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Abstract

This article proposes a general parametric item response theory approach for identi-
fying sources of misfit in response patterns that have been classified as potentially
inconsistent by a global person-fit index. The approach, which is based on the
weighted least squared regression of the observed responses on the model-expected
responses, can be used with a variety of unidimensional and multidimensional models
intended for binary, graded, and continuous responses and consists of procedures
for identifying (a) general deviation trends, (b) local inconsistencies, and (c) single
response inconsistencies. A free program called REG-PERFIT that implements most
of the proposed techniques has been developed, described, and made available for
interested researchers. Finally, the functioning and usefulness of the proposed proce-
dures is illustrated with an empirical study based on a statistics-anxiety scale.
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The fact that item response theory (IRT) models have increasingly been used in

typical-response (i.e., personality and attitude) measurement in recent decades has

made it possible to effectively solve technical and practical issues that could not be
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easily addressed by more traditional approaches (e.g., Reise & Revicki, 2015). Of

these issues, this article is concerned with the assessment of model-data fit at the

level of each individual respondent (i.e., person fit). More specifically, in the para-

metric IRT framework adopted here the issue of interest is to assess the consistency

of an individual response pattern given (a) the item parameter values and (b) the

respondent’s trait estimate(s) (e.g., Meijer & Sijtsma, 2001; Reise & Flannery, 1996).

This type of assessment is important for several reasons (see Ferrando, 2015), but

mainly because a trait estimate or test score is meaningful and can be validly inter-

preted only if the response pattern on which the score is based is consistent with the

model (Reise & Flannery, 1996; Smith, 1986; Tendeiro & Meijer, 2014).

At present, person-fit analysis in the typical-response domain is no longer in the

stage of being a methodological novelty and is starting to be used in purely applied

studies (Conijn, Emons, De Jong, & Sitjsma, 2015; Conijn, Emons, & Sijtsma, 2014;

Conrad et al., 2010; Dodeen & Darabi, 2009; Egberink & Meijer, 2011; Ferrando,

2012; Meijer, Egberink, Emons, & Sijtsma, 2008). Furthermore, most of these initial

applications use a basic form of analysis in which a practical or nonspecific index is

employed as a broad-screening tool for flagging potentially problematic patterns

(e.g., Ferrando, 2015). This practice is, indeed, a necessary first step. However, once

a pattern has been detected, further information must be obtained so that the practi-

tioner can decide what to do with the pattern in each case (e.g., Smith, 1986).

To date, a variety of procedures have been proposed for collecting auxiliary infor-

mation about the type and source of misfit in patterns that are flagged as inconsistent.

For cognitive measures, Emons, Sijtsma, and Meijer (2004, 2005) have proposed a

nonparametric three-step approach in which graphical analysis based on the Person

Response Function (PRF) methodology (e.g., Sijtsma & Meijer, 2001) and local

analyses based on a test statistic are performed on the patterns detected. For typical-

response measures fitted with a parametric model, Conijn et al. (2015) have used

two types of follow-up analyses: an ‘‘internal’’ analysis based on item-level residuals

and an ‘‘external’’ analysis in which the global person-fit values are used as a depen-

dent variable regarding potentially explanatory variables. In the same context (i.e.,

parametric IRT and personality content), Ferrando (2015) has proposed a two-step

follow-up approach in which PRF-based graphical analysis is used to detect devia-

tion trends, and item-level residual analysis is used for detecting single-item sources

of misfit.

This article proposes a new general approach for identifying sources of person

misfit in typical-response measures, which, unlike similar existing proposals, is not

based on PRF methodology but on weighted-least-squares regression of the vector of

individual scaled observed item scores on the vector of scaled model-expected scores.

The choice of this type of regression as a basis has three important advantages. First,

it is very general and can be used with many unidimensional and multidimensional

IRT models intended for different response formats. Second, it is based on standard

regression theory, so existing diagnostic procedures can be readily adapted to this

particular application. Finally, some results obtained from the approach proposed
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here can be related to existing person-fit indices and procedures that were derived

from an observed–expected residual approach (e.g., Smith, 1986, 1990), thus allow-

ing the results obtained from these existing indices to be extended and complemented.

Furthermore, our approach distinguishes between general deviation trends on the one

hand, and local and single-response deviations on the other, and proposes different

procedures for assessing each of these sources.

Overall, this article has methodological, substantive, and instrumental aims. At

the methodological level, we propose a series of procedures intended to assess and

clarify the causes of misfit in patterns that have been detected as potentially inconsis-

tent. At the substantive level, we apply these procedures to a real personality data set

that has been partly collected for this article. Finally, at the instrumental level, we

have developed a user-friendly program that can be used with a variety of IRT mod-

els and which we make available at no cost to the interested readers.

The rest of the article is organized as follows. First, a conceptual and technical

background is provided. Second, the proposed developments are discussed according

to a three-level structure: general trends, local deviations, and single-item deviations.

Third, the program REG-PERFIT is described. Finally, the proposal is applied to per-

sonality data based on a statistics anxiety measure.

Background

Conceptual Background

The procedures we propose are intended to be used in response patterns that have

been flagged as potentially inconsistent by a global, scalar-valued person-fit index.

They are based on parametric IRT, so it seems natural to also use a parametric IRT

global index at the detection stage. More specifically, as discussed below, many

results from the present proposal are closely related to mean-squared person-fit

indices. Even so, these reasons are not restrictive in any way, and the follow-up anal-

ysis proposed here can be based on any type of parametric or nonparametric global

index (see Tendeiro & Meijer, 2014).

As mentioned above, the present proposal is intended for typical-response mea-

surement, and particularly personality measurement, which is the authors’ area of

substantive interest. For this reason, the potential results that can be obtained with

the procedures, as well as their interpretation, have been linked to the sources of mis-

fit that are features of this domain (Ferrando, 2015). There is no compelling reason

why these procedures should not be used with cognitive measures, but we shall not

discuss this type of application here.

The procedures we propose aim to detect three levels of inconsistency: (a) general

deviation trends, (b) local deviations, and (c) specific-response inconsistencies.

General deviation trends refer to inconsistent responding that generalizes across all

the test items (e.g., random responding or extreme responding). Local deviations

refer to inconsistent responding to specific subsets of items (e.g., inconsistent

responding to the reverse-scored items due to acquiescence or to the most socially
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desirable items due to faking). Finally, specific-response inconsistencies refer to

inconsistent responses to single items (e.g., idiosyncratic interpretation of the mean-

ing of this item because of language difficulties).

Technical Background

Consider a typical-response test made up of n items that behaves according to a para-

metric IRT model. The types of models we shall consider here are unidimensional

and multidimensional cumulative models intended for binary, graded, or (approxi-

mately) continuous responses.

Let Xij be the response of individual i to item j, and let E(Xj|u) and s2(Xj|u) be the

model-expected item score and the conditional variance for fixed u, respectively. In

general, u will be vector-valued, and will reduce to a scalar in the case of a unidimen-

sional model. Now, for binary items scored as 0 and 1 and fitted by models such as

the one-parameter and the two-parameter models, the conditional expectations just

defined are given by

E(Xjju) = Pj(u)

s2(Xjju) = Pj(u)(1� Pj(u))
ð1Þ

where Pj(u) is the conditional probability of scoring 1 on item j.

For graded-response items scored by successive integers r =1, 2, . . ., and fitted by

models such as Samejima’s (1969) graded response model (GRM), they are given by

(Chang & Mazzeo, 1994).

E(Xjju) =
X

r

rPjr(u)

s2(Xjju) =
X

r

r2Pjr(u)

" #
� E(Xjju)
� �2 ð2Þ

where Pjr(u) is the conditional probability of scoring in category r in item j.

Finally, continuous responses are usually fitted with the linear factor-analytic

model. If this is the case, the conditional expectations are (see, e.g., Ferrando, 2015)

E(Xjju) = mj +
X

k
ljkuk

s2(Xjju) = s2
ej

ð3Þ

where mj is the item intercept, and ljk is the loading of item j on factor k.

If the IRT model is correct, the conditional expectation corresponding to individ-

ual i with ui can be considered as a ‘‘true’’ item score for this individual (e.g., Lord

& Novick, 1968), and will be denoted here by tij (i.e., E(Xj|ui) = tij). Now, let xi be

the n 3 1 vector containing the scores of individual i on the n items, and let ti be the
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corresponding vector of model-based true scores. The model-implied regression of xi

on ti is

xi = ti + ei ð4Þ

where the elements of the ei vector are the residuals eij with zero expectation and

variance s2(Xj|ui). So, regression (4) is linear, with zero intercept, unit slope, and

residuals that have zero expectation and are independent of one another (by the local

independence principle), but which have generally different variances (see Equations

1 to 3).

In order to obtain equal residual variances, we propose to use the following

weighted transformation: define the weight vij = 1
�

s(Xjjui), and multiply each ele-

ment of (4) by it:

vijXij = vijtij + vijeij

Yij = nij + jij

ð5Þ

In vector notation, the transformed regression equation becomes

yi = vi + ji ð6Þ

Again it is linear, with zero intercept, unit slope, zero residual expectations, and

independence among residuals. However, the residual variances in (6) are now the

same for all the observations.

Detecting General Trends: WLS Regression

Assume that the test considered in the section above has been administered in a sam-

ple and satisfactorily fitted according to a given IRT model. Assume further that the

calibration results are stable enough for the item parameter estimates to be taken as

fixed and known (e.g., Zimowski, Muraki, Mislevy, & Bock, 2003). Finally, assume

that a general person-fit index has been computed for each respondent and that a cer-

tain proportion of respondents in the sample have been flagged as potentially incon-

sistent by this index. Define xi as above, and denote by t̂i, ŷi, and v̂i the vectors

corresponding to ti, yi, and vi but computed using the respondent estimates ûi instead

of the unknown ui. The basic procedure is first to fit for each (potentially) inconsis-

tent respondent i the regression equation:

ŷi = 1ai + biv̂i + ui = 1, v̂i½ � ai

bi

� �
+ ui = Tibi + ui ð7Þ

where 1 is an n 3 1 unit vector, ai and bi are the usual intercept and slope estimates

obtained by the ordinary least squares (OLS) criterion, and ui is the OLS residual or

error term. The scores that are predicted from the fitted regression line (denoted by a

prime) are then given in vector and scalar notation as
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y0i = Tibi

Y 0ij = ai + biv̂ij ð8Þ

The OLS estimates obtained from the transformed vectors in (7) are the weighted

least squares (WLS) estimates corresponding to the original untransformed vectors xi

and t̂i (e.g., Draper & Smith, 1966). Under the assumption that the IRT estimates are

correct, the WLS regression in (7) fulfils the basic regression requisites of linearity

and homoscedasticity for all types of scores considered here, including binary scores

(see, e.g., Goldberger, 1964).

General deviation trends are assessed by inspecting the discrepancies between the

fitted line (7) and the model-implied line (6). The discrepancies can first be graphi-

cally assessed by using standard regression plots in which both lines (fitted and

expected) are displayed together with the scatter of points. Analytically, a general

significance test at the 12 a level for assessing whether the fitted line departs from

the model-expected line can be computed by (e.g., Draper & Smith, 1966)

� ai (1� bi)½ �T0iTi
�ai

(1� bi)

� �
. 2ŝ2(u)F1�a(2, (n� 2)) ð9Þ

where F is the upper a point of the F distribution and ŝ2(u) is an unbiased estimate of

the residual variance given by

ŝ2(u) =
n

n� 2

h i
s2(ŷi)� b2

i s2(v̂i)
� �

ð10Þ

Significant departures of the fitted line from the model-expected line can provide

insight into sources of misfit that generalize over the test items. Thus, a fitted line

with a negative slope would suggest a responding trend that is opposite to the norma-

tive ordering of the items. This trend, in which the respondent agrees with the most

extreme or ‘‘difficult’’ items and disagrees with the ‘‘easier’’ items, has been identi-

fied in various data sets and qualified as sabotaging or malingering (Ferrando, 2012).

A flat fitted line, on the other hand, would suggest total insensitivity to this ordering

and can indicate random responding or a biased type of responding in which a narrow

subset of response categories is used regardless of the item content (e.g., middle

responding). Finally, a line with a slope that is steeper than the unit model-expected

slope would suggest a ‘‘polarized’’ type of responding in which the scores agree with

the item ordering, but in which the respondent has a high degree of response extreme-

ness and tends to answer using the extreme points of the response scale (Cronbach,

1950; Ferrando, 2013; Peabody, 1962).

Further information regarding general trends can be obtained by relating the WLS

proposal to more general person-fit results. In Rasch modeling, the most common

person-fit statistic is the mean-squared outfit index based on the average of the

squared observed–expected discrepancies (Smith, 1986, 1990). This statistic can be
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easily generalized to all the formats and models considered in the article. Using the

present notation, the generalized mean-squared outfit index can be written as

MSTi =
1

n

Xn

j = 1

Xij � t̂ij

s(Xjjûi)

" #2

=
1

n

Xn

j = 1

Ŷ ij � v̂ij

� �2 ð11Þ

The MST statistic ranges from 0 to infinity and has an expectation of 1.0 under

the null hypothesis that the IRT model and the trait estimate of respondent i are cor-

rect. MST values below the unit expectation indicate that the data are more determi-

nistic than the stochastic IRT model predicts. MST values above 1.0 indicate that the

data are less predictable than expected from the model. For interpretation purposes,

Wright and Linacre (1994) considered MST values above 1.0 to indicate excess of

randomness or noise in the pattern data, and for the case of the Rasch model, they

proposed a cut-off value of 1.5 to conclude that the randomness of the data would

lead to unproductive measurement. This interpretation, however, can be made more

detailed by using the WLS approach proposed here. Define first the identity (see

Equation 8):

(Ŷij � v̂ij) = (Ŷij � Y 0ij) + (Y 0ij � v̂ij) ð12Þ

Squaring both sides of (12), taking the averages, and using well-known regression

results, the following orthogonal decomposition is obtained:

1

n

Xn

j = 1

Ŷ ij � v̂ij

� �2
=

1

n

Xn

j = 1

Ŷ ij � Y 0ij

h i2

+
1

n

Xn

j = 1

Y 0ij � v̂ij

h i2

MSTi = MSWi + MSBi

ð13Þ

We shall interpret decomposition (13) by using related standard results in sam-

pling theory (e.g., Cochran, 1963). First, MST is a measure of general response

inconsistency and refers to the size of deviations between the observed scores and

the model-expected scores. MSW (within) is a measure of response imprecision and

refers to the size of the deviations between the observed scores and the scores pre-

dicted from the fitted regression line for this individual. Finally, MSB (between) is a

measure of response bias for the deviations between the regression-predicted scores

and the model-expected scores. From this result it follows that MST cannot be con-

sidered simply as a measure of excess ‘‘noise’’ because a high MST value could also

be obtained with a respondent whose response trend deviates substantially from the

model-expected regression (i.e., high bias) but whose responses are not too scattered

around his/her fitted regression line (i.e., no excess of response imprecision or

‘‘noise’’).

Under the null hypothesis of consistency, the expected value of MSW is 1.0 and

the expected value of MSB is 0.0. Using these values as references the interpretation

of the mean-squared values can provide useful insights. Consider, for example, a
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respondent who systematically uses the central categories of the response scale. This

type of bias will produce a flat regression line that differs from the model-expected

regression. So, the MSB component will be high. The MSW component, however,

will be low, as the responses will all be close to the fitted line. In contrast, consider

an individual who responds at random. This inconsistency will also produce a flat

fitted line (i.e., high MSB). However, the responses will now be far more scattered

around the fitted line, so the expected value of MSW will also be high.

Detecting Local Deviations: Kernel Smoothed Regression

Local deviations can be operationalized as regions or subsets of item responses for

which model (6) does not hold. To identify these regions, we propose a graphical

approach in which a nonparametric regression curve is fitted to the scatterplot of the

ŷi and v̂i scores. The elements of the proposed graph are, then, (a) the scatter of the n

Ŷij and n̂ij points, (b) the model-expected regression line with zero intercept and unit

slope, (c) the fitted regression line (7), and (d) the empirical nonparametric curve that

best fits the points without imposing any particular functional form for the curve.

The basic rationale of this approach (Azzalini, Bowman, & Härdle, 1989) is to use

the nonparametric curve for assessing the inappropriateness of the model-expected

line. Graphical assessment of the discrepancies between the two lines makes it possi-

ble to identify the potential subsets of items on which the misfit is mostly localized.

Of the several approaches that can be chosen to fit the nonparametric curve, we

propose using kernel smoothing (KS). KS is widely used, relatively simple, and has

produced good results in the approaches discussed above which are based on the PRF

(Emons et al., 2004; Ferrando, 2015). The basic idea of the KS method in the present

application is to obtain a weighted average of the Ŷij scores around a series of evalua-

tion points defined in vi. If the evaluation point is denoted by v, the Nadaraya–

Watson KS estimate (see, e.g., Härdle, 1990) can be written as

E(Ŷijv) =

Pn
j

K(
v�v̂ij

h
)Ŷ ij

Pn
j

K(
v�v̂ij

h
)

ð14Þ

where K(x) is the smoothing kernel function, a nonnegative, continuous, bounded,

and (usually) symmetric function that assigns its highest values to points near 0.0

and decreases as it gets further away from 0.0. The parameter h is called the band-

width; it is selected by the user, and controls the amount of smoothing. To help in

the graphical comparison, confidence bands on the estimated KS curve can be com-

puted at the evaluation points (Härdle, 1990). These confidence bands indicate the

regions at which there are significant discrepancies with respect to the model-derived

line. Further details on the KS procedure are provided below.
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Detecting Deviations at the Single-Response Level: Scaled
Item Residuals

In the KS approach just discussed, a local deviation can be viewed as a region around

a set of evaluation points at which the distance between the smoothed line and the

model-expected line differ significantly from zero. Consider now the limiting case in

which the region on the vi axis reduces to a single point n̂ij: The (signed) distance to

be assessed in this case is that between the corresponding single item score Ŷij and

the model-expected regression line, and can be written as

zij = Ŷij � v̂ij =
Xij � E(Xjjûi)

s(Xjjûi)

 !
ð15Þ

As is written on the right-hand side of (15), the signed distance zij is a scaled or

Pearson observed–expected residual index, initially proposed in the context of Rasch

analysis (e.g., Smith, 1990), and used in the previous person-fit related proposals by

Ferrando (2012, 2015) and Conijn et al. (2015). Item scores with unusually large zij

values are therefore potential outliers in the WLS framework adopted here. At the

conceptual level they are, indeed, unexpected responses to single items.

The most common approach for interpreting the zij values in (15) is to refer them

to the standard normal distribution (Karabatsos, 2000; Smith, 1990). One of the best-

known limitations of this practice is that the index is (generally) a transformed dis-

crete variable that cannot be well approximated by a continuous distribution such as

the standard normal (Karabatsos, 2000). For practical purposes, however, the inter-

pretation of the residual (15) as a standard variable is generally quite acceptable (see

Smith, 1990).

Some Applied Considerations

So far the results and procedures have been discussed as generally as possible. We

have considered the multidimensional case, and for discrete responses we have not

defined specific models but conditional expectations that can be obtained from dif-

ferent models. Overall, the developments we propose are assumed to be correct and

potentially applicable to a wide range of models and situations. In a practical appli-

cation, however, they are expected to function well only if certain basic conditions

are fulfilled.

The first, most basic requirement for good functioning is that the regression lines

be well-defined and accurately fitted. From standard regression theory, it follows that

this accuracy depends mainly on two factors: the number of items (i.e., the density of

the point scatter) and the spread of the values of the regressor (i.e., the elements of

the vi vector). This spread, in turn, generally depends on the range of item locations

and the discriminating power of the test items. To sum up, the procedures proposed

here are expected to work well in general when the test is reasonably long and is

made up of items with good discrimination and a wide range of locations. These
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conditions are the same as those required if person-fit assessment is to be accurate

and powerful (e.g., Ferrando, 2015) and, for global indices, have been studied mainly

in the unidimensional case. On the basis of our experience and previous related

results, for a well-constructed unidimensional test the procedures we propose would

begin to function well as from 20 items.

A well-known weakness of global person-fit indices is that, in most cases, the trait

estimate is based on the same pattern from which the person-fit index is computed.

When this is the case, detection power generally decreases, largely because there is a

shift in the estimate due to inconsistent responses (Armstrong, Stoumbos, Kung, &

Shi, 2007). In other words, the estimate changes and makes the pattern appear to be

more consistent than it really is. This limitation also applies to the procedures pro-

posed here and in some initial studies we have noted that the problem tends to get

worse in the multidimensional case. This is because in this case there is more room

for the different trait estimates to change and ‘‘adapt,’’ which masks inconsistency.

Because there is a lack of person-fit research based on multidimensional models,

we acknowledge the need for further research on this issue. So, our recommendations

here, which are based on a previous proposal by Parsons (1983), are only tentative. If

the test is multidimensional, but a general factor pervades the responses to the items,

then treating the items as essentially unidimensional is expected to increase the power

of the person-fit analysis. If this is not the case, then, at the very least, the basic condi-

tions discussed above (a sizeable number of discriminating items with varying loca-

tions) should be fulfilled for each dimension.

Implementing the Procedures: The Program REG-PERFIT

While we developed REG-PERFIT in Matlab 2013b release, we compiled it as a

user-friendly standalone application for Windows 64-bit operating systems. Users

can decide whether to use the advanced Matlab version of REG-PERFIT or the stan-

dalone version (which does not require any programming skills). We have tested the

program in several computers with different versions of Windows (7/8/8.1) and found

that it works correctly.

The input consists of an ASCII format file containing the item scores. In addition,

users who are familiar with Matlab can choose to read their data stored in their own

mat files. For the moment, REG-PERFIT can fit the following uni-/multidimensional

models: the two-parameter model (binary responses), Samejima’s GRM (graded

responses), and the linear factor-analysis model (responses treated as continuous).

The user must select the model to be fitted, the number of expected latent traits, and

the expected relationships between latent variables (orthogonal or oblique). REG-

PERFIT first performs the item calibration using a general factor-analytic formulation

based on the unweighted least squares criterion and provides the following output: (a)

univariate and bivariate descriptive statistics, (b) goodness of model-data fit mea-

sures, and (c) item-parameter estimates. In the second, scoring stage, REG-PERFIT

provides (a) the individual EAP trait estimates, (b) the indices of precision of these
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estimates (PSDs and credibility intervals), (c) the global person-fit indices (MST-out-

fit), and (d) the auxiliary measures proposed in the article (MSB, MSW, intercept and

slope estimates, and scaled item residuals). In addition to the numerical outcome, a

graphical outcome consisting of the WLS regression plot (expected and fitted straight

lines) and the Kernel regression plot are provided for each participant: both the

numerical and the graphical outcomes can be stored in ASCII format (numerical out-

come) and as editable figures (graphical outcome).

The number of variables, categories, and observations in the data set are not lim-

ited. However, when large data sets are analyzed and, depending on the characteris-

tics of the computer (processor chip, memory available, etc.), the computing can take

a long time. REG-PERFIT can be freely downloaded from the site http://psico.fcep

.urv.cat/utilitats/RegressionPersonFit. The user can download a stand-alone version

of the program to be run in Windows, and a toolboox to be run as a Matlab script. In

addition, the site offers a manual and some datasets that enable the program to be

tested.

REG-PERFIT is by no means fully developed and we are extending the program

to make it more flexible and complete. One issue we are working on is to allow the

user to input item and person estimates obtained from other programs or other sam-

ples and directly carry out the analytical and graphical person-fit analysis on the basis

of these estimates.

Empirical Study: Application to the Statistical Anxiety Scale

The Statistical Anxiety Scale (Vigil-Colet, Lorenzo-Seva, & Condon, 2008) is a 24-

item narrow-bandwidth instrument intended to measure a specific form of anxiety:

that which occurs as a result of encountering statistics in any form at any level (e.g.,

Onwuegbuzie & Daley, 1999). The SAS item stems are positively worded sentences

describing typical situations that can be experienced by students enrolled on a statis-

tics course, and the response format is 5-point Likert-type scale. According to its

authors, the SAS can be analyzed either as a multidimensional measure that assesses

three related facets or as an essentially unidimensional measure that assesses a more

general construct of statistical anxiety. In accordance with the discussion above, the

unidimensional solution is that which produces the clearest results in terms of person-

fit and is the one that we shall consider here.

As far as item calibration is concerned, the present study used as a basis the unidi-

mensional solution proposed in the original calibration study by Vigil-Colet et al.

(2008), which was based on Samejima’s (1969) GRM. So, the GRM-based item esti-

mates obtained by Vigil-Colet et al. (2008) were taken as fixed and known. The anal-

yses in the scoring stage were based on a new sample of 384 undergraduate students

enrolled on a statistics courses in psychology and educational faculties which was

collected specifically for this article. It should be noted that the sample is somewhat

small for an IRT-based calibration study. However, in this study the item parameters
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are taken as known, so the new sample is solely used for scoring respondents and

assessing person fit.

The first-step general person-fit analysis was carried out using REG-PERFIT, and

the results can be summarized as follows. Potentially inconsistent respondents were

flagged by using the global MST-OUTFIT statistic discussed in Equation (10) with

the 1.5 cut-off value. By using this criterion, 35 individuals (9% of the sample) were

flagged as potentially inconsistent.

In the second step, the procedures proposed in this article were applied to the

potentially inconsistent patterns detected in Step 1. To illustrate the functioning of

these procedures, the results of three participants who exhibit different types of misfit

will now be discussed. Figure 1 summarizes the analytical and graphical results for

Participant No. 331. When interpreting the scatterplot it should be remembered that

each one of the 24 points represents an item whose coordinates are the expected item

score (X axis) and the observed item score (Y axis).

Results in Figure 1 show that MSW is only slightly above the expected value but

MSB is clearly different from zero, reflecting the fact that the fitted line for this

respondent substantially departs from the model-expected line (the departure is sta-

tistically significant). The linear graph clearly shows that both lines cross and that

the fitted line has a negative slope. The kernel-smoothed regression (not shown in

Figure 1) also produced a fitted line which was essentially linear and had a negative

slope. As discussed above, this indicates a general trend in which the individual

responds opposite to the normative ordering of the items, and suggests some form of

sabotaging as the main source of misfit.

Figure 1. Linear assessment for response pattern 331.
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Figure 2 summarizes the results for Participant No. 305. In this case both MSW

and MSB are high, which reflects the main graphical results in the figure: the fitted

line for this respondent is virtually flat, and the dispersion of the points around this

line is rather high. The kernel-smoothing analysis (not shown in the figure) agreed

with this general trend of insensitivity to the normative ordering of the items and

large dispersion. As discussed above, the most likely source of misfit in this case is

random responding.

Finally, Figure 3 corresponds to Participant No. 132 and illustrates a type of misfit

that is best assessed by using kernel regression and residual analysis. In principle, the

mean-squared statistics in this case suggest a large dispersion of points (MSW is very

high) and some departure of the fitted line from the model-expected line. Note also

that the fitted slope is lower than the expected unit slope.

The graph in Figure 3 provides further interesting information. Note that there is a

considerable dispersion of points at the lower end of the graph, which suggests

inconsistent responses mainly to the items with low expectation. In this respect, note

also that many points at the lower end of the expected scale fall outside the kernel

confidence bands, which, in this case, were obtained by using 61 standard error

(i.e., 68% confidence bands under normal assumptions). Furthermore, unexpectedly

low responses to items of medium expectation give rise to a ‘‘bump’’ in the center of

the kernel-smoothed line. As for the analysis of outliers, 7 of the 24 standardized

residuals are greater than 1.96 in absolute value and, in accordance with the graphi-

cal results, 4 of these significant residuals are unexpectedly high responses to items

with low expectation. In summary, then, the inconsistency in this case does not seem

to be due to a general response trend as in the previous examples but to local

Figure 2. Linear assessment for response pattern 305.
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deviations (inconsistent responses in many low-expectation items) and more specific

inconsistencies.

Discussion

This article proposes and implements an integrated approach that combines analyti-

cal and graphical procedures and aims to identify the types and sources of misfit in

patterns flagged as potentially inconsistent. To the best of our knowledge, our pro-

posal is original. Even so it is based on well-known regression techniques (WLS esti-

mation and Kernel Smoothing), and it is related to existing person-fit developments

(mean-squared indices and standardized single-response residuals). Overall, the most

remarkable feature of the proposal is, perhaps, its versatility because it can be used

with a wide array of IRT models.

The developments we propose have several limitations and, as discussed above,

require certain conditions to be met if they are to work properly. We have already

provided some advice on this, but we would like to remind the reader that, at present,

solid recommendations can only be made for unidimensional applications. So, users

should be cautious when applying the present procedures to multidimensional data.

At the same time, however, we encourage readers to try multidimensional applica-

tions so that they can better understand the usefulness and weaknesses of the proce-

dures proposed.

Provided that the required basic conditions are reasonably met, the procedures we

propose should be useful for the applied researcher. In this respect, we made an

empirical study that was not a mere ‘‘ad hoc’’ illustration but a real personality appli-

cation and obtained meaningful results that provided information regarding the

Figure 3. Kernel smoothed assessment for response pattern 132.
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response behavior of the respondents. This information is, we believe, useful in itself

and should be relevant to the key question discussed at the beginning of the article:

what to do with a pattern detected as potentially inconsistent? To discuss this point

further, note for example that the patterns of Respondents 331 (malingering) and 305

(random responding) must be considered to be uninterpretable as they reflect general

response trends that are expected to lead to an invalid trait estimate. In contrast, the

inconsistencies of Respondent 132 are more local and concentrated on a subset of

items. So, a valid trait estimate based on the subset of consistent responses might still

be obtained in this case.

In conclusion, the present proposal addresses a type of assessment that seems to

be of interest and which, if some basic requirements are met, appears to work well.

In addition, we provide a free and user-friendly program that effectively implements

the proposed procedures. Overall, then, we believe that the contribution is a useful

tool for applied researchers and we hope that it will be widely used in the near future.
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Azzalini, A., Bowman, A. W., & Härdle, W. (1989). On the use of nonparametric regression

for model checking. Biometrika, 76, 1-11.

Chang, H., & Mazzeo, J. (1994). The unique correspondence of the item response function

and item category response function in polytomously scored item response models.

Psychometrika, 59, 391-404.

Cochran, W. G. (1963). Sampling techniques. New York, NY: Wiley.

Conijn, J. M., Emons, W. H. M., De Jong, K., & Sitjsma, K. (2015). Detecting and explaining

aberrant responding on the Outcome Questionnaire-45. Assessment. Advance online

publication. doi:10.1177/1073191114560882

Conijn, J. M., Emons, W. H. M., & Sijtsma, K. (2014). Statistic lz-based person-fit methods for

noncognitive multiscale measures. Applied Psychological Measurement, 38, 122-136.

Conrad, K. J., Bezruczko, N., Chan, Y., Riley, B., Diamond, G., & Dennis, M. L. (2010).

Screening for atypical suicide risk with person fit statistics among people presenting to

alcohol and other drug treatment. Drug and Alcohol Dependence, 106, 92-100.

484 Educational and Psychological Measurement 76(3)



Cronbach, L. J. (1950). Further evidence on response sets and test design. Educational and

Psychological Measurement, 10, 3-31.

Dodeen, H., & Darabi, M. (2009). Person-fit: Relationship with four personality tests in

mathematics. Research Papers in Education, 24, 115-126.

Draper, N., & Smith, H. (1966). Applied regression analysis. New York, NY: Wiley.

Egberink, I. J. L., & Meijer, R. R. (2011). An item response theory analysis of Harter’s self-

perception profile for children or why strong clinical scales should be distrusted.

Assessment, 18, 201-212.

Emons, W. H. M., Sijtsma, K., & Meijer, R. R. (2004). Testing hypotheses about the person-

response function in person-fit analysis. Multivariate Behavioral Research, 39, 1-35.

Emons, W. H. M., Sijtsma, K., & Meijer, R. R. (2005). Global, local and graphical person-fit

analysis using person-response functions. Psychological Methods, 10, 101-119.

Ferrando, P. J. (2012). Assessing inconsistent responding in E and N measures: An application

of person-fit analysis in personality. Personality and Individual Differences, 52, 718-722.

Ferrando, P. J. (2013). A factor-analytic model for assessing individual differences in response

scale usage. Multivariate Behavioral Research, 49, 390-405.

Ferrando, P. J. (2015). Assessing person fit in typical-response measures. In S. P. Reise & D.

A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical

performance assessment (pp. 128-155). New York, NY: Routledge.

Goldberger, A. S. (1964). Econometric theory. New York, NY: Wiley.
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