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Abstract

Conventional item response theory (IRT) modeling of personality responses considers two item
characteristics—location and discrimination—but only one person characteristic—location or
trait level. An IRT modeling approach that jointly considers item and person discriminations,
however, is thought to be more realistic and appropriate in this domain and has several potential
advantages. This article develops a model of this type for unidimensional binary responses
together with procedures for estimating item and person parameters and assessing model
appropriateness (including person fit). A series of preliminary simulations suggests that the
approach is feasible, and a real-data example illustrates the potential advantages with respect to
the standard two-parameter model. Limitations of the proposal and further work are also
discussed.
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Fiske (1968) discussed the psychometric analysis of personality data and considered that each

characteristic or parameter assessed at the item level has a counterpart or ‘‘dual’’ at the person

level. In the case of unidimensional binary responses dealt with here, the person dual of the item

location is the individual trait level (i.e., the person location). The item discrimination, however,

reflects the accuracy of the item as a measure of the trait (Lord & Novick, 1968). Therefore, the

corresponding dual is a person parameter that reflects the accuracy of the individual as a respon-

dent. A parameter of this type is consistent with evidence: Some individuals respond in a highly

accurate, almost deterministic way, whereas others respond much more randomly (Ferrando,

2004, 2013; Fiske, 1968; Guilford, 1959; Voyce & Jackson, 1977).

Fiske (1968) and Voyce and Jackson (1977), among others, proposed classical-test-theory-

based analyses in which both item and person discrimination were assessed (for an historical

review, see Ferrando, 2004). Also, in the context of person-fit analysis, ‘‘dual’’ proposals have

been made based on an item response theory (IRT) framework (Levine & Rubin, 1979; Reise,

2000; Reise & Due, 1991). At a more specific level, however, the IRT models commonly used
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in personality measurement do not include both item and person discrimination parameters. The

only models that do appear to be the two-parameter 3 model (2P3M) described by Lumsden

(1980) and the generalized multiplicative model (GMM) proposed by Strandmark and Linn

(1987).

The starting point of this article is that a dual model that jointly considers location and dis-

crimination parameters for both items and individuals is ‘‘a priori’’ the more realistic way of

modeling personality responses within an IRT framework (Ferrando, 2013; Lumsden, 1980). At

the same time, however, a model of this type would be of little value in practice if it were too

complex and/or unable to provide accurate and stable parameter estimates. These limitations

are certainly applicable to the two proposals mentioned above. Estimation of the 2P3M at the

individual level is considered unfeasible except in the linear-continuous case (Ferrando, 2013),

and, for binary responses, only a restricted version with constant item discriminations has been

proposed (Ferrando, 2004, 2007). As for the GMM, Strandmark and Linn (1987) proposed a

complex joint iterative procedure that did not guarantee the correctness and stability of the esti-

mates. Thus, it is only to be expected that the GMM has not been used to date in any applica-

tion but only as a source model for generating person misfit (Reise & Due, 1991).

The aim of this article is to propose a simple and mathematically tractable IRT dual model

intended for personality binary items together with procedures for (a) fitting it and obtaining

item and person estimates, (b) assessing model appropriateness (including person fit), and (c)

interpreting the person estimates and using them in applications. The basic model is a modified

version of the GMM that includes a series of results previously reported by Ferrando (2004,

2007). So, although some new results have been obtained, the ultimate purpose of the proposal

is to provide a workable approach that can be used in applied personality assessment.

Description of the Model and Main Results

Consider a personality test, made up of n binary items, that measures a trait u. Let Xij (0 or 1) be

the observed score of respondent i on item j. In the standard two-parameter model (2PM), the

expected score of respondent i on item j, which is also the probability that respondent i would

endorse item j, is given by

Pj uið Þ= P Xij = 1jui, bj, aj

� �
=F aj ui � bj

� �� �
ffi C Daj ui � bj

� �� �
, ð1Þ

where F is the Cumulative distribution function (c.d.f.) of the standard normal distribution, C is

the logistic function, and D = 1.702. The parameters ui and bj are, respectively, the person and

item locations on the trait continuum, and for identification purposes, u is assumed to be distrib-

uted with zero mean and unit variance in the population of interest. The parameter aj is consid-

ered to be positive and is the item discrimination. The difference ui2bj is the signed person–

item distance (PID; Kuncel, 1973; Voyce & Jackson, 1977) and is the primary response determi-

nant. So, when the person location dominates the item location (i.e., ui . bj) the expected score

is above 0.5 (i.e., the Response Scale midpoint). This dominance mechanism is thought to be an

appropriate way to model the responding process that takes place when many binary personality

items are answered (Kuncel, 1973; Voyce & Jackson, 1977). However, it is not claimed to be

universally valid for all of them. Thus, neutral items that contain ‘‘average’’ modifiers or use

double-barreled statements might operate more consistently with a proximity mechanism (e.g.,

Cao, Drasgow, & Cho, 2015).

The model proposed in this article, named D2PMM (dual two-parameter multiplicative

model), is an extension of Equation 1, and its basic equation is
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Pj ui, gið Þ= P Xij = 1jui, gi, bj, aj

� �
=F giaj ui � bj

� �� �
: ð2Þ

Equation 2 is essentially the same as that proposed by Strandmark and Linn (1987) except

that they proposed a logistic version. The normal-ogive choice proved to be more appropriate

and treatable than the logistic version for the new developments described below.

The person parameter gi in Equation 2 is also assumed to be positive, reflects the discrimi-

nating power of the individual, and is the dual of aj. Furthermore, the item and person discrimi-

nations are assumed to be independent (Lumsden, 1980). The product giaj moderates the

sensitivity of the responding process to the PID primary determinant. So, when both gi and aj

are high, the responding process becomes more deterministic and approaches a Guttman pro-

cess. When either gi or aj or both approach 0, the process becomes more and more random, and

the expected score approaches 0.5 no matter what the PID is.

If the expected item scores derived from Equation 2 were plotted as a function of item loca-

tion for a fixed respondent, the D2PMM person response function (PRF) of this respondent

would be obtained. The D2PMM-PRF, which is shown in Figure 1, is a decreasing two-

parameter ogive whose slope is proportional to the person discrimination gi in which the person

location ui defines the point along the b continuum at which the expected score is 0.5.

The item response function (IRF) of the D2PMM is next defined as the expectation of

Equation 2 over g. A conceptual interpretation is that the IRF is the expected score on item j

for the sub-population of respondents with the same location ui. An alternative, but equivalent,

interpretation is that the IRF is the probability of endorsing item j for a random respondent with

location ui (see Ferrando, 2004, 2007).

Figure 1. Expected score as a function of item difficulty for two respondents with different person
discrimination.
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IRF = Pj uið Þ= Eg Pj ui, gð Þ
� �

= Eg F gaj ui � bj

� �� �� �
=

ð
g

F gaj ui � bj

� �� �
f gð Þdg: ð3Þ

Because g can be viewed as a slope parameter that is bounded away from 0, a reasonable and

mathematically convenient choice for f(g) in Equation 3 is the scaled-chi (x) distribution (also

known as the generalized Rayleigh distribution), which has the parameters n (degrees of free-

dom) and l (scale parameter; see Swaminathan & Gifford, 1985), and whose probability density

function (p.d.f.) is proportional to

f gð Þ} gn�1exp � 1

2
lg2
� �� �

: ð4Þ

Using Equation 4 in Equation 3, the IRF is found to be (see Ferrando, 2007)

IRF = Pj uið Þ= Ft, v

ffiffiffi
v

l

r
aj ui � bj

� �� �
ffi F E gð Þaj ui � bj

� �� �
, ð5Þ

where Ft,n is the c.d.f. of Student’s distribution with n degrees of freedom. The IRF, then, is a

Student’s ogive with slope parameter
ffiffiffiffiffiffiffiffiffiffiffi
(v=l)

p
aj. As n increases, the curve approaches a normal

ogive, and
ffiffiffiffiffiffiffiffi
v=l

p
approaches E(g) (see Ferrando, 2007). Even at small n, however, both IRFs

are close and, in fact, Ferrando (2007) found that estimation of the Student ogive was generally

unstable because of the difficulty involved in distinguishing it from the normal ogive. For this

reason, the limiting normal ogive on the right-hand side of Equation 5 will be taken as the IRF

of the D2PMM. The slope of this IRF is the product E(g)aj and cannot be identified without fur-

ther restrictions. The constraint proposed here is to set n = l, which, for interpretive purposes,

makes E(g) approximately 1 (see Equation 14 in the online appendix).

The result discussed above suggests that in the calibration stage, the item location and item

slope parameters of the D2PMM could be estimated by fitting the standard normal-ogive 2PM

to the matrix of item scores. However, the fact that the 2PM IRF closely approximates the

D2PMM at the single-item level does not in itself guarantee that the approximation, which is

proposed, will be generally good enough.

As discussed below, in this article, the author proposes a conventional two-stage estimation

procedure (i.e., calibration and scoring) in which items are first calibrated by using the limited-

information unweighted-least-squares procedure proposed by McDonald (e.g., McDonald,

1997). This calibration procedure is chosen because it is quite robust and makes satisfactory

estimates even when tests are long and sample sizes not too large (the situation expected in

most applications). Now, the input in McDonald’s procedure is the inter-item cross-product

matrix. So, in the calibration stage, the 2P normal-ogive item estimates can be expected to be

reasonably close to the D2PMM item parameters if (a) the conditional and marginal proportions

of single-item endorsements implied by both models are close (see above) and (b) the condi-

tional and marginal joint probability of endorsement for pairs of items are also close enough.

The closeness of approximation regarding point (b) above was assessed analytically and

computationally and is discussed in detail in the online appendix (Section 2, Equations 20-25).

The results show that (a) for the conditions that are expected in normal-range personality mea-

surement and (b) for a plausible, non-extreme chi-distribution for g (say n = l = 5 or more), the

normal-ogive approximation is good even for extreme items.

To sum up, the D2PMM proposed in this section is essentially a 2P3M-type model accord-

ing to Lumsden’s (1980) taxonomy. At the individual level, its PRF is a two-parameter normal
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ogive. At the item level, its IRF is expected to be well approximated by the IRF of the 2P

normal-ogive model. The main differences between both models lie in their PRFs: In the stan-

dard 2PM, only the person location ui is considered, so the implicit PRF is a one-parameter nor-

mal ogive with the same slope for all the respondents. In the limiting case in which all the

respondents have the same amount of discrimination, the D2PMM will reduce to the standard

2P normal-ogive model.

Relation With Other Approaches

Moustaki and Knott (2000) proposed a family of generalized latent trait models characterized

by (a) a link function, (b) a random component, and (c) a systematic component. The D2PMM

can be considered as a model belonging to this family in which the random component is the

Bernoulli distribution of the 0 to 1 scores, the link function is the probit function (F21), and the

systematic component is the term giaj(ui2bj) (see Equation 2). Furthermore, the D2PMM can

be related to two existing classes of factor analytic (FA) models by re-expressing the systematic

component term in the two ways discussed below.

Consider first the following re-expression derived from the basic Equation 2:

F�1 Pj ui, gið Þ
� �

= giaj ui � bj

� �
= �giajbj

� �
+ giaj

� �
ui = mij + lijui: ð6Þ

With this formulation, the systematic component of the D2PMM is that of a linear heteroge-

neous FA model in which both the intercepts and the weights vary over individuals. FA models

of this type have been proposed mainly for the linear case in which the link function is the iden-

tity function (e.g., Ansari, Jedidi, & Dube, 2002; Ferrando, 2013; Kelderman & Molenaar,

2007).

The second re-expression is

F�1 Pj ui, gið Þ
� �

= �ajbj

� �
gi + aj

� �
giui = lj1gi + lj2giui: ð7Þ

Expressed as in Equation 7, the systematic component becomes that of a regression model

with two orthogonal latent variables (g and u), a linear main-effect term, and an interaction term

expressed as the product of the latent variables. For the continuous case with identity link func-

tion, models of this type have been considered in the structural equation modeling literature

(e.g., Cudeck, Harring, & du Toit, 2009). Furthermore, Rizopoulos and Moustaki (2008) have

considered a logit-link model with two orthogonal factors, two main-effect terms, and a product

term, which is more closely related to Equation 7. The D2PMM, however, differs from the stan-

dard formulation of interactive models in two ways. First, Model 7 has only one main-effect

term. Second, and more important, the standard formulation of interactive models (including

Rizopoulos and Moustaki’s) is an FA formulation in which both latent variables are modeled as

common factors with the same distribution and metric (generally standard normal). In contrast,

in the D2PMM, the common factor is a standard variable centered at 0, whereas the individual

discrimination variable is a positive variable distributed asymmetrically. The interaction effect

in the D2PMM, then, is not ‘‘symmetric.’’ Rather, the role of g is to amplify or reduce the effect

of u on the item responses.

Parameter Estimation and Properties of the Person Estimates

Rizopoulos and Moustaki (2008) proposed a full-information maximum-likelihood estimation

procedure for generalized latent variable models that could be adapted to fit the D2PMM. The
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procedure enjoys good statistical properties but is complex. So, given that the present proposal

aims for simplicity and practicality, the author proposes, instead, to use a far simpler method

that follows a conventional two-stage approach (i.e., calibration and scoring). In the calibration

stage, the 2P normal-ogive model is fitted to the inter-item cross-product matrix by using the

limited-information unweighted-least-squares procedure developed by McDonald (1997) and

the free software that is available for this approach (Fraser & McDonald, 2012). If the D2PMM

is correct, given the results discussed above, the location and discrimination item estimates

obtained with this approach are expected to be good estimates of their corresponding D2PMM

parameters (this point is further assessed in the simulation study below). Next, provided that the

fit is acceptable, the item parameter estimates are taken as fixed and known and used in the scor-

ing stage, which is based on Equation 2. A calibrated set of items can also be used if available.

The scoring procedure—Bayes expected a posteriori (EAP, Bock & Mislevy, 1982)—is

selected for two main reasons. First, to ensure that the person estimates (especially g) fall within

reasonable values and second, to use the information available at the calibration stage (mainly

that the distribution of g is x with approximately unit expectation). The prior for u will usually

be taken as standard normal, but other specifications are possible. As for g, the prior can be

fully specified by setting a credibility interval and then solving for the variance parameter (see

Ferrando, 2007; Swaminathan & Gifford, 1985).

EAP estimation of u and g in the D2PMM computed by quadrature is conventional and is

detailed in the online appendix. The output consists of the EAP point estimates and the poster-

ior standard deviations (PSDs), which serve as standard errors (e.g., Bock & Mislevy, 1982). A

PSD-based reliability estimate can further be obtained as

r ûi

� �
= 1�

PSD ûi

� �2

Var uð Þ ,

r ĝið Þ= 1� PSD ĝið Þ2

Var gð Þ :
ð8Þ

The u estimates obtained from the D2PMM have two properties that distinguish them from

the standard 2PM. First, provided that the D2PMM is correct, they are unbiased. Second, they

have a different degree of precision depending on the amount of person discrimination.

The first property can be illustrated graphically. Figure 1 shows the D2PMM PRFs for two

hypothetical respondents—A and B—with the same trait level (u = 0) but different discrimina-

tions (gA = 1.5, and gB = 0.5). As noted by Lumsden (1977), if their trait levels are estimated

by the standard 2PM, then the relative estimates will be biased by the location of the items. In

a ‘‘difficult’’ test, the trait level of B will be seen as higher than A, and the opposite will occur

in an ‘‘easy’’ test. In contrast, the D2PMM-based estimates, which take into account the differ-

ential discrimination of both respondents, are expected to be unbiased.

The second property has already been discussed by Reise and Due (1991) who noted that

responses given by a less-discriminating individual provide less psychometric information for

estimating u. This point can be made more explicit here by using the following relation (detailed

in the online appendix):

1

PSD2 uið Þ
ffi 1 + g2

i

Xn

j = 1

a2
j

f2 giaj ui � bj

� �� �
Pj ui, gið Þ 1� Pj ui, gið Þ

� � = 1 + I uið Þ, ð9Þ

where I(u) is the element of the information matrix corresponding to u (see the online appen-

dix). Other factors being constant, PSD(u) decreases (and the confidence interval becomes
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narrower) the more discriminating the individual is. Conceptually then, more confidence can be

placed in the trait estimate of an accurate respondent than in that of a low-discriminating

respondent.

In practice, the distinctive features just discussed can only be considered as advantages with

respect to the standard 2PM if the person discrimination estimates have a minimal degree of pre-

cision. Otherwise, the bias correction and differential accuracy predictions might be misleading,

and it might even be preferable to use the standard 2PM trait estimates.

The expression for PSD(u) is (see the online appendix) as follows:

1

PSD2 gið Þ
ffi n� 1

g2
i

+ l

� �
+
Xn

j = 1

a2
j ui � bj

� �2 f2 giaj ui � bj

� �� �
Pj ui, gið Þ 1� Pj ui, gið Þ

� �

=
n� 1

g2
i

+ l

� �
+ I gið Þ:

ð10Þ

According to Equation 10, the amount of measurement error in this case depends mainly on

three factors (apart from the prior contribution): (a) the number of items, (b) the squared PIDs,

and (c) the amount of item discrimination. So, for a single respondent with a given location ui, g

can only be estimated accurately if there are enough items with good discrimination that are suf-

ficiently distant from this location. Overall, then, reliable estimation of g requires a test that is

long enough and made up of items that have a wide dispersion of locations across the trait conti-

nuum and a certain amount of discrimination.

For both u and g, the expected PSDs corresponding to different conditions can be computed

analytically with no need for any empirical data (Ferrando, 2004). Table 1 displays the expected

information per unit test length for u (left) and g (right). The values in the upper panel are com-

puted for a medium-low average item discrimination of a = 0.40. Those in the lower panel are

obtained for a medium-high value of a = 0.90. In both cases, the item locations are assumed to

be uniformly distributed in the interval 23 to + 3.

For a test of length n, the expected amount of information is obtained by multiplying the cor-

responding value in the table by n. Then, the corresponding PSDs and reliabilities are obtained

Table 1. Expected Information per Unit Test Length for u (Left) and g (Right).

g

I(u) I(g)

u u

22 21 0 1 2 22 21 0 1 2

Item discrimination = 0.4
0.50 0.023 0.024 0.025 0.024 0.023 0.587 0.364 0.284 0.364 0.587
0.75 0.047 0.051 0.053 0.051 0.047 0.442 0.312 0.261 0.312 0.442
1.00 0.072 0.084 0.088 0.084 0.072 0.291 0.247 0.228 0.247 0.291
1.50 0.123 0.152 0.162 0.152 0.123 0.110 0.132 0.149 0.132 0.110
2.00 0.179 0.219 0.228 0.219 0.179 0.049 0.070 0.083 0.070 0.049

Item discrimination = 0.9
0.50 0.085 0.100 0.106 0.100 0.085 1.156 1.084 1.056 1.084 1.156
0.75 0.144 0.177 0.188 0.177 0.144 0.399 0.522 0.613 0.522 0.399
1.00 0.209 0.252 0.259 0.252 0.209 0.181 0.270 0.309 0.270 0.181
1.50 0.356 0.389 0.389 0.389 0.356 0.066 0.093 0.094 0.093 0.066
2.00 0.506 0.519 0.518 0.519 0.506 0.034 0.040 0.040 0.040 0.034
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by using Equations 8, 9, and 10. For example, assume that a 40-item test with an average dis-

crimination of 0.90 is administered to an ‘‘average’’ respondent with person estimates: u = 0

and g = 1. So, according to Table 1, I(u) = 40 3 0.259 = 10.36, and I(g) = 40 3 0.309 = 12.36.

Assume next that the prior for u is standard normal and the prior for g is x(3, 3), which leads to

s(g) = 0.41. Then, according to Equations 9 and 10, the corresponding PSDs are PSD(u) =

0.297, and PSD(g) = 0.248. Finally, according to Equation 8, the reliability of the estimates are

r(u) = 0.91 and r(g) = 0.64 (recall that s(g) = 0.41).

So far, person discrimination has been considered only as a means for improving u estima-

tion. However, it might be of interest beyond this auxiliary role. First, it might act as a modera-

tor variable regarding the relation between trait estimates and relevant criteria (e.g., Culpepper,

2010). More specifically, if the precision of trait estimates depends on g, then stronger validity

relations are expected for highly discriminating individuals (e.g., Lord & Novick, 1968, Section

3.9). Second, g might be an indicator of an individual-differences dimension of sensitivity to the

normative ordering of the items that is known as ‘‘person reliability’’ (Ferrando, 2004; Guilford,

1959; Lumsden, 1977). This dimension would partly characterize the responding behavior of

the individual (from almost random to almost deterministic) and might also have a theoretical

foundation: It might be related to the strength, clarity, and degree of organization by which the

trait is internally represented (e.g., Taylor, 1977; Tellegen, 1988). Furthermore, a dimension of

this type might well be related to such personality variables as impulsivity, conscientiousness,

conformity, or restraint (Donlon & Fischer, 1968; Ferrando, 2004, 2007).

Assessing Model Appropriateness

This section will discuss procedures for assessing model-data fit at the overall level and at the

individual level (i.e., person fit). At the overall level, if the goodness-of-fit results obtained at

the calibration stage are satisfactory, then both the D2PMM and the 2PM can be considered to

be appropriate because they both predict essentially the same IRF. A key issue then is to assess

whether the more flexible but more parameterized D2PMM is more appropriate than the sim-

pler 2PM.

The incremental appropriateness of the D2PMM with respect to the 2PM can be assessed by

using a likelihood ratio (LR) approach (e.g., Ferrando, 2013). Consider the response pattern of

respondent i, and let (a) L1
i (ûi, ĝ) be the value of the D2PMM likelihood function (see the online

appendix) evaluated by using both person estimates and (b) L0
i (û

(f )
i , 1) be the corresponding

value obtained under the restriction that all the person discriminations have a fixed value of g =

1 (i.e., the fixed g mean). As mentioned above, with this restriction, the trait estimates û
(f )
i are

those obtained with the standard 2PM. The LR statistic and its standard transformation are

Li =
L0

i û
fð Þ

i , 1
	 


L1
i ûi, ĝi

� � ,

si = � 2 ln Lið Þ

ð11Þ

The statistic Li is a descriptive normed index with values in the range 0 to 1. Values close

to 1 indicate that the simpler, more restricted 2PM is appropriate for this respondent. As for si,

under very restrictive conditions, it could be considered as a value drawn at random from a x2

distribution with one degree of freedom. So, by assuming experimental independence between

respondents, the sum Q = Ssi would asymptotically approach a x2 distribution with N degrees

of freedom (see Ferrando, 2013). This sum Q is proposed here as the overall index for assessing

whether the D2PMM fits the data better than the standard 2PM. However, as discussed in
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Ferrando (2013), Q should not be used as a strict inferential measure but rather in a more

exploratory way in which the theoretical distribution is only a useful reference.

Regarding person-fit assessment, the parameter g defines a continuum ranging from random

responding to deterministic responding, and so a key assumption of the D2PMM is that g . 0.

An individual who gives responses that are opposite to the normative ordering of the item loca-

tions will produce a negative value of g, so his or her pattern would be inconsistent with the

D2PMM. To assess this type of inconsistency, a modified, conditional version of the personal

biserial correlation (Donlon & Fischer, 1968) termed c-rperbis is proposed here as a person-fit

statistic. The index is the biserial correlation between the response vector and the vector of

expected item scores given the EAP trait estimate of the individual obtained from the standard

2PM. If the D2PMM holds, then c-rperbis is positively related to g, its value must be near 0 for

an almost-random pattern, and must approach 1 as the amount of discrimination of the individ-

ual increases. A negative value indicates that the individual’s responses are not consistent with

the model, so his or her estimates cannot be validly interpreted.

As a summary of the proposal discussed so far, the online appendix includes a guideline on

how the two-step modeling approach proposed for the D2PMM is to be used in real applications.

A Preliminary Simulation Study

Pseudo-populations of n = 2,000 and n = 500 simulated responses were generated according to

the D2PMM in Equation 2 for four test lengths: n = 10, n = 20, n = 40, and n = 60 by using

MATLAB (1999) programs written by the author. In all cases, the item locations were uni-

formly distributed between 23 and + 3, and the item discriminations ranged from 0.2 to 1.5

with a mean of 0.9. First, the simulated responses were calibrated according to the standard 2P

normal-ogive model by using the program NOHARM 4 (Fraser & McDonald, 2012). Goodness

of fit was assessed with two statistics: the root mean square residual (RMSR) and the GFI (good-

ness-of-fit index; see McDonald, 1999). The recovery of the true parameter values was assessed

by computing the product–moment correlation and the mean square error (MSE) between the

true and the estimated item parameters. The results are in the upper panel of Table 2.

Results in Panel (a) of Table 2 can be summarized as follows: In all cases, the goodness-of-

fit statistics agree with the expectations derived from the null hypothesis of model-data fit, and

the item parameters are reasonably well recovered (specially the item locations). Given the

above results on the closeness of the first- and second-order proportions of endorsement implied

by the D2PMM and the 2P normal-ogive model, this result is expected and supports the appro-

priateness of using the last model for calibration purposes. Furthermore, the general trend found

in the present results is that estimation accuracy and goodness of model-data fit increase with

test length and sample size, which is reasonable.

Next, for the case of n = 2,000, EAP estimates of u and g were obtained on the basis of the

item calibration estimates by using a MATLAB program and with the following specifications:

the prior for u was N(0, 1), the prior for g was x(5, 5), and the number of quadrature points was

60 (see the online appendix).

As discussed above, a key practical issue is whether a minimal precision of the g estimates

can be attained in realistic situations so that u estimates can be better than those provided by

the standard 2PM. Results in Panel (b) of Table 2 are intended to assess this point. The first

row of the table contains the marginal reliability estimates of u and g obtained by using the

averages of the terms in Equation 8. Next to these estimates and within parentheses, there is the

predicted reliability obtained from Table 1 by using the u = 0 and g = 1 mean values. The sec-

ond row shows the product–moment correlations between the true u values that had been used

for generating the data, and the EAPu estimates derived from (a) the 2PM and (b) the D2PMM.
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Finally, two sub-groups of simulees were formed. The upper group contained the top 27% of

simulees with the highest discriminations, and the lower group contained the bottom 27% with

the smallest discriminations (see Cureton, 1957). The third row in Panel (b) of Table 2 contains

the MSEs between the true and the estimated us for the upper and lower groups, respectively.

The results in Panel (b) of Table 2 can be summarized as follows. First, as far as the marginal

reliabilities are concerned, the u scores show acceptable values as from 20 items whereas, as

expected, the reliability of the g estimates requires a relatively long test to arrive at acceptable

values. Even with the modest reliability of the g estimates, however, the second and third rows

in the table show that the D2PMM-based u estimates are closer to the true u values than the esti-

mates based on the standard 2PM in all conditions. Admittedly, the differences are small, and

further intensive research is needed if more solid conclusions are to be drawn, but the results

suggest that the D2PMM can lead to improvements in trait estimation in practical applications.

Illustrative Example

The real-data study in this section uses a data set that was partly assessed in Ferrando (2007)

and which consists of a test made up of 100 extraversion items taken from the various Eysenck

questionnaires Maudsley Personality Inventory (MPI), Eysenck Personality Inventory Form-A

(EPI-A), Eysenck Personality Inventory Form-B (EPI-B), Eysenck Personality Questionnaire

Revised (EPQ-R), and Eysenck Personality Profiler (EPP) (see, for example, Miles & Hempel,

2003) administered to a sample of 531 undergraduate students. The estimated reliability of the

number-correct scores (alpha) was rxx = .92.

Items were first calibrated according to the 2P normal-ogive model by using NOHARM 4.

The fit at this stage was considered to be acceptable: RMSR = 0.013 and GFI = 0.90. The aver-

age of the item discrimination estimates was 0.60, and the item locations ranged from 24 to 4

with a mean of 20.50. Overall then, the items were moderately discriminating and widely

spread on the trait continuum.

EAP person estimates were next obtained based on the 2P normal-ogive model and the

D2PMM. In both cases, the prior for u was standard normal, whereas in the D2PMM, the prior

for g was x(5, 5). Next, on the basis of these estimates, overall appropriateness and individual

appropriateness (i.e., person fit) were assessed. The value of the LR Q index was 1,033.70 (with

531 degrees of freedom as reference), the average value of Li was 0.60, and, finally, the g esti-

mates ranged from 0.28 to 1.68. Taken together, these results suggest that individual differences

in discrimination are non-negligible in this case, so the D2PMM is more appropriate than the

standard 2PM. As for person fit, only one respondent had a negative c-rperbis value. So, the esti-

mates of practically all the respondents can be validly interpreted.

To illustrate interpretation, the results of two respondents are now discussed. The u and g

estimates for Respondent 103 were 0.16 and 1.67, respectively, whereas the corresponding esti-

mates for Respondent 486 were 0.16 and 0.43. So, both respondents had the same trait point

estimate. However, the person discrimination estimate of respondent 103 was considerably

higher, which indicates substantially more deterministic responding. In accordance with this

result, the PSD(u) estimates were 0.17 for Respondent 103 and 0.42 for Respondent 486, and

the corresponding reliabilities were 0.97 and 0.82, respectively. Finally, the resulting confi-

dence bands or 68% confidence intervals (i.e., û6PSD(û)) were [2.01, .33] for Respondent

103 and [2.26, .58] for Respondent 486. Overall, these results suggest that Respondent 103

answered the test in a more consistent way, so her trait estimate is more accurate and better

reflects the standing of this person in the trait continuum.

The rest of this section illustrates two important topics discussed in the article: (a) the poten-

tial role of g as a moderator and (b) the additional information provided by g. As for the former,
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a split-half schema was used because no external variable was available for u. The 100 items

were arranged in order of magnitude of the location values, split into odd- and even-numbered

items, and the split-half correlation was computed for the u estimates. For the entire group of

531 respondents, the correlation was r = .88 (the estimated reliability of the EAP estimates

based on all 100 items was rxx = .94). Then, two sub-groups were formed again using Cureton’s

27% rule. The upper group contained the 143 respondents with the highest discriminations, and

the lower group contained the 147 with the lowest. For the upper group, the split-half correla-

tion was r = .92. For the lower group, it was r = .82. So, the results are in the expected direction

and suggest that (a) the trait estimates of the most discriminating respondents are more accurate

than those of the least discriminating respondents and (b) the individual estimates of discrimina-

tion are useful in moderated prediction.

In this data set, a 23-item Conscientiousness (C) Scale taken from the International

Personality Item Pool (Goldberg, 1999) had also been administered to the 531 respondents. As

mentioned above, C is expected to be (positively) related to person discrimination, and the

results agreed with this expectation. The uncorrected product–moment correlation between the

gi EAP estimates and the C Scale scores was r = .31 (p \ .00001) and the bootstrap-based 90%

confidence interval was [.245, .376]. The corresponding disattenuated estimate obtained

by using the marginal reliability of the g estimates and the estimated reliability of the C scores

(rxx = .86) was r-dis = .41.

Discussion

The starting point of this article was that, in personality measurement, an IRT model with item

and person discriminations is more realistic and possibly more appropriate than the standard

models in common use. If it is, a model of this type has potential advantages regarding (a) trait

estimation, (b) additional information about the respondent, and (c) validity assessment.

Intensive research based on real data is needed to see whether the potentially greater appropri-

ateness and advantages are realized in practice. If this research is to be undertaken, two condi-

tions should ideally be met. First, the additional complexity of the dual model with respect to

the standard models should be minimal. Second, the dual model should be as easy to estimate

as a conventional IRT model.

The present proposal has attempted to get as close as possible to the ‘‘ideal’’ conditions

above. In particular, the calibration process that is proposed for the D2PMM is the same as that

for the standard 2PM. And, as for the scoring, a robust and non-iterative procedure has been

proposed so that person estimates are expected to be reasonable in all cases. The results of the

simulation study suggest that the approach works as expected, and the real example illustrates

one case in which the ‘‘a priori’’ advantages of the proposal are realized. However, many more

studies on both types are needed.

The simple proposal made here can undoubtedly be improved in many ways. As mentioned

above, full-information procedures with good statistical properties could be adapted for item

calibration. Also, procedures for improving the individual estimates such as updating the priors

could be considered. In any case, these improvements would also require simple, user-friendly,

and non-commercial software to be developed so that the D2PMM could be routinely used in

applied personality research.

Even though the present proposal can be improved to some extent, its basic requirements

should be taken into account. The D2PMM is expected to work well in the case of relatively

long tests, made up of relatively discriminating items, and with a wide spread of item locations.
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As a rule of thumb, the present results suggest that even in favorable conditions useful and rea-

sonable estimates cannot be expected with fewer than 20 items.

The required conditions discussed above might be difficult to satisfy in practice, espe-

cially because there seems to be a trend in personality measurement to use shorter and shorter

tests (e.g., Emons, Sijtsma, & Meijer, 2007). There are, however, two major problems with

this trend. First, as noted by Emons et al. (2007), personality tests of fewer than 20 items are

generally too short even to allow trait levels to be accurately estimated. Second, the use of

only a few items generally leads to a narrow-bandwidth test with a limited representation of

the construct, which, in turn, is expected to lead to poor validity results. The proposal is

potentially more problematic to administer in the case of computerized adaptive tests (CAT),

because apart from the problem of length, the spread of item locations is modest at best (van

Krimpen-Stoop & Meijer, 2002).

Overall, the problems discussed so far are parallel to those encountered for the accurate detection

of person misfit (Ferrando, 2004). So, some of the solutions proposed in the person-fit framework

might also be considered here. First, for those measures that have a dominant general dimension and

which can be fitted, for example, by higher order or bifactor solutions, a multidimensional extension

of the general D2PMM that uses information from all the test items could be considered. Second,

and especially within the CAT environment, multiple administrations of subscales or pieces of infor-

mation based on different item sets with different locations (e.g., easy-medium-difficult) could also

be envisaged (Emons et al., 2007; van Krimpen-Stoop & Meijer, 2002).

In theory, the problems created by few items could also be mitigated by using graded

response items instead of binary items, because this format is expected to increase the amount

of information and so decrease measurement error. Furthermore, this type of item is indeed

very common in personality and attitude measurement. For (approximately) continuous items,

Ferrando (2013) proposed a dual model that is closely related to the D2PMM. However, no

models of this type appear to exist for the graded response case, and it would be highly advisa-

ble to develop them. Although this need is clear, however, two caveats are in order. First, in

practice, and for the problems considered here, the gains of using more continuous formats

might be small in most cases (Emons et al., 2007). Second, binary items still have certain

advantages in personality (e.g., Guilford, 1959).

As mentioned above, the D2PMM would not be appropriate for items that operate using a

proximity mechanism. Rather, for this type of item, ideal-point models (e.g., Stark,

Chernyshenko, Drasgow, & Williams, 2006; Tay, Drasgow, Rounds, & Williams, 2009) should

be more appropriate. In principle, the inclusion of an additional parameter that reflects the

degree of discrimination or accuracy of the respondent has the same meaningfulness and rele-

vance in a dominance model as in an ideal-point model. So, to develop ‘‘dual’’ versions of

existing ideal-point models seems to be an issue of interest for future research.
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