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Abstract

Real-world complex systems exhibit multiple levels of relationships. In many
cases they require to be modeled as interconnected multilayer networks, char-
acterizing interactions of several types simultaneously. It is of crucial impor-
tance in many fields, from economics to biology and from urban planning
to social sciences, to identify the most (or the less) influent nodes in a net-
work using centrality measures. However, defining the centrality of actors
in interconnected complex networks is not trivial. In this paper, we rely
on the tensorial formalism recently proposed to characterize and investigate
this kind of complex topologies, and extend two well known random walk
centrality measures, the random walk betweenness and closeness centrality,
to interconnected multilayer networks. For each of the measures we provide
analytical expressions that completely agree with numerically results.
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1. Introduction

It is common practice in many studies involving networks to assume that
nodes are connected by a single type of edge that encapsulates all relations
between them. In a myriad of applications this assumption oversimplifies the
complexity of the system, leading to inaccurate or wrong results. Examples
can be found in temporal networks, where neglecting time-dependence washes
out the memory of sequences of human contacts in transmission of diseases
[1], in co-authorship networks, where neglecting the existence of multiple
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relationships between actors might alter the topology which may lead to
misestimating crucial node’s properties [2, 3, 4, 5, 6, 7] or in transportation
networks where the multilayer topology must be considered to accurately
model the dynamics to a posteriori predict congested locations [8].

Historically, the term multiplex was coined to indicate the presence of
more than one relationship between the same actors of a social network [9].
This type of network is well understood in terms of “coloring” (or labeling)
the edges corresponding to interactions of different nature. For instance, in
a social network the same individual might have connections to other indi-
viduals based on financial interests (e.g., color red) and connections with the
same or different individuals based on friendship (e.g., color blue). In other
real-world systems, like the transportation network of a city, the same geo-
graphical position can be part, for instance, of the network of subway or the
network of bus routes, simultaneously. In this specific case, an edge-colored
graph would not capture the full structure of the network, since information
about the cost to move from the subway network to the bus route is miss-
ing. This cost can be economic or might account for the time required to
physically commute between the two layers. It is in this cases where an the
interconnected multilayer network provides a better representation of the sys-
tem. Figure 1 shows an illustration of an interconnected multilayer (Fig. 1 A)
and the classical representation with an aggregated network (Fig. 1 C). It is
evident that a simple projection of the former – mathematically equivalent
to sum up the corresponding adjacency matrices of the individual layers –
would provide a network where the information about the relation type is
lost. On the other hand, an edge-colored graph (Fig. 1 B) can not account
for interconnections. For further details about the classification of such mul-
tilayer networks we refer to [10] and references therein. In the rest of the
paper interconnected multilayer networks will be referred in short as multi-
layer networks.

The remainder of this paper is organized as follows. In Sec. 2 we briefly
describe the tensorial notation, defined in [11], adopted overall the paper. In
Sec. 3 we capitalize on this notation to extend some random walk centrality
descriptors, well known in the case of single layer networks, to interconnected
multilayer networks. Finally, we discuss our findings in Sec. 4.
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A B C

Figure 1: A, an interconnected multilayer network representing the same
actors exhibiting different relationships on different levels. The cost to move
from one layer to the other is represented by dotted vertical lines. B, edge-
colored graph representing the same actors with the same relations in A with
two different types of interactions (solid and dashed edges). In this case the
representation does not allow modeling the cost to move between layers. C,
classical approach of representing the different types of relations using an
aggregated network. The network represents the same actor and relation in
A and B but disregarding the type of relation.

2. Tensorial notation

Edge-colored graphs can be represented by a set of adjacency matrices
[12, 13, 14, 15]. However, standard matrices, used to represent networks,
are limited in the complexity of the relationships that they can capture, i.e.,
they do not represent a suitable framework in the case of multilayer networks.
This is the case of multiple types of relationships – that can also change in
time – between nodes. Such a level of complexity can be characterized by
considering tensors and algebras of higher order [11].

A great advantage of tensor formalism developed in [11] relies on its com-
pactness. An adjacency tensor can be written using a more compact notation
that is very useful for the generalization of network descriptors to multilayer
networks. In this notation, a row vector a ∈ RN is given by a covariant vec-
tor aα (α = 1, 2, . . . , N), and the corresponding contravariant vector aα (i.e.,
its dual vector) is a column vector in Euclidean space. A canonical vector
is assigned to each node and the corresponding interconnected multi-layer
network is represented by a mixed rank-4 adjacency tensor.

However, in the majority of applications, it is not necessary to perform
calculations using canonical vectors and tensors explicitly. In this cases, a
classical single-layer network can be represented by a rank-2 mixed adjacency
tensor Wα

β [11], where the layer information is disregarded. But, in general,
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systems may exhibit several types of relationships between pairs of nodes
and a more general system represented as a multilayer object – in which each
type of relationship is represented within a single layer α (α = 1, 2, . . . , L)
of the network – is required1. In these cases, we use an intra-layer adjacency
tensor for the 2nd-order tensorW i

j (α) that indicates the relationships between
nodes within the same layer α and the 2nd-order inter-layer adjacency tensor
Ci
j(αβ) to encode information about relationships that incorporate multiple

layers.
It has been shown that the mathematical object accounting for the whole

interconnected multilayer structure is given by a 4th-order (i.e., rank-4) mul-
tilayer adjacency tensor M iα

jβ . This tensor might be simply thought as a
higher-order matrix with four indices. It is the direct generalization of the
adjacency matrix in the case of single layer networks and encodes the inten-
sity of the relationship (which may not be symmetric) between a node i in
layer α and a node j in layer β [11].

To reduce the notational complexity in the tensorial equations the Ein-
stein summation convention is adopted. It is applied to repeated indices in
operations that involve tensors. For example, we use this convention in the
left-hand sides of the following equations:

Aii =
N∑
i=1

Aii , AijB
j
i =

N∑
i=1

N∑
j=1

AijB
i
j ,

AiαjβB
kβ
iγ =

N∑
i=1

L∑
β=1

AiαjβB
kβ
iγ ,

whose right-hand sides include the summation signs explicitly. It is straight-
forward to use this convention for the product of any number of tensors of
any order. In the following, we will use the t-th power of rank-4 tensors,
defined by multiple tensor multiplications:

(At)iαjβ = (A)iαj1β1(A)j1β1j2β2
. . . (A)

jt−1βt−1

jβ (1)

Repeated indices, such that one index is a subscript and the other is a
superscript, is equivalent to perform a tensorial operation known as a con-

1To avoid confusion, in the following we refer to nodes with Latin letters and to layers
with Greek letters, allowing us to distinguish indices that correspond to nodes from those
that correspond to layers in tensorial equations.
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traction. Moreover, one should be very careful in performing tensorial calcu-
lations. For instance, using traditional notation the product aibj would be a
number, i.e., the product of the components of two vectors. However, in our
formulation, the same calculation denotes a Kronecker product between two
vectors, resulting in a rank-2 tensor, i.e., a matrix.

3. Random walk centrality measures in multilayer networks

In practical applications one is often interested in assigning a global mea-
sure of importance to each node. If the system we deal with contains several
types of relations between actors we expect that the measures, in some way,
consider the importance obtained from the different layers. A simple choice
could be to combine the centrality of the nodes – obtained from the different
layers independently – according to some heuristic choice. This is a viable
solution when there is no interconnection between layers, i.e., in the case of
edge-colored graphs [16, 17]. However, the main drawback of this approach
is that it depends on the choice of the heuristics and thus might not evalu-
ate the actual importance of nodes. Our approach accounts for the higher
level of complexity of such systems without relying on external assumptions
and naturally extends the well-known centrality measures adopted for several
decades in the case of single layer networks.

A random walk is the simplest dynamical process that can occur on a
network, and random walks can be used to approximate other types of diffu-
sion processes[18, 19]. Random walks on networks [18, 20, 19] have attracted
considerable interest because they are both important and easy to interpret.
They have yielded important insights on a huge variety of applications and
can be studied analytically. For example, random walks have been used to
rank Web pages [21] and sports teams [22], optimize searches [23], investigate
the efficiency of network navigation [24, 25], characterize cyclic structures
in networks [26], and coarse-grain networks to highlight meso-scale features
such as community structure [27, 28, 29]. Another interesting application
of random walks is to calculate the centrality of actors in complex networks
when there is no knowledge about the full network topology but only lo-
cal information is available. In such cases, centrality descriptors based on
shortest-paths, e.g., betweenness and closeness centrality, should be substi-
tuted by centrality notions based on random walks [20, 30]. In the following
we extend these measures to multilayer networks.
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Figure 2: Schematic of a walk (dotted trajectories) between two individuals
s and t using a multilayer network. A walker can jump between nodes within
the same layer, or it might switch to another layer. This illustration evidences
how multilayer structure allows a walker to move between nodes that belong
to different (disconnected) components on a given layer (L1).

First of all, we define a discrete-time random walk, between two individ-
uals s and t, s → t, on a multilayer network consisting of L layers and N
nodes per layer, as a random sequence of nodes which starts from node s in
any layer and finish in node t in any layer where each edge’s endpoints are
the preceding and following vertices in the sequence. The reasoning behind
this definition is that the different node replicas in the different layers cor-
respond to the same individual and so anything traveling between them is
independent on the starting and ending layer. Fig. 2 shows and example of a
random walk between two nodes in a multilayer network where it is evident
the introduction of non-trivial effects because of the presence of inter-layer
connections that affects its navigation in the networked system [31].

Random walk occupation centrality. Let T iαjβ denote the tensor of transi-
tion probabilities for jumping between pairs of nodes and switching between
pairs of layers. Covariant indexes iα indicate source node and layer and
contravariant indexes jβ destination node and layer. Similarly to the sin-
gle layer case, the sum of the probabilities for each outgoing edges of any
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node adds one. That is, uiα = T iαjβu
jβ where uiα and ujβ are the 1-row

vector and 1-column vector respectively. In addition, let piα(t) be the time-
dependent tensor that gives the probability to find a walker at a particular
node in a particular layer. Hence, the covariant master equation that gov-
erns the discrete-time evolution of the probability from time t to time t + 1
is pjβ(t+ 1) = T iαjβ piα(t). The steady-state solution of this equation, i.e., for
t −→∞, is given by Πiα which quantifies the probability to find a walker in
the node i of layer α. In the case of single layer networks, the steady-state
solution can be obtained by calculating the leading eigenvector correspond-
ing to the unitary eigenvalue. Similarly, in the case of multilayer networks,
the solution can be obtained by calculating the leading eigentensor, solution
of the higher-order eigenvalue problem

T iαjβΠiα = λΠjβ. (2)

We refer to Appendix AppendixA for the mathematical details to solve this
problem. The probability Πjβ, defined as random walk occupation central-
ity, accounts for the full interconnected structure of the multilayer network.
Although different exploration strategies can be adopted to define the tran-
sition tensor T iαjβ walk in a multilayer network [31], here we only focus on
the natural extension of well-known random walks in single layer networks
[20]. In this process, the walker in node i and layer α might jump to one of
its neighbors j 6= i – within the same layer – or might switch to its coun-
terpart i in a different interconnected layer β 6= α with equal probability.
That is, the inter-layer connection is treated as an edge that can be chosen
randomly among all outgoing edges of the node. In the more general case of
weighted networks, the jumping probability is usually defined proportional
to the weight of the edges. Let us indicate with siα the strength of node i
in layer α, including the inter-layer connections. The multi-strength vector,
whose components indicate the strength of each node accounting for the full
multilayer structure, is given by summing up its strengths across all layers,
i.e., by Si = siαu

α. We indicate with Diα
jβ the strength tensor whose entries

are all zeros, except for i = j and α = β where the entries are given by siα.
This tensor represents the multilayer extension of the well-known diagonal
strength matrix in the case of single layer networks. Therefore, the transition
tensor is given by T iαjβ = Mkγ

jβ D̃
iα
kγ, where D̃iα

jβ is the tensor whose entries are
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the inverse2 of the non-zero entries of the strength tensor and Mkγ
jβ is the

weighted adjacency tensor. For this classical random walk, it can be easily
shown that Πiα ∝ siα [31].

This centrality, as others in the rest of the paper, assigns a measure of
importance to each node in each layer, accounting for the full-interconnected
structure of the multilayer network. However, in practical applications one
is often interested in assigning a global measure of importance to each node,
aggregating the information obtained from the different layers. The choice
of the aggregation method is in general not trivial and it strongly influences
the final estimation and might lead to wrong results.

However, this is not case for the occupation probability. Since the cen-
trality Πiα is calculated accounting for the full interconnected structure of
the whole system we do not require any arbitrary combination of the infor-
mation from different layers. In our framework, the most intuitive type of
aggregation, i.e., summing up over layers, represents the unique and correct
choice. Let πi = Πiαu

α be the random walk centrality measure obtained by
aggregating over the layers. Here, πi indicates the probability of finding the
walker in node i, regardless of the layer. It is worth noting that this proba-
bility, as well as in single layer networks is, is proportional to siαu

α, i.e., the
multi-strength of node i. Therefore, in this specific case, the computation of
the centrality by means of the aggregated network would provide the same
result of the calculation accounting for the multilayer structure, if inter-layer
edges are mapped to self-loops. Unfortunately, this is not the case for the
other centrality measures discussed in the rest of this study, where calculating
the diagnostics from the aggregate might lead to wrong conclusions.

A measure related to random walk occupation centrality is the Page Rank
[32] that has been recently extended to interconnected networks [8]. In fact,
the Page Rank centrality can be seen as the steady-state solution of the
random walk master equation governed by the transition tensor Riα

jβ, where
the walker jumps to a neighbor with rate r and teleport to any other node
in the network with rate 1− r. This rank-4 tensor is given by

Riα
jβ = rT iαjβ +

(1− r)
NL

uiαjβ, (3)

where uiαjβ is the rank-4 tensor with all components equal to 1. The steady-

2It is worth remarking that, in general, this is different from the inverse of a tensor
Aiαjβ , that is defined as the tensor Biαjβ such that AiαkγB

kγ
jβ = δiαjβ , where δiαjβ = δijδ

α
β .
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state solution of the master equation corresponding to this transition tensor
provides the Page Rank centrality for multilayer networks.

Random walk betweenness centrality. The betweenness is a measure of
network centrality that instead of accounting for topological centrality ac-
counts for the importance of nodes in terms of dynamical processes that run
over the network. In particular, the betweenness measures to which extent
a node lies in the path between any two other nodes [30]. One can think
of packets traveling in internet, in this case the betweenness measures the
influence of nodes in the controling of information. The most common be-
tweenness is the shortest path betweenness [33] where the centrality of a node
j is relative to the number of shortest paths, for any pair (o, d) of origin and
destination nodes, that pass through j. However, in real networks, entities
(rumors, messages or packets over the Internet) that travel the network do
not always take the shortest path [34, 35]. Consider, for instance, rumors
that can be wandering around the network or packets trying to avoid over-
loaded routers. In such cases, the shortest path betweenness is not always a
good proxy for the centrality of nodes. For these scenarios the random walk
betweenness of a node j is defined as the amount of random walks between
any pair (o, d) of nodes that pass through j [30].

To analytically compute the number of random walks visiting a particular
node, it is often convenient to use the concept of absorbing random walk,
where the absorbing state is selected to be the destination node d [30, 19].
To extend this concept to the case of interconnected multilayer networks, we
consider random walks that begin, pass and end in nodes in different layers
while accounting for the existence of several replicas of the same node.

Specifically, to extend the concept of random walks to interconnected
networks, we define the absorbing transition tensor on a particular node d
by

(
T[d]
)iα
jβ

=

{
0 j = d
T iαjβ else

, (4)

Random walkers governed by this transition tensor will vanish once they
arrive to any absorbing state [19]. Note that T[d] has one absorbing state
for each replica of node d in different layers. It can be shown (see Appendix
AppendixB) that the average number of times a random walk (with origin
in node o in layer σ and destination d independently of the layer) will pass
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by a node j in layer β, regardless of the time step, is given by(
τ[d]
)iα
jβ

=
[(
δ − T[d]

)−1]iα
jβ
, (5)

where δiαjβ = δijδ
α
β and δ is the the Kronecker delta. Note that the average

number of times that the walk will visit node j still depends on the layer
where j is located and on the originating layer σ. Since we are interested on
node properties, regardless of the layer, we average over all possible starting
layers σ and aggregate the walks that pass through j in the different layers,(

τ[d]
)o
j

=
1

L

(
τ[d]
)oσ
jβ
uβuσ. (6)

The overall centrality vector is obtained by averaging over all possible origins
and destinations:

τj =
1

N(N − 1)

N∑
d=1

(
τ[d]
)o
j
uo. (7)

The comparison between the values of τi obtained from simulations and
theoretical predictions are shown in Fig. 3. As expected, the results are
in excellent agreement. It is worth remarking that the equivalence holds
regardless of the number of nodes in the network, the topology and the
number of layers.

Random walk closeness centrality. The distance between two nodes in
a network is given by shortest-path which separates them. The farness of
an individual is given by the sum of all geodesics from that node to any
other node. In general, the inverse of this farness provides a measure of the
closeness of the node. Such a diagnostic is related to how fast information is
expected to spread from a given actor to the others in the network. A variant
of the closeness when random walks are considered is given by the random
walk closeness centrality. In the case of single layer networks, it has been
introduced to quantify how central a node is located regarding its potential
to receive information randomly diffusing over the network [20].

We define the random walk closeness centrality of a node i in a multilayer
network as the inverse of the average number of steps that a random walker,
starting from any other node in the multilayer network, requires to reach i
for the first time. The computation of the closeness centrality is generally
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Figure 3: Comparison of the random walk betweenness centrality obtained by
simulation and by our analytical approach for different multilayer network
topologies. Each multilayer network is composed of two layers with 1000
nodes per layer. A, results on a multilayer network with two Erdős-Rényi
networks as layers. B, results on a multilayer network with one Erdős-Rényi
network and one Barabàsi-Albert network as layers. C, results on a multi-
layer network with two Barabàsi-Albert networks as layers.

based on the mean first-passage time (MFPT), that is defined as the average
number of steps to reach a node d, starting from a given node s. The MFPT
matrix can be computed analytically by means of Kemeny-Snell fundamen-
tal matrix Z [36, 37] or by means of absorbing random walks [38, 19]. In
this study, we adopt the second approach as for the calculation of random
walk betweenness centrality. The following calculation involve the use of the
transition tensor T governing random walks over multilayer networks and
the corresponding absorbing transition tensor T[d]. Hence, the tensor

poσjβ(t) =
(
T t[d]
)oσ
jβ

(8)

indicates the probability of visiting node j in layer β, after t time steps,
considering that the walk originated in node o in layer σ. This transition
tensor is absorbing on node d regardless of the layer and, consequently, any
walker reaching an absorbing state will vanish, i.e., poσdβ(t) = 0 for any β and
t. The probability that the walker is absorbed in some node d at a time h
equal or smaller than t, regardless of the layer, is given by(

q[d]
)oσ

(t) = uoσ −
(
T t[d]
)oσ
jβ
ujβ. (9)

Note that we have a rank-2 tensor q for each choice of d and we put in evidence
this dependence by means of [d]. From each tensor q we can calculate the
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Figure 4: Comparison of the random walk closeness centrality obtained by
simulation and by our analytical approach for different multilayer network
topologies. Each multilayer network is composed of two layers with 1000
nodes per layer. A, results on a multilayer network with two Erdős-Rényi
networks as layers. B, results on a multilayer network with one Erdős-Rényi
network and one Barabàsi-Albert network as layers. C, results on a multi-
layer network with two Barabàsi-Albert networks as layers.

probability that the first passage time for node d is exactly t by(
q[d]
)oσ

(h = t) =
(
q[d]
)oσ

(t)−
(
q[d]
)oσ

(t− 1)

=
[(
T t[d]
)
−
(
T t−1[d]

)]oσ
jβ
ujβ. (10)

Considering the walk starts from node o in layer σ, each tensor encoding the
mean first passage time to node d is obtained from Eq. (10) as

(
H[d]

)oσ
=
∞∑
t=0

t
(
q[d]
)oσ

(h = t) =
[(
δ − T t[d]

)−1]oσ
jβ
ujβ. (11)

The geometric series in Eq. (11) converges since the maximum eigenvalue
of T[d] is strictly smaller than one, and the sum can be calculated exploiting
the self-similarity of the series. Note that the mean first passage time to d
still depends on the origin of the walk, i.e., node o in layer σ.

The average mean first passage time h[d] to node d is obtained by averaging(
H[d]

)oσ
over all possible starting nodes and layers as

h[d] =
1

(N − 1)L
uoσ
(
H[d]

)oσ
+

1

N
π−1[d] , (12)
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where π[d] is the occupation probability of node d and the term 1
N
π−1[d] is in-

cluded explicitly to account for the average return time, that is not accounted
for when using absorbing random walks.

Finally, the random walk closeness centrality of node d is defined as the
inverse of h[d]. We introduce the vector ξi whose components are given by
the inverse of the corresponding values of h.

The comparison between the values of ξi obtained from simulations and
theoretical predictions are shown in Fig. 4. As in the betweenness centrality,
the results are in excellent agreement and it is worth remarking that the
equivalence holds regardless of the number of nodes in the network, the
topology and the number of layers.

4. Conclusions and Discussion

We have extended the main random walk centrality measures to inter-
connected multilayer networks and gave interpretation of their meaning. In
addition, we have presented analytical approaches, based on the tensorial
formalism defined in [11], for their computation. The comparison of the pre-
dictions given by our analytical approach with the results obtained by sim-
ulations show a perfect agreement, concluding that the presented analytical
expressions are ready to be applied to the analysis of real complex networks.
We expect that the presented results are useful in many interdisciplinary
applications ranging from social sciences to transportation networks.
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AppendixA. Eigenvalue problem with tensors

The eigenvalue problem for a rank-2 tensor, i.e., a standard matrix, is
defined by W i

jvi = λvj. The extension of this problem to rank-4 tensors
leads to the equation

M iα
jβViα = λVjβ. (A.1)
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To solve this problem, it is worth noting that any tensor can be unfolded
to lower rank tensors [39]. For instance, a rank-2 tensor like W i

j , with N2

components, can be flattened to a vector wk with N2 components. In the
case of the rank-4 multilayer adjacency tensor M iα

jβ , although any unfolding
is allowed, it is particularly useful for some applications to choose the ones
flattening to a squared rank-2 tensor M̃k

l with NL×NL components, where
L indicates the number of layers [40]. In fact, this unfolding produces as
many block adjacency matrices, named supra-adjacency matrices in some
applications [40, 31, 41], as the number of permutations of diagonal blocks of
size N2, i.e., L!. However, such unfoldings do not alter the spectral properties
of the resulting supra-matrix and can be used to solve the eigenvalue problem
for rank-4 tensors. In fact, the solution of the eigenvalue problem

M̃k
l ṽk = λ̃1ṽl, (A.2)

is a supra-vector with NL components which corresponds to the unfolding
of the eigentensor Viα.

AppendixB. Mean number of crossing times

Given M random walks starting in node o on layer σ and ending when
reaching node d, regardless of the layer, the expected number of times a
random walk will pass by node j on layer β is given by(

T[d]
)oσ
jβ

= lim
M→∞

1

M

M∑
m=1

∞∑
t=0

zoσjβ (t,m), (B.1)

where zoσjβ (t,m) = 1 if walk m was visiting node j in layer β at time step t
and zoσjβ (t,m) = 0 otherwise.

Following the frequentist interpretation, the probability of being in node
j in layer β at time step t, provided that the walk originated in node o in
layer σ, is given by

poσjβ(t) = lim
M→∞

1

M

m∑
m=1

zoσjβ (t,m). (B.2)

Substituting (B.2) in (B.1) we obtain that(
τ[d]
)oσ
jβ

=
∞∑
t=0

poσjβ(t) =
∞∑
t=0

(
T t[d]
)oσ
jβ

=
[(
δ − T[d]

)−1]oσ
jβ

(B.3)
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where T[d] corresponds to the absorbing transition tensor defined in Eq. (4).
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[4] R. Guimerà, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales, A. Arenas,
Optimal network topologies for local search with congestion, Phys. Rev.
Lett. 89 (24) (2002) 248701.

[5] R. Guimera, S. Mossa, A. Turtschi, L. N. Amaral, The worldwide air
transportation network: Anomalous centrality, community structure,
and cities’ global roles, PNAS 102 (22) (2005) 7794–7799.

[6] M. Barthelemy, Betweenness centrality in large complex networks, Eur.
Phys. J. B 38 (2) (2004) 163–168.

[7] V. Nicosia, R. Criado, M. Romance, G. Russo, V. Latora, Controlling
centrality in complex networks, Scientific reports 2.
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