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Abstract

This paper studies the 28 time series of Libor rates, classified in seven ma-
turities and four currencies), during the last 14 years. The analysis was
performed using a novel technique in financial economics: the Complexity-
Entropy Causality Plane. This planar representation allows the discrimina-
tion of different stochastic and chaotic regimes. Using a temporal analysis
based on moving windows, this paper unveals an abnormal movement of
Libor time series arround the period of the 2007 financial crisis. This al-
teration in the stochastic dynamics of Libor is contemprary of what press
called “Libor scandal”, i.e. the manipulation of interest rates carried out by
several prime banks. We argue that our methodology is suitable as a market
watch mechanism, as it makes visible the temporal redution in informational
efficiency of the market.
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1. Introduction

Interest rates no only reflect the time value of money, but also show
the tension in the financial market. From the investors’ point of view they
provide a basic information for making decisions. From the government’s
point of view they are key elements for effective monetary policy transmis-
sion. Consequently fair market conditions in the money market arise as an
important issue in political economy.

Libor stands for London Interbank Offered Rate and was created in 1986
by the British Banking Association (BBA). It is one of the most important
economic benchmarks, followed closely by those who make financial decisions.
According to BBA definition, Libor is “...the rate at which an individual
Contributor Panel bank could borrow funds, were it to do so by asking for and
then accepting inter-bank offers in reasonable market size, just prior to 11:00
la.m.] London time”. In fact, Libor rate does not necessarily reflect the cost
or price of actual transactions. It is a daily survey conducted by BBA among
16 prime banks, about their fair perception on their own borrowing costs.
Every London business day, each bank in the Contributor Panel (selected
banks from BBA) makes a blind submission such that each banker does
not know the quotes of the other bankers. A compiler, Thomson Reuters,
then averages the second and third quartiles. This average is published and
represents the Libor rate on a given day. In other words, Libor is a trimmed
average of the expected borrowing rates of leading banks. Libor rates has
been published for ten currencies and fifteen maturities. As it is defined,
Libor is expected to be the best self estimate of leading banks borrowing cost
at different maturities. It is calculated for several currencies and maturities,
and the panel composition is not the same for all currencies.

Until 2008, Libor was an uncontested benchmark. However, this situa-
tion changed due to a journal publication. Mollenkamp and Whitehouse [1]
published a disruptive article in the Wall Street suggesting that the Libor
rate did not reflect what it was expected, i.e., the cost of funding of prime
banks. This, and other publications (e.g. [2, 3]) triggered investigations con-
ducted by the US Department of Justice, UK Financial Services Authority,
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EU European Comission and the Swiss Concurrence Commission. In June
2012 Barclays Bank pleaded guilty and accepted a fine of about $ 480 mil-
lions. Other banks were also fined by improper financial conduct. For a full
review of the Libor case from a regulator’ point of view, please see Hou and
Skeie [4].

Only a few papers deal with this topic in academic journals. Most of
them uses basic econometric techniques aiming to detect varying differences
between the Libor rate and another rate, supposedly not subject to manipula-
tion. Among these papers we find Taylor and Williams [5], who documented
the detachment of the Libor rate from other market rates such as Overnight
Interest Swap (OIS), Effective Federal Fund (EFF), Certificate of Deposits
(CDs), Credit Default Swaps (CDS), and Repo rates. Snider and Youle [6]
studied individual quotes in the Libor bank panel and found that Libor quotes
in the US were not strongly related to other bank borrowing cost proxies.
Abrantes-Metz et al. [7] analyzed the distribution of the Second Digits (SDs)
of daily Libor rates between 1987 and 2008 and, compared it with uniform
and Benford’s distributions. If we take into account the whole period, the
null hypothesis that the empirical distribution follows either the uniform or
Benford’s distribution cannot be rejected. However, if we take into account
only the period after the subprime crisis, the null hypothesis is rejected. This
result calls into question the “aseptic” setting of Libor. Monticini and Thorn-
ton [8] found evidence of Libor under-reporting after analyzing the spread
between 1-month and 3-month Libor and the rate of Certificate of Deposits
using the Bai and Perron [9] test for multiple structural breaks.

Bariviera et al. [10] unveil strange movements in the stochasticity of the
3-month UK Libor, using the Complexity Entropy Causality Plane (CECP).
More recently Bariviera et al. [11] studied the Libor scandal using the
Shannon-Fisher plane, giving a new perspective under the lens of local-global
information quantifies.

Our approach greatly expands [10], studying the behavior of the Libor for
seven maturities and four currencies using the Complexity Entropy Causality
Plane. This study highlights that Libor manipulation was more extensive as
originally thought and was more subtle for some maturities.

The relevance for studying Libor manipulation is that, as stated in the
independent study conducted by HM Treasury [12], more than $ 300 trilion
valued contracts uses Libor as benchmark. This means that the value of
syndicated loans, floating rate notes and interest rate swaps were affected.
Even more, many mortgages have their interests linked to Libor evolution.

3
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As a consequence borrowers (mostly families) were directly affected by this
unfair behavior.

The rest of the paper is structured as follows. Section 2 describes the
methodology. Section 3 details the data under analysis. Section 4 comments
the main findings of our study and, finally Section 5 concludes.

2. Information theory quantifiers

Many economic data are recorded as a sequence of measurements equally
spaced in time. This kind of data, commonly referred as time series, are usu-
ally the starting point for economic analysis. When the data are abundant,
the number of adequate quantitative techniques increases. In particular,
econophysics methods, as the one applied in this article, are innovative and
appropriate to shed light on economic phenomena. In many cases, econo-
physics complement the limitations of traditional econometric techniques.

In this line, information-theory-derived quantifiers can help to extract
relevant information from financial time series. The use of information quan-
tifiers in economics is not new, but infrequent. The origins can be traced
back to Theil and Leenders [13], who use entropy to predict short-term price
fluctuations in the Amsterdam Stock Exchange. [14] and [15] replicate the
same technique for the New York Stock Exchange and the London Stock Ex-
change respectively. [16] analyzes the proportion of securities with positive,
negative and null returns on the American Stock Exchange using information
theory methods and conclude that this proportions are dependent on the pre-
vious day and is not significantly influenced by the proportion of untraded
securities. [17] proposes the average mutual information or shared entropy
as a proxy of systematic risk. This technique was remained unused until re-
cent years. For example, [18] uses entropy and symbolic time series analysis
in order to relate informational efficiency and the probability of having an
economic crash. Later, [19] uses Shannon entropy to rank the informational
efficiency of several stock markets around the world. [20] uses multiscale
entropy analysis to analyze the evolution of the informational efficiency of
crude oil prices.

2.1. Shannon entropy

When studying dynamical systems, the discrimination of the presence of
correlations in time series, emerges as one key task. Given a time series, one
of the most natural measures of disorder, and thus absence of correlation, is

4
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Shannon entropy [21]. Given a discrete probability distribution P = {p; :
i=1,--- M}, Shannon entropy is defined as:

S[P] = —Zpilog(pi) (1)

This formula measures the information embedded into the physical process
decribed by P. It is a bounded function in the interval [0, log(M)]. S[P] =0
means that one of the states p; = 1 and the remaining p; = 0 for ¢ # i*,Vi €
M. In other words, null entropy means full certainty about the system’s
outcome. On the other extreme, if S[P] = log(M), our knowledge about
the system is minimal, meaning that all states are equally probable. Even
though entropy can describe globally the level of order/disorder of a process,
the analysis of time series using solely Shannon entropy could be incomplete
[22]. The reason is that an entropy measure does not quantify the degree
of structure or patterns present in a process. Consequently, a measure of
statistical complexity is necessary in order to characterize the system.

2.2. Statistical complexity

Although Shannon entropy is a good measure of the order of a physi-
cal system, it has limitations. An additional measure in order to measure
the hidden structure of the process is needed in order to fully characterize
dynamical systems: an statistical complexity measure. A family of statisti-
cal complexity measures, based on the functional form developed by [23], is
defined in [24, 25] as:

Cis = Q[P Fe] - H[P] (2)

where H[P] = S[P]/Smax is the normalized Shannon entropy, P is the discrete
probability distribution of the time series under analysis, P, is the uniform
distribution and Q [P, P.] is the so-called disequilibrium. This disequilibrium
is defined in terms of the Jensen-Shannon divergence, which quantifies the
difference between two probability distributions. Martin, Plastino and Rosso
[26] demonstrates the existence of upper and lower bounds for generalized
statistical complexity measures such as C;s . Additionally, as highlighted in
[27], the permutation complexity is not a trivial function of the permutation
entropy because they are based on two probability distributions. A complete
discussion about this measures and details about their calculation is in [28].
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2.3. Bandt-Pompe symbolization method

In order to evaluate this quantifiers, a symbolic technique should be se-
lected in order to obtain the appropriate probability distribution function.
Following [28, 29, 30, 31|, we use the Bandt and Pompe [32] permutation
method, because it is the single symbolization technique that considers time
causality. This methodology requires only weak stationarity assumptions.

The appropriate symbol sequence arises naturally from the time series.
“Partitions” are devised by comparing the order of neighboring relative val-
ues rather than by apportioning amplitudes according to different levels. No
model assumption is needed because Bandt and Pompe method makes parti-
tions of the time series and orders values within each partition. Given a time
series S(t) = {zy;t = 1,--- , N}, an embedding dimension D > 1,D € N,
and an embedding delay 7,7 € N, the BP-pattern of order D generated by

S (Is—(D—l)Ta Ts—(D-2)1y " »Ls—, :L's) (3)

is the one to be considered. To each time s, BP assign a D-dimensional
vector that results from the evaluation of the time series at times s — (D —
7, s — (D —2)1,--- ,s —1,s. Clearly, the higher the value of D, the more
information about “the past” is incorporated into the ensuing vectors. By the
ordinal pattern of order D related to the time s, BP mean the permutation
m = (ro,r1, -+ ,rp—1) of (0,1,---, D — 1) defined by

Ls—rp_ 17 S Ls—rp_or S T S Ls—ryT S Ls—ror- (4)

In this way the vector defined by Eq. (3) is converted into a definite symbol
m. So as to get a unique result BP consider that r; < r;_y if x5y 7 = T5—p, -
This is justified if the values of z; have a continuous distribution so that equal
values are very unusual.

For all the D! possible orderings (permutations) m; when embedding di-
mension is D, their associated relative frequencies can be naturally computed
according to the number of times this particular order sequence is found in
the time series, divided by the total number of sequences,

_ t{s|ls< N—(D—1)7;(s) has type 7}

p(mi) N—(D-1)r

(5)

In the last expression the symbol £ stands for “number”. Thus, an ordinal
pattern probability distribution P = {p(m;),7 = 1,--- , D!} is obtained from
the time series.
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As we mention previously, the ordinal-pattern’s associated PDF is in-
variant with respect to nonlinear monotonous transformations. Accordingly,
nonlinear drifts or scalings artificially introduced by a measurement device
will not modify the quantifiers’ estimation, a nice property if one deals with
experimental data (see i.e. [33]). These advantages make the BP approach
more convenient than conventional methods based on range partitioning. Ad-
ditional advantages of the method reside in (i) its simplicity (we need few
parameters: the pattern length/embedding dimension D and the embedding
delay 7) and (ii) the extremely fast nature of the pertinent calculation-process
[34]. The BP methodology can be applied not only to time series representa-
tive of low dimensional dynamical systems but also to any type of time series
(regular, chaotic, noisy, or reality based). In fact, the existence of an attrac-
tor in the D-dimensional phase space in not assumed. The only condition
for the applicability of the BP method is a very weak stationary assumption
(that is, for &k = D, the probability for z; < x4 should not depend on ¢
[32]). The selected pattern length should fulfill N > D! | in order to obtain
reliable quantifiers .

2.4. The Complexity Entropy Causality Plane

When the Shannon entropy and the statistical complexity measures de-
fined before are computed using the [32] symbolization technique, the quanti-
fiers are named permutation entropy and permutation statistical complexity.
Both quantifiers can be represented in a Cartesian plane, forming the Com-
plexity Entropy Causality Plane (CECP). This planar representation was
introduced in efficiency analysis in [28] and was successfully used to rank
efficiency in stock markets [29], commodity markets [30], and to link infor-
mational efficiency with sovereign bond ratings [35]. Given the power of the
CECP for the discrimination of random and chaotic signals, its application
goes across disciplines. For example, [36] studies the daily stream flow of
United States rivers, and [37] reviews the main biomedical and econphysical
applications of this methodology.

3. Data

We analize the Libor rates in British Pounds (GBP), Euro (EUR), Swiss
Franc (CHF) and Japanese Yen (JPY), for the following seven maturities:
overnight (O/N), one week (1W), one month (1M), two months (2M), three
months (3M), six months (6M) and twelve months (12M). The data coverage
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is from 02/01/2001 until 06/10/2015, for a total of 3851 datapoints. All data
were retrieved from Datastream.

We computed the permutation entropy and permutation statistical com-
plexity for D = 4, using daily values (7 = 1). In order to assess the changes
in the dynamical process that generates Libor time series, we used sliding
windows. The sliding window approach works as follows: we compute the
information quantifiers for the first 300 datapoints, then we move forward
20 datapoints (6 = 20) and compute again the quantifiers for the next 300
datapoints. We continue in this way until the end of the data. Using this
procedure, we obtained 177 windows, each one spanning slightly more than
a year (=~ 13 months)

4. Results

The results of the permutation entropy and statistical complexity are dis-
played in cartesian planes called Complexity Entropy Causality Planes. This
graphical representation allows the discrimination of stochastic and chaotic
dynamics, as described in [31]. According to the classical financial literature,
prices in a competitive market should follow a memoryless stochastic pro-
cess [38]. Thus, if Libor is freely set, without exogenous altering forces, it
should approximately follow a random walk. In this situation, permutation
entropy is maximized and permutation statistical complexity is minimized.
We can safely say that, the closer the quantifiers to the point (1,0), the more
informational efficient the market is.

A simple observation of Figures 1 to 8 shows that we are facing a chang-
ing dynamic. The process governing interest rates does not seem to be stable
over time. The reflection of this is that the position of the estimators changes
radically in different temporal windows. However, this change is not random,
but rather seems to follow a directed path. To make a more visual presen-
tation, we have grouped the windows in 11 periods of 16 windows each (17
windows in the last period). So we can differentiate each period with a color
and a different marker. Additionally, we have put a number to each period
and we have located in the average values of entropy and complexity of that
period. As a general rule, we can see that GBP, EUR and CHF Libor be-
haves very efficiently during the first three periods (years 2001-2005). Indeed,
entropy is greater than 0.8 and less than 0.2 complexity. Period 4 appears
to be a certain transition. Entropy decreases and complexity increases. This
trend is deepened in subsequent periods, with periods 6, 7 and 8 being the
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most inefficient (years 2007-2012). Periods 9, 10 and 11 (years 2012-2015)
show a return to the area of greatest informational efficiency.

A more detailed analysis by currency allows us to discover that not all
maturities followed the same pattern. Indeed, the most affected are the
maturities of 1, 2 and 3 months. At the other extreme, the least affected
were maturities of overnight and 12 months. Further analysis should JPY
Libor. The behavior is similar to other currencies, but all maturities have
also been affected in the rate rigging.

Probably one of the reasons for the distinct behavior of JPY and the rest
of the currencies is that Libor JPY is less used as a benchmark for pricing
other financial instruments. On the other hand, the distinct behavior in the
different maturities can be also explained by their use as a reference rate!.

We cannot discard that the financial crisis itself produced a disruption
in the Libor market, making it less efficient. Its influence seems to depend
on the nature of the financial assets under study. For example, [39] report
an asymmetric impact of the crisis in the long memory of corporate and
sovereign bonds. However, it is at least a remarkable coincidence that the
changes in informational efficiency is contemporary with the alleged manipu-
lation, specially in some maturities. Additionally, the informational efficiency
recovery begins when banks were fined by improper conduct. Moreover, our
results agree with the finding in [40], that between 2007 and 2009 the Libor
time series was more predictable than either before or after those years.

In order to observe more clearly the temporal changes in informational
efficiency, we compute the metric introduced in [41]:

Inefficiency = ++/(Hs — 1)2 + (Cs)?. (6)

This measure represents the Euclidean distance to the point Hg = 1 and
Css = 0, i.e. the maximal efficiency point. The results can be observed in
Figure 9.

5. Conclusions

This paper studies the 28 time series of Libor rates during the last 14
years. The information theory based symbolic analysis is known as Complexity-
Entropy Causality Plane, a novel approach in financial economics. The use

Isee the use of the different Libor rate maturities and currencies as a reference rate for
interest rate swaps and floating rate notes in Table C.2 in [12]
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Figure 1: Complexity Entropy Causality Plane, with D = 4,7 = 1,6 = 20 of GBP Libor
for different maturities: overnight (O/N), one week (1W), one month (1M), two months
(2M). Numbers {1---10} are the central points of each of the clusters. The solid lines
represent the upper and lower bounds of the quantifiers as computed by Martin et al. [26]

of the CECP allows the discrimination of different stochastic and chaotic
regimes. We used moving windows in order to introduce temporal dimension
into our analysis. According to our results an abnormal movement of Libor
time series arround the period of the 2007 financial crisis is detected. This
alteration in the stochastic dynamics of Libor is contemprary of what press
called “Libor scandal”, i.e. the manipulation of interest rates carried out by
several prime banks. We argue that our methodology is suitable as a market
watch mechanism, as it makes visible the temporal redution in informational
efficiency of the market. Our results could be useful for regulatory authori-
ties, since the procedure detailed in this paper could act as an early warning

s

mechanism to detect unusual dynamics in the Libor market.

10



249

250

251

252

253

254

255

256

257

GBP-LIBOR-3M GBP-LIBOR-6M

y DY .
/ - A oal a * *‘o N
/ . N % \
03 S g ° Ay * ‘ N
e ] h\ 0.28- x5 ° N
| /7 * A\ ¢ ° \
028 / ¥ 10 \ * ° \
) / 2 a o® \ 026 o 10 N
0.26- // %9 . ** \\ 024 S o ;“\
o024k / P X gk g o\ ’ pert ;3 2N L] \
,/ * % 5#8 4 022k t ***6 { ] \’\
/ AN e R S
* \ e
gozr /S * \ q e —. \
o X —. n 3 07 o2f T e A
o2 Fo ® Jan01-Apr03 - 4 \ ® Jan-01-Apr03 5 .o N
. = Mar0zuiod [ T L I e B Mar02-Jul0d 1° \
018/ e Jun3-0ct05 « ¥4\ Jun-03-0ct05 \
p-0i-Dec-06 N \ Sep04-Dec08| e\
x/ Nov-05-Mar-08 LI 0.6 Nov-05-Mar-08 L "
ot/ , Feb-07-Jun-09 L Feb-07-Jun-09 N \
Y May-08-Aug-10 N ) od- May-08-Aug-10 N '
o’ % Ootio Femts N ¥ etiorents AN
eb-’ eb-’
e NN T s e N\
L H ; L2 APr19-Aug15] H ; L ; H ; . LB Apr1S-Aug-15) 1 ; .
0z 03 04 05 06 07 08 09 04 045 05 085 06 065 07 075 08 085 09
Hs 's
GBP-LIBOR-12M
03k * * ¥ ® s
3 AN
o« °
9 3 o o \
\
025 Tt o \
L 57
* Tk oy x
" * 100
| — Y
— 8
0.2 ,.\\
32 - b
® Jan01-Apr03
B Mar02-Juk0d [
0.5 Jun03-0ct05 |\
Sep04-Dec06 8
Nov-05-Mar-08 \
Feb-07-Jun-09
May-08-Aug-10
o1 * Aug-09-Nov-11
* Oct10-Feb-13
® Jan-12-May-14
L m Apr13-Augs

045 05 0.55 06 065 07 0.75 0.8
HS

Figure 2: Complexity Entropy Causality Plane, with D = 4,7 = 1,6 = 20 of GBP Libor
for different maturities (continuation): three months (3M), six months (6M) and twelve
months (12M). Numbers {1---10} are the central points of each of the clusters. The solid

lines represent the upper and lower bounds of the quantifiers as computed by Martin et
al. [26]
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