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Texture analysis methods are widely used to characterize breast masses in mammograms. Texture gives information about the
spatial arrangement of the intensities in the region of interest. This information has been used in mammogram analysis applications
such as mass detection, mass classification, and breast density estimation. In this paper, we study the effect of factors such as
pixel resolution, integration scale, preprocessing, and feature normalization on the performance of those texture methods for mass
classification. The classification performance was assessed considering linear and nonlinear support vector machine classifiers. To
find the best combination among the studied factors, we used three approaches: greedy, sequential forward selection (SFS), and
exhaustive search. On the basis of our study, we conclude that the factors studied affect the performance of texture methods, so the
best combination of these factors should be determined to achieve the best performance with each texture method. SFS can be an
appropriate way to approach the factor combination problem because it is less computationally intensive than the other methods.

1. Introduction

Breast cancer was responsible for the largest number of cancer
deaths among the EU females in 2014 [1]. Mammography is
considered, in general, the most effective method for early
detection of breast cancer and thus has been adopted for
breast cancer screening. Computer-aided detection (CAD)
systems are typically used to analyze mammograms in
screening. While radiologists are generally pleased with the
performance of CAD for clustered microcalcification detec-
tion, they have little confidence in CAD for mass detection.
The most common complaint of radiologists is that CAD
systems lead to a large number of false positives [2].

A breast cancer CAD system consists of three main stages:
segmentation of a region of interest (ROI) from the mam-
mogram, feature extraction from the ROI, and classification.
Although mammography is a highly sensitive method for
early detection of breast cancer, low specificity has been
achieved in the classification of benign and malignant masses.

Texture analysis methods constitute one of the options for
improving the specificity of classification algorithms applied
to mammography. These methods may provide additional
information in distinguishing benign and malignant masses.
Although several feature extraction methods have been
proposed for analyzing mammograms, improving the classi-
fication performance remains a challenging problem.
Texture analysis methods have been widely used to
analyze mammographic images because they produce infor-
mation about the spatial arrangement of intensities in the
mammogram. Texture is one of the major mammographic
characteristics for mass classification. For instance, several
studies have used texture analysis methods to distinguish
between normal and abnormal tissue [3-8] or to discriminate
between benign and malignant masses [9-11]. Table 1 briefly
summarizes some of this previous work. In addition, other
studies have used texture analysis methods to estimate breast
density [12] or to segment masses from mammograms [13].
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TABLE 1: Summary of texture analysis methods that have been used to analyze mammograms.

Method Extracted features Utilized classifiers Purpose

[6] Local binary pattern (LBP) Support vector machines (SVMs) Classification of ROIs into mass/normal

[7] Histogram of oriented gradients SVM Classification of ROIs into mass/normal
(HOG)

[11] Haralick’s features (HAR) k-nearest neighbour (k-NN) Microcalcification classification

(8] Gabor filters (GF) Threshold-based approach Breast cancer detection
Grey levels, texture, and features e .

[29] related to independent component Neural network (NN) ClaSS}fy}ng ROIs into norr.rlal/abnf) rmal

. Classifying ROIs into benign/malignant

analysis

[30] A set of texture features SVM Mass detection

[31] Ripley’s K function texture measures SVM Detection of breast masses

[9] Texture features derived from NN Microcalcification classification

concurrence matrix

[32] A set of texture features

k-NN, SVM, random forests, logistic

Lesion classification

model trees, and Naive Bayes

[10] HAR

LBP, robust LBP, centre symmetric
[3] LBP, fuzzy LBP, local grey level
appearance, LDN, HOG, HAR, and GF

Local ternary pattern and local phase

[33] — SVM
quantization
Novel sets of texture descriptors

[34] extracted from the cooccurrence SVM
matrix
Texture analysis techniques based on

[35] the cooccurrence matrix and SVM

region-based approaches
HOG, dense scale invariant feature

[36] transform, and local configuration
pattern
(37] Curvelet moments k-NN

Bayesian classifier

Fisher linear discriminant

k-NN, linear SVM, nonlinear SVM
random forest, and Fisher linear
discriminant analysis (FLDA)

SVM, k-NN, FLDA, and decision tree

Study the effect of pixel resolution on the
performance of texture methods

Finding the best combination among the
texture methods to classify ROIs into
mass/normal

Classifying tumors into benign/malignant

Six medical datasets were used for
validation, one of them for breast cancer

15 datasets were used for validation, one of
them for breast cancer

Classifying ROIs into normal/abnormal
Classifying ROIs into benign/malignant

Classifying ROIs into normal/abnormal
Classifying ROIs into benign/malignant

CAD systems usually focus on a ROI to study breast
masses. The texture of this ROI describes the pattern of spatial
variation of gray levels in a neighbourhood that is small
compared to the breast area but big enough to include the
masses. In other words, texture must be analyzed in a region,
and the size of this region should be tuned. Thus, we should
answer the question: what is the optimal neighbourhood size
(integration scale) for texture analysis? In addition, the size
of a mammogram is usually in the range of thousands of
pixels. Consequently, several works have reduced the original
resolution of a mammogram to reduce the computational
complexity and the execution time of their algorithms [14], or
to save resources (e.g., memory and storage space). However,
image downsampling may also affect the performance of the
texture analysis methods. Therefore, we should answer the
question: how far can we downsample the image while keeping
the performance of the texture methods?

In breast cancer CAD systems, several preprocessing
operations such as image filtering or enhancement are usually
applied to mammograms. Pisano et al. show that the contrast-
limited adaptive histogram equalization (CLAHE) applied to
a mammogram before it is displayed can make the indicative

structures of breast cancer more visible [15]. Sharpening (SH)
is used to improve the detection of clustered calcifications
[16]. The median filter (MF) is used to remove the noise
from the mammograms [17]. Preprocessing may affect the
performance of texture analysis methods because it effectively
changes the gray levels of the images. This effect should be
assessed. After extracting the texture features from a given
mammogram, they are usually normalized before proceeding
to the classification stage. The utilized normalization method
may also affect the final classification results.

In this paper, we study the effect of pixel resolution,
integration scale, preprocessing, and feature normalization
on the performance of texture analysis methods when used
to classify masses in mammograms. For that purpose, we
have chosen five widely/recently used texture methods:
local binary pattern (LBP), local directional number (LDN),
histogram of oriented gradients (HOG), HaralicK’s features
(HAR), and Gabor filters (GF). In order to evaluate the
performance of the aforementioned methods, we extracted
a set of regions of interest (ROIs) containing lesions from
the mini-MIAS database [18], and we used each tex-
ture analysis method to classify the ROIs into benign or
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malignant. The performance of each texture method is eval-
uated with five pixel resolutions (200 ym, 400 ym, 600 ym,
800 pm, and 1000 ym), six integration scales (25 x 25, 32 x 32,
50 x 50, 64 x 64, 75 x 75, and 100 x 100 pixels), three
preprocessing steps (CLAHE, ME, and SH), and five feature
normalization methods. In addition, linear and nonlinear
SVM classifiers are used.

To the best of our knowledge, only one previous study
has conducted a similar evaluation. Rangayyan et al. studied
the effect of pixel resolution on texture features of breast
masses in mammograms [10]. However, only pixel resolution
and Haralick’s features were considered. In contrast, the
current study takes into account a wider range of factors
such as pixel resolution, integration scale, preprocessing, and
feature normalization, and it considers a larger number and
more powerful texture descriptors that have been success-
fully applied in recent relevant work. Moreover, we include
linear and nonlinear SVMs; thus, both relatively simple and
complex classification approaches can be assessed. Lastly, we
analyze the combination of the best options for those factors
using three approaches: greedy, sequential forward selection
(SES), and exhaustive search (ExS).

The rest of this paper is organized as follows. Section 2
describes the database and the methods used in this study.
Section 3 shows our experimental results, which are then
discussed in Section 4. Finally, Section 5 concludes our study.

2. Materials and Methods

In this study, we assess the performance of five texture analy-
sis methods (LBP, LDN, HOG, HAR, and GF) while varying
the pixel resolution, integration scale, image preprocessing
algorithm, and data normalization method. To that end, we
extracted a set of ROIs containing either benign or malignant
masses from the mini-MIAS database. Given a certain texture
analysis method, a feature vector is extracted from each ROI
to be fed into a linear support vector machine (LSVM) or
a nonlinear support vector machine (NLSVM). The trained
models are used to determine if an unseen ROI contains a
benign or a malignant mass.

2.1. Materials. The mini-MIAS database, consisting of 322
mediolateral oblique images of 161 cases, is used in our
experiments. It was created from the original MIAS database
by downsampling the images from 50 ym to 200 ym per pixel
and clipping/padding to a fixed size of 1024 x 1024 pixels. A
ground truth was prepared by experienced radiologists and
confirmed using a biopsy procedure. The dataset is available
at http://peipa.essex.ac.uk/info/mias.html. In this study 109
ROIs, 60 containing a benign mass and 49 containing a
malignant mass, were used. Figure 1 shows examples of the
extracted ROIs. Interested researchers can request the ROIs
from the corresponding author of the paper.

The authors of the mini-MIAS database reported that they
reduced the pixel resolution of the original MIAS database
(digitized at 50 ym) to 200 ym by popular request. Moreover,
several studies have used the pixel resolution 200 ym as a

baseline resolution in their applications [14, 19]. We do the
same in this work.

2.2. Texture Analysis Methods. This section explains the
utilized texture analysis methods including the parameters
selected for each of them.

2.2.1. Local Binary Pattern. The LBP labels the pixels of an
image by comparing a 3 x 3-pixel neighbourhood with the
value of the central pixel [20]. Pixels in this neighbourhood
with a value greater than the central pixel are labelled as
1 and the rest as 0; thus, each pixel is represented by 8
bits. The size of the neighbourhood may vary on different
applications (e.g., 3 x 3 and 5 x 5). A uniform LBP is an
extension of the original LBP in which only patterns that
contain at most two transitions from 0 to 1 (or vice versa)
are considered. In uniform LBP mapping, there is a separate
output label for each uniform pattern and all the nonuniform
patterns are assigned to a single label. In this study, a
3 x 3 neighbourhood is used to generate the histogram of
uniform LBPs for each ROL The uniform mapping produces
59 output labels (59 dimensions) for neighbourhoods of 8
pixels. The implementation of LBP descriptor is available at
http://www.cse.oulu.fi/ CMV/Downloads/LBPMatlab.

2.2.2. Local Directional Number. In the LDN [21], the edge
responses are computed in eight different directions by
convoluting the Kirsch compass masks [22] with the ROIs.
The locations of the top positive and negative edge responses
are used to generate a 6-bit code for each pixel. Finally, the
histogram of the LDN codes is calculated in the given ROI
(64 dimensions). The implementation of LDN descriptor is
available at https://gitlab.com/my-research/local-directional-
number-pattern.git.

2.2.3. Histogram of Oriented Gradients. In the HOG method
[23], the occurrences of edge orientations in a ROI are
counted. The image is divided into blocks (small groups
of cells) and then a weighted histogram is computed for
each of them. The combination of the histograms of all
blocks represents the final HOG descriptors. In order to
get the best performance of HOG, its parameters have
been empirically tuned. In this study, we used a 3 x 3
cell size, 8 x 8 cells for the block size, and a 9-bit his-
togram. The implementation of HOG descriptor is available
at http://www.vlfeat.org/overview/hog.html.

2.2.4. Haralick’s Features. The HAR features are computed
from the gray level cooccurrence matrix (GLCM). In the
GLCM, the distribution of cooccurring gray level values at
a given offset (direction and distance) is computed [24]. A
GLCM is computed from each ROI, and then 14 texture
features are calculated: angular second moment, contrast,
correlation, variance, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference variance, differ-
ence entropy, information measure of correlation 1, information
measure of correlation 2, and maximal correlation coefficient
[10]. The mathematical expression of each feature can be
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FIGURE 1: ROIs extracted from the mini-MIAS breast cancer database. A ROI containing (a) a benign mass and (b) a malignant mass.

found in the relevant previous work [25, 26]. The implemen-
tation of HAR descriptors is available at https://github.com/
nutsiepully/spift/blob/master/src/haralick.m.

2.2.5. Gabor Filters. A two-dimensional Gabor filter g(x, y)
can be expressed as a sinusoid with a particular frequency and
orientation, modulated by a Gaussian envelope

(1/2)( [y y? [0)) =27 ttg X v ) 1)

g(x,y) = exp exp

where (u,, v,) is the centre of a sinusoidal function and o,
and o, are the standard deviations along two orthogonal
directions (which determine the width of the Gaussian
envelope along the x- and y-axes in the spatial domain).
Given a ROI I(x, y), the filtered ROI f(x,y) is the result
of convoluting I(x,y) and g(x, y). Tuning GF to specific
frequencies and directions can lead them to detect both local
orientation and frequency information from an image [27].
In this study, we used 4 scales and 6 orientations to obtain
these filtered ROIs. This design produces 24 responses. For
each ROI, the energies of the 24 responses are calculated,
and then they are aggregated in order to form the feature
vector. The implementation of Gabor filters is available at
https://github.com/mhaghighat/gabor.

2.3. Preprocessing. The performance of the texture analysis
methods is evaluated with three preprocessing algorithms:
CLAHE, median filter (MF), and sharpening (SH).

(i) CLAHE: it works on small regions of the input ROI
(known as tiles). The contrast of each tile is enhanced;
consequently the histogram of the output region
approximately matches a predefined distribution [28].
In this study, the Rayleigh distribution is used [15].

(ii) MF: each pixel in the filtered ROI contains the
median value of the m x n neighbourhood around
the corresponding pixel in the input ROI [17]. In this
study, a 3 x 3 neighbourhood is used.

(iil) SH: in order to sharpen a RO, it is first blurred; edges
are detected in the blurred ROI and added to it to
produce a sharper image [16].

The preprocessing operations can be carried out using
the following MATLAB functions: CLAHE (adapthisteq.m),
median filter (medfilt2.m), and sharpening (imsharpen.m).
Figure 2 shows examples for ME, SH, and CLAHE when they
are applied to benign and malignant masses.

2.4. Feature Normalization Methods. Feature vectors are nor-
malized in order to prevent attributes with higher numeric
ranges from dominating those with lower numeric ranges.
Given a feature vector x = [x,X,,X3,...,Xy], the normal-
ized feature vector x,,,, is calculated using five normalization
methods as follows [38, 39]:

(i) The zero mean unit variance (zs) method: x,,, = (x—
u)/o, where yand o are the mean and the variance of
X.

(ii) The maximum-minimum (mn) method: x,,, = (x —
Xin)/ (Xmax — Xmin)> Where x,.. and x_;, are the
maximum and minimum of x.

(iii) The €' method scales x to unit length using the €'-

N
norm, Xpe,, = X/ Y1 1%,

(iv) The €% method scales x to unit length using the £*-
NOTM, Xpe = /Y0, 2,12

(v) The nh method scales x to unit length as follows:
Xpew = X/ Zf:il x.

The normalization methods can be easily implemented in
MATLAB. ¢'- and ¢*-norm can be carried out using the
MATLAB function norm.m.

2.5. Classification. Given a labelled training set of the form
(xpy),i = 1,2,...,k, where x; € R”" are the feature
values, y; € {1,-1} is the class of x;, n is the number of
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Benign ROI

CLAHE

Malignant ROI

FIGURE 2: Examples of ROI preprocessing.

features, and k is the number of samples, an SVM attempts to
discriminate between positive and negative classes by finding
a hyperplane that separates them [40]. The SVM classifier
solves the following optimization problem:

k
lwll?, +CY &,
= 2)

st. y(@0'(x)+b)21-&, &20,

where the soft margin parameter C controls the trade-off
between the training error and the complexity of the SVM’s
model in order to fit the training data and to avoid overfitting.
The weight vector w is normal to the separating hyperplane.
The parameter & is used to give a degree of flexibility for the
algorithm when fitting the data and b represents the bias.
The SVM uses a kernel function to make the data linearly
separable. It projects the training data x; to a higher dimen-
sional space as follows: K(x;, x j) = (¢T(xi) “P(x j)). The SVM
algorithm attempts to find the hyperplane with maximum
margin of separation between the classes in the new higher
dimensional space. In the case of a LSVM classifier, ¢ refers to
a dot product. In the case of a NLSVM, the classifier function
is formed by nonlinearly projecting the training data in the
input space to a feature space of higher dimension by using a
kernel function. In this study, we use a radial basis function
(RBF) as a mapping kernel, which is defined as follows:

Klx)=ew(yf-=l).  ©

where y = 1/20%, llx; — lelg is the squared Euclidean
distance between the two feature vectors x; and X, and
o is a free parameter. In this work, we use LIBSVM
[41] to implement SVM classifiers. LIBSVM is available
at https://www.csie.ntu.edu.tw/~cjlin/libsvm/. A grid search
algorithm is performed to find the optimal parameter of the

RBF kernel, y, and the regularization parameter, C. For each
training set, we estimated the parameters used by SVM in the
classification as done in [42].

2.6. Evaluation. The performance of each texture analysis
method is measured in terms of the area under the curve
(AUC) of the receiver operating characteristics (ROC) curve
[43]. The SVM classifier provides decision values related to
the membership of each class. To generate a ROC curve, we
vary a threshold over the decision values. We also use the k-
fold cross validation technique to generate the training and
testing data. In this procedure, the data are partitioned into
k folds; thus 1/k of ROIs are used for testing and the rest of
ROIs are used for training. In this study, k = 10. The mean
AUC value is calculated over the cross validation process.

3. Experiments

In this section, we present the effect of pixel resolution,
integration scale, preprocessing steps, and normalization
methods on the performance of the texture analysis methods
when they are applied to benign/malignant mass classification
in mammograms. Moreover, we study the effect of different
combinations of the aforementioned factors.

3.1. Effect of Pixel Resolution and Integration Scale. As we
commented in Section 2.1, the pixel resolution 200 ym has
been widely used in several studies [14, 19]. So, in this
experiment we start with this pixel resolution and then the
mammograms are downsampled to generate different pixel
resolutions. The downsampling step includes antialiasing
filtering and a bicubic interpolation. Five pixel resolutions are
generated (200 ym, 400 ym, 600 ym, 800 ym, and 1000 ym),
and then we use six integration scales (25 x 25, 32 x 32,
50 x 50, 64 x 64, 75 x 75, and 100 x 100 pixels) to analyze



TABLE 2: Summary of the ANOVA results of pixel resolution and
integration scale with the LSVM (the value in each cell is a p value).

Method Res IN Res*IS
LBP 0.0024 0.001 0.908
LDN 0.1174 0.4035 0.8037
HOG 0.3905 0.6515 0.4636
HAR 0.7846 0.0962 0.2895
GF 0.083 0.8259 0.9864

TaBLE 3: Summary of the ANOVA results of pixel resolution and
integration scale with the NLSVM (the value in each cell is a p value).

Method Res IS Resx*IS
LBP 0.9332 0.0101 0.0095
LDN 0.2387 0.0772 0.6451
HOG 0.0448 0.0103 0.5138
HAR 0.4253 0.004 0.0847
GF 0.6552 0.3109 0.2024

the texture of each ROLI. In this experiment, no preprocessing
is applied, and the standard zs normalization method is used
to normalize the extracted feature vectors. The effect of pixel
resolution and integration scale in the performance of LBP,
LDN, HOG, HAR, and GF with the LSVM and the NLSVM
is shown in Figure 3.

As shown in Figure 3, each texture method achieves its
best AUC value at a certain pixel resolution and integration
scale. Among all texture methods, LBP achieves the best AUC
value (0.78) at pixel resolution 800 pm, integration scale 75 x
75.

The analysis of variance (ANOVA) test [44] has been
used to examine the interaction between pixel resolutions
and integration scales. The experimental design of ANOVA
includes two factors: pixel resolution (Res) and integration
scale (IS). Res includes five levels (200 ym, 400 ym, 600 ym,
800 um, and 1000 ym), whereas IS includes six levels (25 x 25,
32 x 32, 50 x 50, 64 x 64, 75 x 75, and 100 x 100 pixels).
Each combination of the levels of Res and IS produces an
AUC value (response). The confidence level is set to 0.05. The
results are shown in Tables 2 and 3.

As shown in Table 2, with LBP and the LSVM, the mean
responses for the levels of pixel resolution are significantly
different (p = 0.0024). Similarly, the mean responses for the
levels of integration scale are significantly different. In the
case of LDN, HOG, HAR, and GF, the mean responses for the
levels of pixel resolution and integration scale are not signif-
icantly different. The p values indicate that the interactions
between the levels of pixel resolution and integration scale
(Res * IS) are not significant.

As shown in Table 3, the mean responses for the levels of
pixel resolution are significantly different in the case of HOG
with the NLSVM. In the case of LBP, LDN, HAR, and GE
the mean responses for the levels of pixel resolution are not
significantly different. The mean responses for the levels of
integration scale are significantly different in the case of LBP,
HOG, and HAR. With LBP and the NLSVM, the interaction
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between pixel resolution and integration scale (Res * IS) is
significant.

3.2. Effect of Preprocessing. In this experiment, the integration
scale that obtained the highest AUC value with each texture
analysis method at the baseline pixel resolution of 200 ym
and the standard zs normalization method are used. The
effect of no preprocessing (NP), CLAHE, ME, and SH on
the performance of each texture analysis method is shown in
Figure 4. As can be seen, each texture method produces the
highest AUC value with a certain preprocessing algorithm.
In this experiment, LBP achieves the highest AUC value with
SH and the NLSVM, while LDN and HAR achieve the highest
AUC value with NP and the LSVM. HOG achieves the highest
AUC value with CLAHE and the LSVM. In turn, GF achieves
the highest AUC value with CLAHE and the NLSVM.

3.3. Effect of Feature Normalization Methods. In this exper-
iment, we study the effect of five normalization methods
(zs, mn, €%, £, and nh) on the performance of each texture
analysis method. For each texture analysis method, we use
the integration scale that produces the highest AUC value
at pixel resolution 200 yum. No preprocessing method is
used. The effect of the normalization methods is shown in
Figure 5. With the LSVM, zs normalization has led LBP
and LDN to AUC values better than other normalization
methods, while GF achieves its highest AUC value with ¢ !
normalization and the NLSVM. As shown in the figure, each
texture analysis method achieves its highest AUC value with
a certain normalization method.

3.4. Summary of the Results. The best AUC values of each tex-
ture analysis method considering the experiments in Sections
3.1, 3.2, and 3.3 are summarized in Table 4. LBP produces the
best AUC value (0.78) at pixel resolution 800 ym, integration
scale 75 x 75, no preprocessing, zs normalization method,
and the LSVM. In turn, HAR produces the lowest AUC value
(0.61). LBP, LDN, HOG, and HAR achieve their best values
with the LSVM, whereas GF achieves its best AUC value with
the NLSVM.

3.5. Combining the Levels of All Factors. To find the best
combination among the levels of all factors, we use three
approaches: greedy, sequential forward selection (SFS), and
exhaustive search (ExS). In the greedy approach, we try
to combine the best options of the aforementioned factors.
For each texture analysis method, we summarize the best
levels of pixel resolution, integration scale, and normalization
methods in Table 5.

Table 6 shows that combining the best levels of pixel
resolution, integration scale, preprocessing, and feature nor-
malization does not yield improvement on the AUC values of
the texture analysis methods reported in Table 4. In fact, LBP,
HOG, and GF produced substantially lower AUC values. The
LSVM yields higher AUC values than the NLSVM.

Secondly, we use a SES approach to find the best com-
bination. It consists of two sequential steps: finding the nor-
malization method that improves the current performance
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FIGURE 4: The performance of the texture analysis methods with NP, CLAHE, MF, and SH using (a) the LSVM and (b) the NLSVM.
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FIGURE 5: The performance of the texture analysis methods with different feature normalization methods using (a) the LSVM and (b) the

NLSVM.

the most and then finding the preprocessing method that
keeps improving this performance. For each texture method,
in the first step, we start with the best pixel resolution
and integration scale summarized in Table 5. Then, with
no preprocessing, the extracted features are separately nor-
malized by each normalization method. Then, the one that
improves the performance in combination with the previous
two factors is added. In the second step, we apply each
preprocessing option to the ROIs (NP, CLAHE, MF, and SH).
Then we extract the texture features and normalize them
using the best normalization method obtained in the previous
step. Both LSVM and NLSVM are used to classify the ROIs.
Table 7 shows that the SFS does not improve the AUC value
of GF achieved in Table 4. LBP, LDN, HOG, and HAR achieve
AUC values close to the ones listed in Table 4. With all texture
methods, the SES approach achieves AUC values better than
the greedy approach.

Lastly, we use an ExS algorithm, which is looking for the
best combination among five pixel resolutions, six integra-
tion scales, and four preprocessing (NP, CLAHE, MFE, and
SH) and five data normalization methods, resulting in 600
combinations. In the previous experiments, we found that
the LSVM usually achieves the best results except with GE
The NLSVM has two parameters that need to be optimized
to achieve the best classification results. Adding NLSVM’s

parameters optimization to the ExS substantially increases its
complexity. So we decided to only use the LSVM in this final
test.

As shown in Table 8, the ExS approach improves the AUC
values of LDN, HOG, and HAR. The GF achieves an AUC
value lower than the one listed in Table 4 because the LSVM
can not perfectly separate the GF features.

4. Discussion

Many factors affect the performance of texture analysis
methods when applied to benign/malignant mass classifi-
cation. In this work, we study the effect of factors such as
pixel resolution, integration scale, preprocessing, and feature
normalization. We use the well-known mini-MIAS database
in this study. We start with the original pixel resolution
of the mini-MIAS database (200 ym); then we downsample
the mammograms in order to generate the pixel resolutions
400 ym, 600 ym, 800 ym, and 1000 ym. In addition, six
integration scales are used (25 x 25, 32 x 32, 50 x 50,
64 x 64, 75 x 75, and 100 x 100 pixels). These integration
scales cover most of the sizes of the masses in the mini-
MIAS database, which range from a few pixels to tens
of pixels (the mean diameter of the circle containing the
masses is about 49 pixels). Several previous studies have
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TABLE 4: Best AUC value for each texture analysis method and the configuration that yields it considering the experiments in Sections 3.1,

3.2,and 3.3.

Method Best value Res (um) IN Classifier Preprocessing Nor.
LBP 0.78 800 75 %75 LSVM NP zs
LDN 0.68 600 64 x 64 LSVM NP zs
HOG 0.72 600 64 x 64 LSVM NP zs
HAR 0.61 200 32 %32 LSVM NP nh
GF 0.75 200 100 x 100 NLSVM CLAHE zs

TABLE 5: The best option of pixel resolution, integration scale, preprocessing, and normalization methods with each texture method.

Method Res (ym) IS (pixels) Preprocessing Normalization
LBP 800 75 %75 SH zs

LDN 600 64 X 64 NP zs
HOG 600 64 x 64 CLAHE mn
HAR 200 32x32 NP nh

GF 400 50 x 50 CLAHE 2!

TABLE 6: Results of the greedy approach (AUC).

Method LSVM NLSVM
LBP 0.46 0.40
LDN 0.68 0.52
HOG 0.44 0.44
HAR 0.61 0.48
GF 0.58 0.54
TABLE 7: Results of the SFS approach.
Method Best AUC Best parameters
LBP 0.780 zs, NP, and LSVM
LDN 0.679 zs, NP, and LSVM
HOG 0.716 zs, NP, and LSVM
HAR 0.605 nh, NP, and LSVM
GF 0.720 zs, CLAHE, and NLSVM
TABLE 8: Results of the ExS approach.
Method Best AUC Best parameters
LBP 0.78 800, 75 x 75, NP, and zs
LDN 0.70 600, 75 x 75, MF, and zs
HOG 0.737 1000, 50 x 50, SH, and mn
HAR 0.666 800, 32 x 32, CLAHE, and nh
GF 0.691 600, 32 x 32, NP, and ¢'

used one of these integration scales to analyze the texture
of mammograms [3, 6, 7]. Thus, we hypothesize that the
aforementioned integration scales are able to deal with all the
masses appearing in the mini-MIAS database.

The shape of breast masses is one of the powerful features
that can be used to discriminate between benign and malig-
nant masses. The boundaries of malignant masses usually
have irregular shapes, while the boundaries of benign masses
have regular ones. In the case of breast mass analysis, pixel

resolution may be a critical factor because image downsam-
pling may remove some fine detail from the image. However,
as our results indicate, it would be possible to decrease the
resolution far beyond 200 ym and obtain good classification
results. A notable example is LBP, which actually achieved its
best performance at 800 ym. A possible explanation is that
core information such as that contained in the boundary of
masses may still be preserved even after downsampling and
become more useful for methods such as LBP that operate
over higher order statistics of gray intensity values. Obvi-
ously, when the resolution is far too low, the classification
performance degrades, as the shape of the boundaries of
benign and malignant masses will be very similar. Another
important factor is the integration scale, as it should be big
enough to cover the masses and their boundaries and small
enough to exclude other tissues. The effect of pixel resolution
and integration scale on the performance of texture methods
should be jointly studied.

As summarized in Table 5, each texture method achieves
its highest AUC value at a certain pixel resolution and inte-
gration scale. A pixel resolution of 200 ym and an integration
scale of 32 x 32 pixels have led HAR to its highest AUC
value. In turn, a pixel resolution of 800 ym and an integration
scale of 75 x 75 pixels have led LBP to its best AUC value.
The integration scale and the pixel resolution interact with
each other in a certain way. In the case of LBP, LDN, and
HOG, the texture features of each method are represented
in a histogram. This histogram includes the repetition of
the patterns detected by each method at a certain pixel
resolution and integration scale. LBP features calculated at
pixel resolution 200 ym are different from those calculated
at pixel resolution 400 ym. LDN and HOG also produce
different patterns at different pixel resolutions. The local
patterns of LBP, LDN, and HOG are usually calculated within
a certain integration scale. Different integration scales will
yield different histograms for the local patterns. For instance,
the histograms of LBP that are calculated with the integration
scales 75 x 75 and 100 x 100 are different.
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ANOVA results show that the mean AUC values of the
pixel resolutions are significantly different in the case of LBP
with the LSVM. In addition, the mean AUC values of the
integration scales are significantly different with LBP, HOG,
and HAR and the NLSVM. The performance differences
with respect to the pixel resolutions and the integration
scales are only significantly different with the LBP and the
NLSVM (p = 0.0095). These results indicate that the
choice of the pixel resolution and the integration scale has
a direct implication on the performance of a texture-based
CAD system, because our choice substantially affects the
performance of the utilized texture method.

Image preprocessing also affects the performance of the
texture analysis methods. HOG and GF achieve the highest
AUC values with CLAHE, while LDN and HAR perform
better with NP. Indeed, CLAHE, MFE, and SH change the
intensities of the mammograms in different ways. As a result,
each texture analysis method will produce a different AUC
value with each preprocessing technique. In general, the
preprocessing approach that makes the small-scale structures
in the ROIs more visible would give the texture methods
more discriminative power. For instance, CLAHE leads GF
to its best AUC value (0.75). There is also a coherent
relation between the principle of operation of some texture
methods and the utilized preprocessing. For instance, the
binary patterns of the LDN are calculated based on the
edge responses of each pixel in the image. MF removes the
outliers before calculating the edge responses. Thus, the edge
responses will be properly calculated, and the discriminative
power of LDN will improve.

Prior to mass classification, the calculated texture features
should be normalized to prevent attributes with higher
numeric ranges from dominating those with lower numeric
ranges. As shown in our experiments, each texture method
produces its highest AUC value with a certain normalization
method. This is because each normalization method pro-
duces numerical values with different distributions. Conse-
quently, the arrangement of the texture features in the feature
space with a certain normalization method is different than
with other normalization methods. Thus, the normalization
technique changes the final values of the features computed
by each texture method. As shown in Table 5, LBP and LDN
achieve the highest AUC values with zs normalization, HOG
with mn, HAR with nh, and GF with £'.

In the classification stage, we utilize two widely used
classifiers in the field of mammogram analysis: the LSVM
and the NLSVM. The first one tries to linearly separate the
texture features in the feature space, while the second one uses
a kernel function (RBF) to separate the features. As shown in
Table 4, the LSVM has led LBP, LDN, HOG, and HAR to the
highest AUC values. Conversely, GF achieves the best AUC
value with the NLSVM, indicating that GF features are not
linearly separable.

Table 4 shows a summary of the levels of pixel resolution,
integration scale, preprocessing, and normalization methods
that have led each texture method to its best AUC value
considering the experiments in Sections 3.1, 3.2, and 3.3.
HAR and GF achieve the best AUC values at pixel resolution
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200 pm, while LDN and HOG give their best results at pixel
resolution 600 ym. No method achieves its best AUC value
with the integration scales 25 x 25 and 50 x 50 pixels.

The greedy, SFS, and ExS approaches are used to find the
best combination among the levels of all factors. Although
the greedy approach is the least complex approach, it yielded
poor AUC values. In contrast, the ExS achieved good results,
but its computational complexity is the highest. The SFS
approach provides a trade-oft between the accuracy and
the computational complexity. It is not as complex as the
ExS approach and it does not produce poor AUC values
as the greedy approach. In the case of LBP, LDN, HOG,
and HAR, Table 7 shows that the SFS approach produces
approximately the same results as those obtained with the ExS
approach. The GF achieved better AUC values with the SFS
approach because it used the NLSVM, whereas using it with
the ExS approach presents some additional challenges in the
calculation of the optimal values of its internal parameters (y
and C).

Rangayyan et al. extracted 111 ROIs from mammograms,
which were obtained from three different sources: mammo-
graphic image analysis society (MIAS), the teaching library
of the Foothills Hospital in Calgary, and a screening test (the
Alberta program for the early detection of breast cancer)
(10]. Although using mammograms from different sources
may be helpful to assess the robustness of the studied texture
methods, the three mammogram sets used by Rangayyan
et al. were digitized at different pixel resolutions. Thus, the
characteristics of the textures extracted from the 111 ROIs may
be different. This changes the characteristics of the extracted
features, so the effect of pixel resolution on the performance
of the texture methods may have not been properly studied.
In contrast, in the current study, the ROIs were extracted
from a single source (the mini-MIAS database). Rangayyan
et al. extracted ROIs with different sizes (each ROI included
amass) and they did not mention the effect of the integration
scale on the performance of the texture methods. Conversely,
the current study has considered six integration scales.
With pixel resolution 800 ym, integration scale 75 x 75, no
preprocessing, zs normalization method, and the LSVM,
the LBP achieves the best AUC value (0.78) compared to
other texture methods, exceeding the best AUC value (0.75)
achieved by Rangayyan et al. [10]. This is encouraging, so our
future work will focus on improving the capabilities of an
LBP-based approach by complementing it with the analysis
of the fractal dimensions in multiple integration scales at
different pixel resolutions.

As mentioned above, the work of [10] has some simi-
larities to our analysis; however it obtained an AUC value
less than the one of our study; in addition, the authors
of [45] have studied the effect of ROI size and location
on texture methods when classifying the low-risk women
and the BRCA1/BRCA2 gene-mutation carriers. In turn, our
study focuses on analyzing the impact of pixel resolution,
integration scale, preprocessing, and feature normalization
on texture methods when classifying breast tumors into
benign or malignant.

In the current work we studied the impact of the
abovementioned factors on the performance of texture
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methods, achieving the best AUC value with the LBP (0.78).
However, some methods in the literature achieved better
benign/malignant breast cancer classification results, such as
the ones of [33-35]. For instance, the authors of [35] achieved
an AUC of 0.92 because they used ROIs of different dataset
(DDSM) and extracted the GLCM features from subwindows
or regions (they added spatial information). We expect that
the classification results of our study will be improved when
utilizing the region-based approach of [35] with each texture
method. One of our future research lines is to integrate the
region-based approach of [35] with our analysis.

5. Conclusion

Texture analysis methods, when applied to benign/malignant
mass classification in mammograms, are sensitive to the
changes of pixel resolution, integration scale, preprocessing,
and feature normalization. The best combination of the
aforementioned factors should be identified to achieve the
best discriminative power of each texture analysis method.
We expect that the assessment performed in this study
will help researchers to accomplish this task. Due to its
computational cost advantage, sequential forward selection
would be a suitable approach to determine a reasonable
(possibly the best) factor configuration.
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