope with protecting data 
releases. 

As long-standing researchers on data privacy, we strongly believe that many of the 
conclusions of dM are unfounded and derive from a loose reinvention of well-known privacy 



concepts (e.g., “unicity” is a reinvention of uniqueness), a misconception of the reidentification 
attack, a severely flawed implementation of anonymization, and a general unawareness of the 
relevant literature in data anonymization. Our aim in this study is to bring clarification and 
restore trust in data anonymization by showing how to properly anonymize data.  

 
Materials and Methods. 
 
The dataset. To conduct our study, we first asked dM to share the raw financial data they used 
to evaluate their “unicity”-based reidentification risk, which consist of credit card transactions of 
1.1 million users during 3 months, detailing the shop, time and price of each transaction. 
However, as they already warned in their article, the authors confirmed they could not share their 
dataset for contractual and privacy reasons. This contradicts the journal’s data availability policy 
and makes it impossible to reproduce their claimed successful attack, let alone evaluate it against 
sound anonymization mechanisms. Hence, we were forced to look for a transaction dataset with 
similar structure and “unicity”/reidentification risk properties.  

Given the high sensitivity of health-related information (8), and in order to provide 
transparency and true reproducibility, we chose a publicly available dataset consisting of patient 
discharge data (PD from now) collected from all Californian hospitals in 2009. This dataset was 
released by the California Office of Statewide Health Planning and Development (OSHPD) and 
is available at: http://www.oshpd.ca.gov/HID/DataFlow/index.html. Each record corresponds to 
a patient discharge and is comma-delimited into attributes describing personal and clinical 
features of the patient. The data provided by the OSHPD is divided into three separate files based 
on the geographic location of the hospital: Los Angeles County (containing 1,183,718 records), 
Southern California (including Imperial, Orange, Riverside, San Bernardino, San Diego, Santa 
Barbara and Ventura counties, with a total 1,201,553 records) and Northern California 
(remaining counties, with 1,599,895 records). In our study, we considered all these three files as 
a single dataset (which we called the PD dataset). 

 

Description of the attributes. The PD dataset consists of 3,985,166 records in total. Each record 
describes the personal and clinical details of the patients with 38 attributes (see the complete 
description in (9)). From these, there are 9 attributes detailing census and spatiotemporal features 
of the admission, 12 attributes about internal facility administrative information (such as the 
expected type of payment or the type of coverage) and the remaining 17 attributes describe the 
clinical conditions of the patient. In our study we considered the 9 census and spatiotemporal 
features as quasi-identifying attributes, because they represent the kind of information that could 
be known and used by an external entity to reidentify the patient. As confidential attributes, we 
considered the charges of the medical service and the diagnosis related to the cause of admission, 
which are especially sensitive. We classified quasi-identifying attributes into census features 
(age, sex, ethnicity, race, ZIP code, and county), spatial features (hospital ID) and temporal 
features (admission quarter and length of stay). Table S1 describes in detail the considered 
attributes and Table S2 provides some examples of such attributes.  

 

 

http://www.oshpd.ca.gov/HID/DataFlow/index.html


Table S1. Description of the 11 patient discharge attributes considered in our study 
Attribute  Type Description 
oshpd_id Spatial Hospital ID: a unique 6-digit identifier assigned to each hospital 
age_yrs Census Age in years: age of the patient at admission (from 0 to 85); ages greater 

than 85 years are assigned a value of 85 years 
Sex Census Gender of the patient for the current admission, 1-digit encoded 
Ethncty Census Ethnicity (self-reported) of the patient, 1-digit encoded 
Race Census Patient’s racial background (self-reported), 1-digit encoded 
Patzip Census ZIP code: the patient’s 5-digit ZIP code of residence 
Patcnty Census County: the patient’s county of residence, 2-digit encoded 
Los Temporal Length of stay: total number of days from admission to discharge 
adm_qtr Temporal Admission quarter: the calendar quarter the patient was admitted, 1-digit 

encoded 
charge Confidential Total charges for services rendered during the length of stay 

diag_p 
 
Confidential 

Diagnosis: Condition established to be the chief cause of the admission 
of the patient to the hospital for care. Diagnoses are coded according to 
the ICD-9-CM 

 

Table S2. Example of attribute values from the Patient Discharge (PD) dataset 
Quasi-identifiers Confidential attributes 

Spatial 
feature 

Census features Temporal features 

Hospital Age Gender Ethnicity Race Zip 
code 

County Admission 
quarter 

Length 
of stay 

Charges Diagnosis 

Cedars-Sinai 42 Male Non-
hispanic 

White 93722 Fresno 1 33 $505,785 Pneumonia 

Cedars-Sinai 35 Male Non-
hispanic 

White 93611 Fresno 2 47 $1,083,683 Meningitis 

Cedars Sinai 52 Male Non-
hipanic 

Black 93561 Kern 2 13 $252,303 Necrosis 

Cedars Sinai 70 Female Hispanic White 93560 Kern 2 1 $107,179 Breast  
Cancer 

Cedars Sinai 57 Male Non-
hispanic 

White 93555 Kern 4 2 $34,392 Kidney  
Cancer 

Cedars Sinai 61 Male Non-
hispanic 

White 93551   Los 
Angeles 

2 2 $24,846 Stomach  
Cancer 

 
Appropriateness of the dataset. This dataset is more appropriate than dM’s to measure the true 
plausible reidentification risk because: 

• dM’s dataset probably includes only a fraction of the general population, since the whole 
population of the undisclosed country in which the dataset was compiled may well be 
larger than 1.1 million. As highlighted in a reply to dM by Barth-Jones et al. (10), with a 
non-exhaustive sample, the uniqueness/unicity of an individual in the sample does not 
imply uniqueness in the population and hence does not allow unequivocal 
reidentification; assuming otherwise does clearly overestimate the reidentification risk. In 
contrast, the PD dataset includes all the patients of the Californian hospitals; thus, if a 
person belongs to the population of patients of Californian hospitals during 2009, her 
clinical record appears in the dataset. Then, if that person’s features are unique in the 
dataset and she can be reidentified, reidentification is unequivocal. 

• dM assume that attackers can gather quite detailed and highly “dynamic” [quasi-
identifying] and circumstantial features of the individuals (dates, locations and 



approximate prices of small transactions in several shops). As also noted in (10), these 
features would actually be quite difficult to compile by an attacker on a target individual, 
because they are rarely released, which makes reidentification less feasible. On the 
contrary, our PD dataset includes mostly “static” QIs, more plausibly known by an 
attacker (such as the set of census features of the patient). 

 
Masked Values. The data provided by OSHPD are already protected according to the “safe 
harbor” rules on medical data protection defined by the Health Insurance Portability and 
Accountability Act (HIPAA) (8). This means that records that originally had unique 
combinations of certain demographic variables have already been partially masked. The masking 
process consists in a combination of value coarsening and value suppression (suppressed values 
are replaced with a wildcard (*)). In order to retain the utility of the published dataset, the 
smallest possible number of values should be masked. To do so, attributes are masked in the 
sequence and in the way described by Table S3 (extracted from (9)). Specifically, in the first 
place, the numerical age value is coarsened to one of 20 possible categories (ranges); if doing so 
does not yet yield a non-unique record, ethnicity is suppressed (replaced with a wildcard *); if 
the record is still unique, then race is suppressed; if still needed, sex is suppressed; the next step 
is to further coarsen age to one of 5 possible categories, etc. From Table S3, it can be seen that 
masking for age and ZIP code means successive coarsening and eventually suppression (ZIP 
code is first coarsened from 5 to 3 digits). For the other attributes, masking directly means 
suppression.  
 
Table S3. Masking order for unique records; attribute values are masked in this order until the record 
becomes non-unique with regard to these attributes 

Masking order Masked attribute 
1 Age in years; age range (among 20 categories) remains 
2 Ethnicity 
3 Race 
4 Sex 
5 Age range (20 categories); age range (among 5 categories) remains 
6 Age range (5 categories) 
7 Admission quarter 
8 Patient ZIP code (5-digit), masked to 3-digit 
9 Small country groups 

10 Patient ZIP code (3-digit) 
 

 
Synthetic regeneration of data. As a result of the masking process detailed above, several 
attribute values of unique records are already suppressed in the provided dataset. In order to 
quantify the reidentification risk inherent to the original data, we synthetically regenerated 
plausible original values for the masked values by following the distribution of original values 
that were masked for each attribute, which is also given by the data provider. Figures S1 and S2 
show such distributions for the “race” and “age” attributes, respectively. The distributions for all 
attributes are available in (9). We can see that the less frequent original attribute values are 
proportionally more frequently masked because, due to their rarity, they tend to yield unique 
records. 



 
 

 
Fig. S1. Total and masked record counts broken down by the "race" attribute 
 
 
 
 

 
Fig. S2. Total and masked record counts broken down by the "age" attribute 
 
 



According to these distributions of original attribute values that were masked, we created 
the partially synthetic dataset SPD by following Algorithm S1: for each attribute a, the algorithm 
takes every possible original value e and uses e to replace a number of the masked values for a 
equal to the absolute frequency of e in the distribution.  
 
Algorithm S1. Synthetic regeneration of masked values  

Inputs: D (PD dataset), matrix v[attribute][value] (with the distributions of original 

values that were masked for all the attributes*) 

Output: Ds (Partially synthetic dataset SPD) 
 
1 DS := D 

2 for each attribute a in DS do  

3 for each value e in a do 

4  R := randomly select a number v[a][e] of records in DS with masked values 

for attribute a 

5  Assign value e to attribute a of records R in DS 

6 end for 

7 end for 

8 output DS 

*For example, for the attribute “race” shown in Figure S1: v[race][1] = 568394, v[race][2] = 136264, v[race][3] = 
10761, v[race][4] = 130597, v[race][5] = 193477, v[race][6] = 32857. 

 

By the design of Algorithm S1, the SPD dataset exactly preserves the marginal attribute 
distributions of original data. To evaluate how well the SPD dataset preserves the correlations 
between attributes, we compared the pairwise correlations between the attributes in the de-
identified (PD) and partially synthetic (SPD) datasets. Correlations in the PD dataset were 
measured from the attribute values that were not masked, which on average over the different 
attributes occur in 3,142,313 records. These correlations are reported in Table S4.  

 
Table S4. Pairwise correlations between quasi-identifying [unmasked] attribute values in the PD dataset 

Attribute age_yrs sex ethncty race patzip patcnty los adm_qtr 

oshpd_id 0.001 0.001 0.045 -0.056 0.043 0.811 0.003 -0.001 

age_yrs  0.013 0.359 -0.215 -0.006 -0.004 0.118 -0.012 

sex   -0.048 0.022 0.007 0.012 -0.036 0.004 

ethncty    -0.334 0.134 0.036 0.048 -0.007 

race     -0.081 -0.054 -0.014 0.015 

patzip      0.094 -0.012 -0.002 

patcnty       0.001 0.000 

los        -0.005 

 



We can see that most attribute pairs are not correlated at all or show a very low 
correlation. Only the attribute pair Hospital ID (oshpd_id) and Patient County of Residence 
(patcnty) is highly correlated (0.811). This makes sense, since patients are normally admitted to a 
hospital near their residence (i.e., in the same county). In this case, if we decide to protect one of 
these attributes, we will also have to protect the other, since both disclose similar information 
about the patient (i.e., the hospital ID can be easily inferred from the county of residence and 
vice versa).   

Table S5 shows the pairwise correlations after plausible original values have been 
synthetically generated for the masked values with Algorithm S1. In this case, the total 3,985,166 
records (including attribute values that were not masked and values that were synthetically 
generated) have been considered. 

 
Table S5. Pairwise correlations for the partially synthetic quasi-identifying attributes 

Attribute age_yrs sex ethncty Race patzip patcnty los adm_qtr 

oshpd_id 0.000 0.003 0.029 -0.045 0.031 0.807 0.003 -0.001 

age_yrs  0.006 0.209 -0.117 -0.001 -0.004 0.022 -0.006 

sex   -0.035 0.008 0.037 0.013 -0.013 0.002 

ethncty    -0.209 0.008 0.021 0.012 -0.003 

race     -0.027 -0.044 0.003 0.013 

patzip      0.180 -0.014 -0.007 

patcnty       0.000 -0.001 

los        -0.002 
 

Pairwise correlations in Tables S4 and S5 are very similar. In fact, the correlation 
between both sets of correlations is as high as 0.957. This shows that the partially synthetic 
dataset offers an accurate representation of the original data, not only at an attribute level 
(marginal distributions), but also at a record level (correlations). Such accuracy endorses the 
significance of the reidentification results we report in our study. 
 

Reidentification risk. First, we must understand the kind of privacy threat at stake. Very often, 
databases contain confidential attributes about subjects together with personal identifiers (such as 
names or passport numbers) that uniquely identify the subject. Clearly, identifiers should be 
suppressed to avoid reidentification. However, often there are other attributes (such as zipcode, 
job or birthdate), called quasi-identifiers (QIs from now on), each of which does not uniquely 
identify the subject, but whose combination may. Since QIs may be present in public non-
confidential databases (such as electoral rolls) together with some identifiers (such as a passport 
number), or may be known by a potential attacker on a target subject (e.g., a neighbor), they 
could be used to reidentify subjects in the confidential database, which would disclose the 
subjects’ confidential attribute values. Thus, it is crucial to mask QIs before data release to 
prevent reidentification. It is easy to see that reidentification via QIs (treated in the literature on 
privacy protection at least since 1988 (11) and made popular in 1998 by the k-anonymity model 



(12)) is equivalent to the “unicity” idea re-discovered by dM in 2013 (2); that is, a subject whose 
quasi-identifying features are unique in a dataset risks being reidentified. 

By following the above scenario, we assess the record reidentification risk according to 
the pieces of patient information (grouped as census, spatial and temporal features) assumed 
known to an attacker. For example, let us assume the attacker knows that his neighbor John Doe, 
who is a 42 year-old white non-Hispanic male living in 93722, Fresno County, was admitted to 
the Cedars-Sinai Medical Center. Thus, he knows two pieces of his neighbor’s information 
(census details and admission location). If there is only one record in the dataset with that 
combination of attribute values (the first record in Table S2), the attacker can reidentify John and 
learn John’s confidential data (hospital charges and diagnosis). This procedure is equivalent to 
the one used by dM to compute “unicities”, but considering the whole population of patients, 
instead of a sample of 10,000 users as done by dM. Here we must note that not even population 
uniqueness is really equivalent to reidentification: just knowing that some anonymized 
individuals have unique features in the population does not automatically yield their identities. 
As discussed above, one needs to be able to link the anonymized records of the unique 
individuals to some external identified data source. 

Specifically, we compute the reidentification risk in a dataset D for a set of quasi-
identifying attributes Q as the ratio of unique records in the dataset: 

 
( , )( , ) .
( )

unique records D Qreidentification risk D Q
total records D

=  (1) 

Unique records are those whose combination of quasi-identifying attribute values does 
not appear in any other record of the dataset. In a dataset with (partially) suppressed (replaced 
with the wildcard *) or generalized values (e.g., specific ages replaced by a range of years, 
27→[20-30]), a record is counted as unique if there is no other record with identical attribute 
values or with value ranges that fit the former record. We next give two examples to illustrate 
what fitting means. For example, if there is a record with age=26 and there is another record with 
identical values for the rest of quasi-identifying attributes but whose “age” has been generalized 
to the range [24-28], the former will not be considered unique because knowing that the age of 
an individual is 26 does not lead to unequivocal record reidentification. On the other hand, if 
there is a record with an “age” generalized to the range [24-28], we will consider all possible age 
values in the range (24, 25, 26, 27 and 28) and we will look for other records in which each age 
value fits (that is, records having an identical age or an age range including the value); the former 
record will be considered unique if we are unable to find a fitting record for at least one of these 
values. This defines the worst-case reidentification criterion, because it assumes that the real 
value behind a generalized range is precisely the one for which there is no other fitting record in 
the dataset. If attributes are replaced with a wildcard (*, as done in the HIPAA-based masking), 
we consider that this wildcard covers the whole range of possible values. For example, if the age 
value is replaced by *, it would cover the whole range of ages, from 0 to 85; if a zip code has 
been masked as 937**, it will cover the range [93700-93799]. 

Figure S3 shows that the uniqueness/reidentification risk for the SPD dataset reaches 
almost 75% of patients (nearly 3 million) when the attacker knows the three sets of features of 
the patient. This percentage is coherent with the high “unicities” found in dM for their credit card 
dataset, and it is even more alarming because (i) our assessment truly quantifies population 



uniqueness/reidentification risk (even though in the very worst case) and (ii) knowing our QIs is 
more plausible in practice. Moreover, to achieve such high “unicities” dM needed to link four 
spatiotemporal tuples/records for each individual; this was possible because dM’s dataset 
included masked identifiers in each record, so that all records corresponding to the same 
individual can be linked. In contrast, our results show that a large number of reidentifications can 
still happen even when preventing such linkage (allowing it is very rash in a sensitive data 
release, by the way). In comparison, the reidentification risk of the de-identified PD dataset is 
much lower (0.26% in the worst case), thanks to some QI values being replaced by wildcards. 
Admittedly, if each record contained a masked identifier (as in dM’s dataset), the reidentification 
risk would increase because the attacker would be able to link several admissions of the same 
patient. It is precisely to thwart such linkage-based record aggregation that the HIPAA safe 
harbor rules do not allow including identifiers in any form.  

 

 
Fig. S3. Reidentification risk in the PD and SPD datasets depending on the attributes known by the attacker. 

 

k-Anonymous data protection. Reidentification has been treated in the statistical disclosure 
control (SDC) (13, 14) and privacy-preserving data publishing (PPDP) (15) literatures for nearly 
four decades. As a result, a broad choice of privacy protection mechanisms exists to balance the 
trade-off between protection (low disclosure risk) and utility needs (low information loss caused 
by anonymization) in the released data.  

To illustrate the effectiveness of sound anonymization in front of the reidentification 
attack we are dealing with, we just need to resort to the well-known and simple k-anonymity 
notion (12). In a k-anonymous dataset, records should not include strict identifiers, and each one 
should be indistinguishable from, at least, k-1 other records, as far as the quasi-identifying 
attribute values are concerned. Thus, in a k-anonymous dataset the probability of reidentification 
of any individual is 1/k. Hence, for k>1, this probability is less than 1 for all records, thereby 



ensuring zero unequivocal reidentifications. Moreover, by tuning k, we can also tune the level of 
exposure of each individual. For example, in a 2-anonymous dataset, even though there are zero 
unequivocal reidentifications, there is still a 1/2 chance of randomly guessing the individual’s 
record. If this is deemed too risky, we can increase the value of k (3 to 10 are usual choices (16)). 
Likewise, we can also lower the reidentification risk by considering additional attributes of the 
dataset as QIs and k-anonymizing all of them. 

 A method enforcing k-anonymity should detect records not satisfying the property and 
make their quasi-identifying values indistinguishable enough. Typical mechanisms to do this 
consist in grouping similar records in clusters of k or more, and generalize/coarsen their attribute 
values to their common range. In Table S6 we show a possible generalization-based 3-
anonymous version of the sample records shown in Table S2 for all QIs. Unlike dM’s fixed and 
attribute-independent coarsening strategy (see details below), a k-anonymous method satisfies 
that:  

• Records are grouped and generalized according to their similarity. This minimizes the 
information loss caused by value generalization (because the range of values in a group 
of similar records tends to be more compact) and, thus, preserves data utility better. 

• The coarsening/generalization strategy is adapted to the data distribution at a record level 
so that (i) records already fulfilling k-anonymity do not need to be modified and, (ii) all 
the records that do not fulfill k-anonymity will be coarsened. In this manner, for k>1, we 
can guarantee that none of the records will be unequivocally reidentifiable while 
preserving the utility of the masked data as much as the privacy guarantee allows. 
 

Table S6. Example 3-anonymous version of the records in Table S2  
Quasi-identifiers Confidential attributes 

Spatial 
feature 

Census features Temporal features 

Hospital Age Gender Ethnicity Race Zip 
code 

County Admission 
quarter 

Length 
of stay 

Charges Diagnosis 

Cedars-
Sinai 

[42-52] Male Non-
hispanic 

[White, 
Black] 

[93561-
93722] 

[Fresno, 
Kern] 

[1-2] [13-47] $505,785 Pneumonia 

Cedars-
Sinai 

[42-52] Male Non-
hispanic 

[White, 
Black] 

[93561-
93722] 

[Fresno, 
Kern] 

[1-2] [13-47] $1,083,683 Meningitis 

Cedars 
Sinai 

[42-52] Male Non-
hipanic 

[White, 
Black] 

[93561-
93722] 

[Fresno, 
Kern] 

[1-2] [13-47] $252,303 Necrosis 

Cedars 
Sinai 

[57-70] [Male, 
Female] 

[Hispanic, 
Non-
Hispanic] 

White [93551-
93560] 

[Kern, 
L.A.] 

[2-4] [1-2] $107,179 Breast  
Cancer 

Cedars 
Sinai 

[57-70] [Male, 
Female] 

[Hispanic, 
Non-
Hispanic] 

White [93551-
93560] 

[Kern, 
L.A.] 

[2-4] [1-2] $34,392 Kidney  
Cancer 

Cedars 
Sinai 

[57-70] [Male, 
Female] 

[Hispanic, 
Non-
Hispanic] 

White [93551-
93560]   

[Kern, 
L.A.] 

[2-4] [1-2] $24,846 Stomach  
Cancer 

 
Algorithm S2 details how we have implemented generalization-based k-anonymization. 

Given that all attributes in the PD dataset are numerical or are numerically coded, we sort them 
in ascending order, group them in clusters of k records and generalize the values of each attribute 
in the records of each cluster by replacing them with the range defined by the attribute’s within-
cluster minimum and maximum.  



 
Algorithm S2. Generalization-based k-anonymization 

Inputs: D (dataset), k (level of anonymity) 

Output: DA (a transformation of D that satisfies k-anonymity) 
 
1 sorted_D := sort records in D in ascending order by the distance to a dummy 

reference record with all quasi-identifiers set to zero, where the distance is 

computed based only on the quasi-identifiers (Eq. 2) 

2 DA := sorted_D 

3 while (|sorted_D| ≥ 2*k) do  

4 create a cluster in DA with the first k records in sorted_D 

5 remove these records from sorted_D 

6 end while 

7 create a cluster in DA with the remaining records in sorted_D 

8 for each cluster c in DA do 

9   for each attribute a in DA do 

10  [min,max] := calculate the minimum and maximum values of attribute a over 

records of cluster c  

11  Replace values of attribute a in records of cluster c by the range [min,max] 

12   end for 

13 end for 

14 output DA 

 
Distance between records. Algorithm S2 sorts records according to their distance in terms of 
their quasi-identifiers. We calculate the distance between two records, rx and ry, as the 
standardized Euclidean distance between quasi-identifying values, whereby the pairwise 
difference between attribute values is normalized by the standard deviation of the attribute (so 
that the aggregated distance is not biased towards the attributes with the largest value ranges). 
Mathematically,   
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where axj and ayj are the values of the j-th quasi-identifying attribute for records rx and ry, 
respectively, σj  is the standard deviation of the jth attribute in the dataset and m is the number of 
quasi-identifying attributes. 

 
 
 
 



Naïve data coarsening implemented by dM to anonymize data. dM correctly remarked that 
reidentification risk (or “unicities”) greatly depend on the data resolution. Data coarsening is 
indeed a method to reduce data resolution and it is very often used in anonymization (e.g., to 
achieve k-anonymity (12), as described above). However, dM concluded that the coarsening they 
applied to anonymize data was not effective enough; as a result, they questioned the general 
effectiveness of anonymization methods. That their coarsening was ineffective is hardly 
surprising given its naïveness: attribute values were coarsened using value ranges that were fixed 
a priori; for example, times were replaced by time windows from 1 to 15 days and prices were 
replaced by fixed price intervals. This is clearly unsuitable for anonymization for at least two 
reasons: (i) coarsening should be based on the actual distribution of the dataset if true 
anonymization guarantees are to be offered (e.g., a fixed price range may contain a single price 
value among those in the dataset); (ii) independently coarsening each quasi-identifying attribute 
cannot guarantee that unique combinations of QI values disappear (coarsening must consider all 
QIs together).  

Algorithm S3 details the (naïve) data coarsening method employed to reduce the 
resolution of attribute values that dM used in their study. The coarsening process is applied 
independently to each attribute by using a number (the target resolution) of fixed intervals that 
constitute a partition of the domain of the attribute. For example, for the domain [0-85+] of the 
“age” attribute, if we set the resolution to 4, the values will be coarsened into the intervals [0-20], 
[21-42], [43-63] and [64-85+]. Coarsenings of the “age” attribute for other resolutions are given 
in Tables S7 and S8.   
 
 
Algorithm S3. Data coarsening 

Inputs: D (dataset), r (vector with the target resolution for each attribute) 

Output: DA (coarsened D as per r) 
 
1 DA := D 

2 for each attribute a in DA do  

3 E :=[min(a),max(a)], where min(a) and max(a) are the smallest and greatest 

values in the domain of a, respectively  

4  partition E into r[a] subintervals each having approximately the same length 

5  for each subinterval S in E do  

6  [min,max] := calculate the minimum and maximum values of S 

7  replace values in the range [min,max] of attribute a in DA by [min,max]  

8  end for 

9 end for 

10 output DA 

 

 

 

 



Table S7. Intervals resulting for the “age” attribute when coarsened with resolution 16 
# Interval 
1 [0-4] 
2 [5-9] 
3 [10-15] 
4 [16-20] 
5 [21-25] 
6 [26-31] 
7 [32-36] 
8 [37-42] 
9 [43-47] 
10 [48-52] 
11 [53-58] 
12 [59-63] 
13 [64-68] 
14 [69-74] 
15 [75-79] 
16 [80-85+] 

 

Table S8. Intervals resulting for the “age” attribute when coarsened with resolution 8 
# Interval 
1 [0-9] 
2 [10-20] 
3 [21-31] 
4 [32-42] 
5 [43-52] 
6 [53-63] 
7 [64-74] 
8 [75-85+] 

 

Comparison between “anonymization” methods. We empirically compared the risk of 
unequivocal reidentification and correct random reidentification in k-anonymity, dM’s naïve 
coarsening (both applied to the SPD dataset) and the “safe harbor” de-identified PD dataset. For 
k-anonymity, we implemented the generalization-based mechanism introduced above (see 
Algorithm S2) and applied it to all QIs in SPD (spatial, census and/or temporal features) for 
several values of k. We also used dM’s naïve coarsening on SDP, by performing fixed and 
attribute-independent coarsening of the different sets of attributes (Algorithm S3); specifically, 
we coarsened using intervals covering 1/32, 1/16 and 1/8 of the domain ranges of the attributes 
(e.g., Tables S7 and S8). For safe harbor, we took the [de-identified] PD dataset. Results are 
presented in Figure S4.  We can see that k-anonymity yields zero unequivocal reidentifications 
and a rate 1/k of correct random reidentifications in the worst case, when the attacker knows the 
values of all QIs. In contrast, neither naïve coarsening nor safe harbor completely eliminate 
uniqueness and, hence, they do not eliminate unequivocal reidentifications. 



 
Figure S4. Reidentification risk, attribute disclosure risk, and information loss for k-anonymized SPD, naïve 
coarsened SPD and “safe harbor” de-identified PD. 

 

To complement the above results on dM’s data coarsening, Figure S5 provides a 
multidimensional view of the reidentification risk when the spatiotemporal and the census 
features are independently coarsened. We observe a sharp decline in the reidentification risk 
when coarsening to intervals covering 1/32 of the domain of the attributes, and an almost linear 
decrease as we duplicate the interval size. In any case, even using the most severe coarsening for 
all attributes (in two intervals covering each 1/2 of the attribute’s domain, which causes a lot of 
information loss), there are still 51 records that can be unequivocally reidentified.  



 

Fig. S5. Reidentification risk when coarsening the spatiotemporal and census features of the SPD dataset into 
fixed intervals (between resolution 2 –two intervals covering the attribute range– and the maximum –
original– resolution). 

 

Data utility and information loss calculation. The authors of dM only quantified the 
reidentification risk of the de-identified dataset. However, this is only half of the picture: the 
protected dataset should also remain analytically useful (which is the ultimate justification of 
data publishing). Note that, if we do not care about utility, encryption or even removal of the data 
are simpler and safer alternatives to anonymization. To illustrate this, we have also measured the 
utility of the outcomes of the different anonymization strategies: de-identified PD dataset, 
naïvely coarsened SPD dataset and SPD dataset k-anonymized over all QIs. Data utility 
preservation is usually quantified as the reciprocal of the information loss incurred by masking 
(12); that is, the less information loss, the more analytically useful the data remain. Information 
loss can be viewed as the distance between the original and masked values for all attributes and 
records. In a dataset D’ masked with k-anonymity or data coarsening, the information loss with 
respect to the original dataset D can be calculated as  
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where n is number of records, m is the number of attributes and r’i is the masked version of 
record ri. The distance between records is computed as per Eq. (2). However, since we are now 
comparing point values (i.e., original attribute values aij) with generalized/coarsened values (a’ij, 
which correspond to the [min, max] intervals resulting from Algorithms S2 and S3), we 
transform a’ij into a point value that is the interval limit farthest from aij (this is the worst-case 
information loss scenario). Mathematically, the transformation is  
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If masked values are replaced by wildcards, the maximum and minimum limits of the 
attribute’s domain are considered. 

In Figure S4 we see that k-anonymity not only outperforms naïve coarsening at yielding 
zero unequivocal reidentifications, but it does so with even less information loss (e.g., 2-
anonymity vs. the safest naïve coarsening considered, that is, 1/8-naïve coarsening). Obviously, 
increasing k increases the information loss incurred by k-anonymity, but this is compensated by a 
decreasing reidentification probability (1/k). Naïve coarsening (see also Figures S5 and S6) 
cannot provide such privacy guarantee and trade-off, and is therefore a poor anonymization 
method. 

Figure S6 complements Figure S4 by showing a multidimensional view of the 
information loss caused by naïve coarsening. We observe that coarsening the spatiotemporal 
features (which are the most fine-grained ones) causes a very large loss of information. 
Coarsening the census features, on the other hand, causes much less loss, since most of them are 
already expressed with a limited number of categories (e.g., “sex”, “race” and “ethnicity” have 
each between 3 and 6 categories). Nonetheless, information loss is significantly greater than with 
k-anonymity in most cases (as reported in Figure S4), whereas the reidentification risk does not 
reach zero in any case.  

 

Fig. S6. Information loss when coarsening the spatiotemporal and census features of the SPD dataset into 
fixed intervals (between resolution 2 –two intervals covering the attribute range– and the maximum –
original– resolution). 
 



Attribute disclosure risk. While k-anonymity only protects against unequivocal reidentification, 
extensions of it address attribute disclosure, which occurs if the values of a confidential attribute 
within an equivalence class are too close. For example, in the 3-anonymous dataset shown in 
Table S6, we cannot unequivocally reidentify John Doe; at most, we can guess his record with 
probability 1/3. However, if we know that John’s QIs match the generalized intervals of the first 
group of 3-anonymous records, we learn that his [confidential] hospital charges are very high 
(>$250,000), which may suggest that he is a wealthy person. Likewise, if we can establish that a 
patient’s record belongs to the second group of 3-anonymous records, we learn that s/he suffers 
from cancer. We compute the disclosure risk of a confidential attribute value (e.g., diagnosis: 
AIDS positive) or value range (e.g., salary: above $150,000; diagnosis: any cancer type) z in an 
anonymized dataset D’ as the proportion of records with value (range) z that belong to an 
equivalence class C in D’ (i.e., a group of records with the same generalized/coarsened QIs) that 
is non-diverse, i.e. such that all other records in C also have value (range) z.   
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To measure this risk, we defined z as the range of hospital charges above $100,000 
(around 10% of the total) which may indicate particularly “wealthy” patients that can afford such 
high charges. Figure S4 shows that none of the methods considered so far is free from attribute 
disclosure, even though k-anonymity yields the best results. Indeed, for the other methods, the 
attribute disclosure risk is increased by their higher reidentification risk (i.e., if we can reidentify 
an individual we can unequivocally learn her confidential attributes).  

k-Anonymity & t-closeness. Models that protect against attribute disclosure include l-diversity 
(17), which requires at least l well-differentiated confidential attribute values in each group of 
indistinguishable records, and t-closeness (18), which requires the distribution of each 
confidential attribute within each group to be similar to the distribution of the attribute in the 
entire dataset. To show its effectiveness, we added t-closeness to k-anonymity by using 
Algorithm S4 (adapted from (19)). For the sake of clarity in the following sketch of the 
algorithm, we make the simplifying assumption that k divides the number n of records (see (19) 
and Algorithm S4 for the general case). We first sort the records in the dataset in ascending order 
of the confidential attribute and split them into k subsets of consecutive (n/k) records. Then, to 
mimic the distribution of the confidential attribute over the entire original dataset within each k-
anonymous group, we create equivalence classes with k records by iteratively picking one record 
from each of the subsets and, finally, generalizing the QIs of each resulting group of k records to 
a common range. Because the subsets have been created after sorting by the confidential 
attribute, this process will yield equivalence classes with uniformly distributed samples of the 
confidential attribute, which is the goal of t-closeness. To maximize the homogeneity of the 
original QI values of the records assigned to each equivalence class and, thus, minimize the 
information loss resulting from their generalization, we also sort records within each subset of 
(n/k) records in ascending order of the quasi-identifier attributes. 

Even though, given a value of k, there is freedom to choose the value of the t parameter, 
by the design of our algorithm, t is upper-bounded as follows for a dataset with n records: 
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Conversely, for a given value of t, the minimal cardinality k’ of the clusters for a dataset 
with n records is: 
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Thus, the actual cluster size (i.e., actual k-anonymity level) that the algorithm will 
produce to fulfill the desired k-anonymity and t-closeness levels is: 
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Algorithm S4. Generalization-based k-anonymization & t-closeness 

Inputs: D (dataset), k (level of anonymity), t (level of closeness) 

Output: DA (a transformation of D that satisfies k-anonymity & t-closeness) 
 
1 k = max[k, n/(2(n-1)t+1)] 

2 k = k+[(n mod k)/(n/k)] 

3 sorted_D := sort records in D in ascending order of the confidential attribute 

4 split sorted_D into S1,..,Sk subsets with (n/k) records, create a final subset with 

the remaining (n mod k) records 

5 sort records in each subset Si in ascending order by the distance to a dummy 

reference record with all quasi-identifiers set to zero, where the distance is 

computed based only on the quasi-identifiers (Eq. 2) 

6 while (|sorted_D| > 0) do 

7  cluster C = Ø  

8  for each subset Si in sorted_D do  

9   add to cluster C the first record in Si and remove it from sorted_D  

10 end for 

11   for each attribute a in C do 

12   [min,max] := calculate the minimum and maximum values of attribute a over 

records of cluster C  

13   replace values of attribute a in records of cluster C by the range [min,max] 

14   end for 

15  add to DA all records in cluster C 

16 end while 

17 output DA 



In all the experiments described in this study, we set the t-closeness level to the upper 
bound given by the desired level of k-anonymity (according to Eq. (6)). Table S9 specifies the 
value of t for each k.  
 

Table S9. t-Closeness values corresponding to the desired levels of k-anonymity for the SPD dataset 
(n=3,985,166 records)  

k t 
2 0.25 
3 0.17 
5 0.10 
10 0.05 

 

Figure S7 compares k-anonymity with and without t-closeness, both regarding attribute 
disclosure risk (lowered by t-closeness to zero in all cases) and information loss (slightly 
increased by t-closeness as a result of grouping records with less homogeneous QIs, but in most 
cases less than the loss caused by the safest naïve coarsening considered in Figure S4, that is, 
1/8-naïve coarsening). 

 

 
Fig. S7. Attribute disclosure risk (for charges above $100,000) and information loss for t-closeness & k-
anonymity vs. plain k-anonymity 
 
 



Other data anonymization mechanisms. So far, we have only resorted to generalization-based 
k-anonymity and t-closeness to protect structured datasets. Yet, there is much more in the 
anonymization literature. 

First, we can find k-anonymity extensions designed for other dataset types. For datasets 
in which individual transactions should still be linkable, km-anonymity requires that each 
combination of up to m transactions (where m is the maximum number of transactions assumed 
known by an attacker) must appear at least k times in the anonymized dataset (20). For 
collections of unstructured documents (like e-mails), K-safety states that the textual contexts of 
the entities to be protected (e.g., names, sensitive diseases) should be made indistinguishable in 
groups of, at least, K documents (21). 

Second, the masking methods available to satisfy the above privacy models are not 
limited to coarsening/generalization. Alternatives include perturbative methods (noise addition, 
microaggregation, permutation, etc., see (14)), which have the advantage of preserving the 
granularity and the variability of the original data. This in turn enhances the utility of the masked 
data, because a range of statistics can be preserved. 

Finally, beyond the classical data release anonymization considered in this study, the 
current research agenda includes more challenging scenarios, like anonymizing answers to 
interactive queries (for example, using ε-differential privacy (22), a privacy model also usable to 
anonymize data releases (23)), big data anonymization (in which scalability and some linkability 
preservation between heterogeneous anonymized sources are crucial) (24, 25), streaming data 
anonymization (26) and anonymization by the data subjects themselves (be it local 
anonymization (27) or co-utile collaborative anonymization (28)). 
 

Data availability. The public de-identified PD dataset can be obtained on request at the source: 
http://www.oshpd.ca.gov/HID/Products/PatDischargeData/PublicDataSet/. To reproduce the 
experiments in our study, the zipfile available at http://crises-
deim.urv.cat/opendata/SPD_Science.zip includes the partially synthetic quasi-identifiers (which 
correspond to the SPD dataset) and their k-anonymous, k-anonymous & t-close, and coarsened 
versions (with the confidential attribute hospital charges). Table S10 details the datasets that can 
be found in the zipfile.  
Table S10. List of dataset files provided for replication  
File name Description 
SPD_dataset.txt Partially synthetic quasi-identifiers generated with Algorithm S1 
2_anonymous_SPD.txt 2-anonymous version of the SPD dataset, with charges 
3_anonymous_SPD.txt 3-anonymous version of the SPD dataset, with charges 
5_anonymous_SPD.txt 5-anonymous version of the SPD dataset, with charges 
10_anonymous_SPD.txt 10-anonymous version of the SPD dataset, with charges 
2_an_025_clos_SPD.txt 2-anonymous and 0.25-close version of SPD, with charges 
3_an_017_clos_SPD.txt 3-anonymous and 0.17-close version of SPD, with charges 
5_an_010_clos_SPD.txt 5-anonymous and 0.10-close version of SPD, with charges 
10_an_005_clos_SPD.txt 10-anonymous and 0.05-close version of SPD, with charges 
32_coarsened_SPD.txt Coarsened version of the SPD dataset in intervals covering each 1/32 of the value 

ranges of all the attributes, with charges 
16_coarsened_SPD.txt Coarsened version of the SPD dataset in intervals covering each 1/16 of the value 

ranges of all the attributes, with charges 
8_coarsened_SPD.txt Coarsened version of the SPD dataset in intervals covering each 1/8 of the value ranges 

of all the attributes, with charges 

http://www.oshpd.ca.gov/HID/Products/PatDischargeData/PublicDataSet/
http://crises-deim.urv.cat/opendata/SPD_Science.zip
http://crises-deim.urv.cat/opendata/SPD_Science.zip


All datasets are in plain text format. The first line specifies the names of the attributes. 
Each successive line contains the comma-delimited [original/regenerated/masked] quasi-
identifying attribute values of each record. If appropriate, the confidential attribute is included at 
the end of the line. When attribute values are generalized/coarsened to an interval, the min and 
max bounds of the interval are enclosed with brackets and delimited with a semicolon. All data 
files present records in the same order as in the original PD dataset so that they can be directly 
compared. With these data files (plus the original PD dataset obtained from the source), Figures 
S1-S3 and Tables S4 and S5 can be recreated. Also, by applying Algorithms S2, S3 and S4 to the 
partially synthetic SPD dataset, the k-anonymous, k-anonymous & t-close, and coarsened 
versions of the dataset and Figures S4-S7 can be recreated. 
 

Source code. The code available at http://crises-deim.urv.cat/opendata/SPD_Science.zip offers 
an open source implementation of the three anonymization algorithms detailed above (Algorithm 
S2: k-anonymity; Algorithm S3: naïve coarsening; Algorithm S4: k-anonymity & t-closeness). 
Even though the code is specifically tailored to the synthetically generated SPD dataset we used 
in our experiments, it can also be applied to any structured dataset provided that the input data 
are in the same format. 

As stated above, the input data consist of a text file that describes records as a list of 
attribute values. Each line corresponds to a record except the first line, which is the header and 
contains the names of attributes, delimited by commas. The last attribute is assumed to be the 
confidential attribute, whereas the preceding ones (no matter their number) are assumed to be the 
quasi-identifiers. For example, the header for the synthetic-generated SPD dataset is: 

 
oshpd_id,age_yrs,sex,ethncty,race,patzip,patcnty,los,adm_qtr,charge 

 
In this case, the last attribute “charge” is the confidential one. 

The rest of the lines in the file contain the attribute values of the records, delimited by 
commas. The attribute values must appear in the same order as the corresponding attribute names 
in the header line. An example record in the SPD dataset is: 

 
380929,25,1,2,1,94928,49,18,4,220449 

 
The source code has been written in Java (version 7). The “functions.java” class contains 

the implementation of the anonymization algorithms detailed above. The main class “test.java” 
contains several usage examples of those algorithms. When executed, the program generates an 
anonymized version of the input data and the console outputs the quality metrics mentioned in 
the report: the information loss incurred by the anonymization process, the number of unique 
records that still remain and the number of records that may result in attribute disclosure for the 
confidential attribute. 

To run the algorithms on a large dataset (such as the SPD dataset, which contains almost 
4 million records), it is recommended to assign additional memory to the Java Virtual Machine. 
To do so, once the source code has been compiled, the tests can be executed with the following 
command, which sets the size of the JVM’s heap to 7GB: 

 
>java –Xms7144m –Xmx7144m urv.crises.anonym.Test 

http://crises-deim.urv.cat/opendata/SPD_Science.zip


Summary. 
 
We have illustrated that, if sound privacy models and methods proposed in the literature over the 
last decades are appropriately used, anonymization can effectively protect against 
reidentification and attribute disclosure while preserving substantial data utility. Thus, we hope 
to have shown that there is no need to reinvent well-known privacy notions (“unicity”) and that 
the ineffectiveness of anonymization claimed by dM is due to the choice of a poor 
anonymization method (fixed and attribute-independent coarsening) and to a general disregard of 
40 years of literature (privacy models, anonymization methods, metrics, etc.). While the 
concerns spread by dM’s conclusions can only be explained by a lack of awareness of the 
relevant literature, they have the potential of very seriously undermining the willingness of data 
subjects and data owners to share data for research. Therefore, it is imperative to disprove such 
conclusions at the technical level, which was the main purpose of our study.  

Furthermore, we also wanted to convey to a broad audience that sound privacy models 
and anonymization methods have been developed over the last decades. This background makes 
it possible to produce anonymized data with intuitive and robust privacy guarantees against 
reidentification, while retaining sufficient analytical utility. In our view, this ought to reassure 
data subjects, data owners and data users and restore their trust in de-identified/anonymized data 
sharing.  
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