
The Simultaneous Strong Metric Dimension of Graph
Families

A. Estrada-Moreno, C. Garćıa-Gómez,
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Abstract

Let G be a family of graphs defined on a common (labeled) vertex set V . A set
S ⊂ V is said to be a simultaneous strong metric generator for G if it is a strong
metric generator for every graph of the family. The minimum cardinality among all
simultaneous strong metric generators for G, denoted by Sds(G), is called the simulta-
neous strong metric dimension of G. We obtain general results on Sds(G) for arbitrary
families of graphs, with special emphasis on the case of families composed by a graph
and its complement. In particular, it is shown that the problem of finding the simulta-
neous strong metric dimension of families of graphs is NP -hard, even when restricted
to families of trees.

MSC: 05C12; 05C05.

1 Introduction

A generator of a metric space is a set S of points in the space with the property that every
point of the space is uniquely determined by its distances from the elements of S. Given
a simple and connected graph G with vertex set V (G) and edge set E(G), we consider the
metric dG : V (G) × V (G) → N ∪ {0}, where N denotes the set of positive integers and
dG(x, y) denotes the length of a shortest path between u and v. The pair (V (G), dG) is
readily seen to be a metric space. A vertex v ∈ V (G) is said to distinguish two vertices x
and y if dG(v, x) 6= dG(v, y). A set S ⊂ V (G) is said to be a metric generator for G if any
pair of vertices of G is distinguished by some element of S. If S = {w1, w2, . . . , wk} is an
(ordered) set of vertices, then the metric vector of a vertex v ∈ V (G) relative to S is the
vector (d(v, w1), d(v, w2), . . . , d(v, wk)). Thus, S is a metric generator if distinct vertices have
distinct metric vectors relative to S. A minimum cardinality metric generator is called a
metric basis and its cardinality, the metric dimension of G, is denoted by dim(G). Motivated
by the problem of uniquely determining the location of an intruder in a network, by means
of a set of devices each of which can detect its distance to the intruder, the concepts of a
metric generator and metric basis of a graph were introduced by Slater in [28] where metric
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generators were called locating sets. Harary and Melter independently introduced the same
concept in [7], where metric generators were called resolving sets. Applications of the metric
dimension to the navigation of robots in networks are discussed in [11] and applications to
chemistry in [3, 8, 9].

Sebö and Tannier in [27] asked the following question for a given metric generator T of
a graph H: whenever H is a subgraph of a graph G and the metric vectors of the vertices of
H relative to T agree in both H and G, is H an isometric subgraph of G? Even though the
metric vectors relative to a metric generator of a graph distinguish all pairs of vertices in the
graph, they do not uniquely determine all distances in a graph as was first shown in [27].
It was observed in [27] that, if “metric generator” is replaced by a stronger notion, namely
that of “strong metric generator” (defined below), then the above question can be answered
in the affirmative.

For u, v ∈ V (G), the interval IG[u, v] between u and v is defined as the collection of
all vertices that belong to some shortest u − v path. A vertex w strongly resolves two
vertices u and v if v ∈ IG[u,w] or u ∈ IG[v, w] i.e., dG(u,w) = dG(u, v) + dG(v, w) or
dG(v, w) = dG(v, u) +dG(u,w). A set S of vertices in a connected graph G is a strong metric
generator for G if every two vertices of G are strongly resolved by some vertex of S. The
smallest cardinality of a strong metric generator for G is called its strong metric dimension
and is denoted by dims(G). We say that a strong metric generator for G of cardinality
dims(G) is a strong metric basis of G.

The problem of finding the strong metric dimension of a graph has been studied for
several classes of graphs. For instance, this problem was studied for Cayley graphs [22],
distance-hereditary graphs [20], Hamming graphs [15], Cartesian product graphs and direct
product graphs [25], corona product graphs and join graphs [16], strong product graphs
[17,18] and convex polytopes [12] . Also, some Nordhaus-Gaddum type results for the strong
metric dimension of a graph and its complement are known [29]. Besides the theoretical
results related to the strong metric dimension, a mathematical programming model [12] and
metaheuristic approaches [13, 21] for finding this parameter have been developed. For more
information the reader is invited to read the survey [14] and the references cited therein.

Let G = {G1, G2, ..., Gk} be a family of (not necessarily edge-disjoint) connected graphs
Gi = (V,Ei) with common vertex set V (the union of whose edge sets is not necessarily the
complete graph). Ramı́rez-Cruz, Oellermann and Rodŕıguez-Velázquez defined in [23, 24]
a simultaneous metric generator for G as a set S ⊂ V such that S is simultaneously a
metric generator for each Gi. They introduce the concept of simultaneous metric basis of
G as a minimum cardinality simultaneous metric generator for G, and its cardinality the
simultaneous metric dimension of G, denoted by Sd(G) or explicitly by Sd(G1, G2, ..., Gk).
Analogously, we define a simultaneous strong metric generator for G to be a set S ⊂ V such
that S is simultaneously a strong metric generator for each Gi. We say that a minimum
cardinality simultaneous strong metric generator for G is a simultaneous strong metric basis
of G, and its cardinality the simultaneous strong metric dimension of G, denoted by Sds(G)
or explicitly by Sds(G1, G2, ..., Gt).

In this paper we study the problem of finding exact values or sharp bounds for the
simultaneous strong metric dimension. The remainder of the article is organized as follows.
In Section 2 we show that there are some families of graphs for which the simultaneous strong
metric dimension can be obtained relatively easily. To this end we describe the approach
developed in [22] of transforming the problem of finding the strong metric dimension of a
graph to a vertex cover problem. In Section 3 we obtain sharp bounds on the simultaneous
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strong metric dimension, some of which are generalizations of well known bounds on the
strong metric dimension. In Section 4 we focus on the particular case of families composed
by a graph and its complement, showing that the problem of finding a simultaneous strong
metric generator for {G,Gc} can be transformed to the problem of finding a vertex cover
of G which, at the same time, is a strong metric generator. Finally, in Section 5 we show
that the problem of finding the simultaneous strong metric dimension of families of trees is
NP -hard.

Throughout the paper, we will use the notation Kn, Kr,s, Cn and Pn for complete graphs,
complete bipartite graphs, cycle graphs and path graphs of order n, respectively. For a vertex
v of a graph G, NG(v) will denote the set of neighbours or open neighbourhood of v in G. The
closed neighbourhood, denoted by NG[v], equals NG(v) ∪ {v}. If there is no ambiguity, we
will simple write N(v) or N [v]. Two vertices x, y ∈ V (G) are twins in G if NG[x] = NG[y] or
NG(x) = NG(y). If NG[x] = NG[y], they are said to be true twins, whereas if NG(x) = NG(y)
they are said to be false twins. The diameter of a graph G is denoted by D(G). We recall
that a graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly one vertex
y ∈ V (G) such that dG(x, y) = D(G). For instance, even cycles C2k and the hypercubes Qr

are 2-antipodal graphs. Given a graph G and W ⊂ V (G), we define 〈W 〉G as the subgraph
of G induced by W . For the remainder of the paper, definitions will be introduced whenever
a concept is needed.

2 Main Tools and Examples

It was shown in [3] that dim(G) = 1 if and only if G is a path. It now readily follows that
dims(G) = 1 if and only if G is a path. Since any strong metric basis of a path is composed
by a leaf, we can state the following remark.

Remark 1. Let G be a family of connected graphs defined on a common vertex set. Then
Sds(G) = 1 if and only if G is a collection of paths that share a common leaf.

At the other extreme we see that dims(G) = n−1 if and only if G is the complete graph
of order n. For a family of graphs we have the following remark.

Remark 2. Let G be a family of connected graphs defined on a common vertex set. If
Kn ∈ G, then

Sds(G) = n− 1.

We now describe the approach developed in [22] of transforming the problem of finding
the strong metric dimension of a graph to the vertex cover problem. A vertex u of G is
maximally distant from v if for every vertex w ∈ NG(u), dG(v, w) ≤ dG(u, v). The collection
of all vertices of G that are maximally distant from some vertex of the graph is called the
boundary of the graph, see [1, 2], and is denoted by ∂(G)1. If u is maximally distant from v
and v is maximally distant from u, then we say that u and v are mutually maximally distant.
Let S = {u ∈ V (G) : there exists v ∈ V (G) such that u, v are mutually maximally distant}.
It is readily seen that S ⊆ ∂(G). If u is maximally distant from v, and v is not maximally
distant from u, then v has a neighbour v1, such that dG(v1, u) > dG(v, u), i.e., dG(v1, u) =
dG(v, u) + 1. It is easily seen that u is maximally distant from v1. If v1 is not maximally

1In fact, the boundary ∂(G) of a graph was defined first in [4] as the subgraph of G induced by the set
mentioned in our article with the same notation.
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distant from u, then v1 has a neighbour v2, such that dG(v2, u) > dG(v1, u). Continuing in
this manner we construct a sequence of vertices v1, v2, . . . such that dG(vi+1, u) > dG(vi, u)
for every i. Since G is finite this sequence terminates with some vk. Thus for all neighbours x
of vk we have dG(vk, u) ≥ dG(x, u), and so vk is maximally distant from u and u is maximally
distant from vk. Hence every boundary vertex belongs to S. Certainly ∂(G) = S.

For some basic graph classes, such as complete graphs Kn, complete bipartite graphs
Kr,s, cycles Cn and hypercube graphs Qk, the boundary is simply the whole vertex set. It
is not difficult to see that this property also holds for all 2-antipodal graphs and for all
distance-regular graphs. Notice that the boundary of a tree consists of its leaves. A vertex
of a graph is a simplicial vertex if the subgraph induced by its neighbours is a complete
graph. Given a graph G, we denote by σ(G) the set of simplicial vertices of G. It is readily
seen that σ(G) ⊆ ∂(G).

We use the notion of “strong resolving graph” based on a concept introduced in [22].
The strong resolving graph of G, denoted by GSR, has vertex set V (GSR) = V (G) where two
vertices u, v are adjacent in GSR if and only if u and v are mutually maximally distant in G.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at least
one vertex of S. The vertex cover number of G, denoted by β(G), is the smallest cardinality
of a vertex cover of G. We refer to a β(G)-set in a graph G as a vertex cover of cardinality
β(G). Oellermann and Peters-Fransen [22] showed that the problem of finding the strong
metric dimension of a connected graph G can be transformed to the problem of finding the
vertex cover number of GSR.

Theorem 3. [22] For any connected graph G, dims(G) = β(GSR).

There are some families of graphs for which the strong resolving graphs can be obtained
relatively easily. We state some of these here since we need to refer to these in other sections
of the paper.

Observation 4.

(a) If ∂(G) = σ(G), then GSR
∼= K∂(G). In particular, (Kn)SR ∼= Kn and for any tree T

with l(T ) leaves, (T )SR ∼= Kl(T ).

(b) For any 2-antipodal graph G of order n, GSR
∼=
⋃n

2
i=1K2. Even cycles are 2-antipodal.

Thus, (C2k)SR ∼=
⋃k
i=1K2.

(c) For odd cycles (C2k+1)SR ∼= C2k+1.

From this observation it is easy to construct several families of graphs G satisfying
Sds(G) = dims(G), for some G ∈ G. We introduce the following remarks as straightforward
examples.

Remark 5. Let G be a family of trees defined on a common vertex set and let G ∈ G. If
σ(G) ⊇ σ(G′), for all G′ ∈ G, then Sds(G) = dims(G).

Remark 6. Let G be a family of 2-antipodal graphs defined on a common vertex set V . If
there exits a partition {V1, V2} of V such that for every u ∈ V1 and every G ∈ G, the only

vertex diametral to v in G belongs to V2, then Sds(G) = dims(G) = |V |
2

, for all G ∈ G.
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For a graph G of order n and a graph H, the corona product of G and H, denoted as
G � H, is the graph obtained from G and H by taking one copy of G and n copies of H,
and joining every vertex vi of G to every vertex of the i-th copy of H. The next result is a
direct consequence of the fact that no vertex of G is mutually maximally distant with any
vertex of G�H.

Remark 7. Let G = {G1, G2, . . . , Gk} be a family composed by connected non-trivial graphs,
defined on a common vertex set, and let H be a non-trivial graph. Then, for any i ∈
{1, . . . , k},

Sds(G1 �H,G2 �H, . . . , Gk �H) = dims(Gi �H).

The result above allows to extend results obtained in [16] for dims(G � H) to families
composed by corona product graphs.

Although it is relatively easy to construct some families of graphs having a given si-
multaneous strong metric dimension, the problem of computing this parameter is NP -hard,
even when restricted to families of trees, as we shall show in Section 5.

3 Basic Bounds

Since every strong metric generator is also a metric generator, for any family G of connected
graphs defined on a common vertex set V ,

1 ≤ Sd(G) ≤ Sds(G) ≤ |V | − 1.

The case Sd(G) = 1 was previously discussed in Remark 1. For the case Sd(G) = |V | − 1,
consider, for instance, a family G composed by r + 1 star graphs of the form K1,r, defined
on a common vertex set V , all of them having different centers. In this case, only one vertex
can be excluded from any simultaneous strong metric basis of G, so that Sds(G) = |V | − 1.
The following result characterizes the graph families for which Sd(G) = |V | − 1.

Theorem 8. Let G be a family of connected graphs defined on a common vertex set V. Then
Sds(G) = |V | − 1 if and only if for every pair u, v ∈ V, there exists a graph Guv ∈ G such
that u and v are mutually maximally distant in Guv.

Proof. If Sds(G) = |V | − 1, then for every v ∈ V, the set V − {v} is a simultaneous strong
metric basis of G and, as a consequence, for every u ∈ V −{v} there exists a graph Guv ∈ G
such that the set V − {u, v} is not a strong metric generator for Guv. This means that the
set V −{u, v} is not a vertex cover of (Guv)SR and then u and v must be adjacent in (Guv)SR
or, equivalently, they are mutually maximally distant in Guv.

Conversely, if for every u, v ∈ V there exists a graph Guv ∈ G such that u and v are
mutually maximally distant in Guv, then for any strong simultaneous metric basis B of G
either u ∈ B or v ∈ B. Hence, all but one element of V must belong to B. Therefore
|B| ≥ |V | − 1 and we can conclude that Sds(G) = |V | − 1.

Given a family G = {G1, G2, . . . , Gk} of connected graphs defined on a common vertex

set V , we define ∂(G) =
⋃
G∈G

∂(G). The following general considerations are true.
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Observation 9. For any family G = {G1, G2, . . . , Gk} of connected graphs defined on a com-
mon vertex set V and any subfamily H ⊂ G.

Sds(H) ≤ Sds(G) ≤ min

{
|∂(G)| − 1,

k∑
i=1

dims(Gi)

}
.

In particular,
max

i∈{1,...,k}
{dims(Gi)} ≤ Sds(G).

The above inequalities are sharp. For instance, consider a family H1 of graphs defined
on a vertex set V , where some particular vertex u ∈ V belongs to a simultaneous strong
metric basis B. Consider also a family of paths H2, defined on V , sharing all of them this
particular vertex u as one of their leaves. Then B is a simultaneous strong metric basis of
the family H1∪H2, so that Sds(H1∪H2) = Sds(H1). On the other hand, a family of trees as
the one described in Remark 5, where the set of leaves of one tree contains the sets of leaves
of every other tree in the family, satisfies Sds(G) = |∂(G)| − 1. Finally, consider the family
G = {G1, G2} shown in Figure 1. It is easy to see that Sds(G) = dims(G1) + dims(G2) =
|∂(G)| − 2 < |∂(G)| − 1.

u1

u2

v1 v2 v3 v4

u3

u4

v1

v2

u1 u2 u3 u4

v3

v4
G1 G2

Figure 1: The family G = {G1, G2} satisfies Sds(G) = dims(G1) + dims(G2) = 6.

Next, we recall an upper bound for dims(G) obtained in [16]. We say that X ⊆ V (G) is
a twin-free clique in G if X is a clique containing no true twins. The twin-free clique number
of G, denoted by $(G), is the maximum cardinality among all twin-free cliques in G.

Theorem 10. [16] For any connected graph G of order n ≥ 2,

dims(G) ≤ n−$(G).

Moreover, if D(G) = 2, then the equality holds.

Our next result is an extension of Theorem 10 to the case of the simultaneous strong
metric dimension. We define a simultaneous twin-free clique of a family G of graphs as a set
which is a twin-free clique in every G ∈ G. The simultaneous twin-free clique number of G,
denoted by S$(G), is the maximum cardinality among all simultaneous twin-free cliques of
G.

Theorem 11. Let G be a family of connected graphs of order n ≥ 2 defined on a common
vertex set. Then

Sds(G) ≤ n− S$(G).

Moreover, if every graph belonging to G has diameter two, then

Sds(G) = n− S$(G).
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Proof. Let W be a simultaneous twin-free clique in G of maximum cardinality and let G =
(V,E) be a graph belonging to G. We will show that V −W is a strong metric generator
for G. Since W is a twin-free clique, for any two distinct vertices u, v ∈ W there exists
s ∈ V − W such that either s ∈ NG(u) and s /∈ NG(v) or s ∈ NG(v) and s /∈ NG(u).
Without loss of generality, we consider s ∈ NG(u) and s /∈ NG(v). Thus, u ∈ IG[v, s] and, as
a consequence, s strongly resolves u and v. Therefore, Sds(G) ≤ |V −W | = n− S$(G).

Now, suppose that every graph G = (V,E) belonging to G has diameter two. Let
X ⊂ V be a simultaneous strong metric basis of G and let u, v ∈ V , u 6= v. If dG(u, v) = 2
or NG[u] = NG[v], for some G ∈ G, then u and v are mutually maximally distant vertices of
G, so u ∈ X or v ∈ X. Hence, for any two distinct vertices x, y ∈ V −X and any G ∈ G we
have dG(x, y) = 1 and NG[x] 6= NG[y]. As a consequence, V −X is a simultaneous twin-free
clique of G and so n− Sds(G) = |V −X| ≤ S$(G). Therefore, Sds(G) ≥ n− S$(G) and the
result follows.

Corollary 12. Let G be a family of graphs of diameter two and order n ≥ 2 defined on a
common vertex set. If G contains a triangle-free graph, then

n− 2 ≤ Sds(G) ≤ n− 1.

Finally, we recall the following upper bound on dims(G), obtained in [29].

Theorem 13. [29] For any connected graph G of order n,

dims(G) ≤ n−D(G).

Given a graph family G defined on a common vertex set V , we define the parameter
ρ(G) = |W | − 1, where W ⊆ V is a maximum cardinality set such that for every G ∈ G the
subgraph 〈W 〉G induced by W in G is a path and there exists w ∈ W which is a common
leaf of all these paths.

Theorem 14. Let G be a family of graphs defined on a common vertex set V . Then,

Sds(G) ≤ |V | − ρ(G).

Proof. Let W = {v0, v1, . . . , vρ(G)} ⊆ V be a set for which ρ(G) is obtained. Assume,
without loss of generality, that v0 is a common leaf of 〈W 〉G, for every G ∈ G, and let
W ′ = W − {v0}. Since no pair of vertices u, v ∈ W ′ are mutually maximally distant in
any G ∈ G, the set S = V −W ′ is a simultaneous strong metric generator for G. Thus,
Sds(G) ≤ |S| = |V | − ρ(G).

The inequality above is sharp. A family of graphs G composed by paths having a common
leaf is a trivial example where the inequality is reached. In this case, ρ(G) = |V |− 1, so that
Sds(G) = 1 = |V | − ρ(G). This is not the only circumstance where this occurs. For instance,
consider a graph family G constructed as follows. Consider a star graph K1,r of center u
and a complete graph Kr+1 defined on a common vertex set V ′. Let V ′′ be a set such that
V ′ ∩ V ′′ = ∅ and let {G′1, G′2, . . . , G′k} be a family composed by paths defined on V ′′, having
a common leaf, say v, and let G = {G1, H1, G2, H2, . . . , Gk, Hk} be a graph family such that
every Gi is constructed from G′i and K1,r by identifying u and v, and every Hi is constructed
from G′i and Kr+1 by identifying u and v. For every w ∈ V ′−{u}, the set W = V ′′ ∪ {w} is
a maximum cardinality set such that, for every graph in G, the subgraph induced by W is a
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path and there exists w ∈ W which is a common leaf of all these paths, so that ρ(G) = |V ′′|.
Furthermore, the set V ′ − {u} is a simultaneous strong metric basis of G and, as a result,
Sds(G) = r = |V | − ρ(G).

In general, the bound shown in Theorem 14 can be efficiently computed, as ρ(G) can be
easily computed in O(|G||V |3) time using the original Dijkstra’s algorithm, which may be
accelerated by using special data structures, e.g. Fibonacci heaps [5].

4 The Simultaneous Strong Metric Dimension of {G,Gc}
We first consider the following direct consequence of Theorem 8.

Corollary 15. Let G be a graph of order n. Then the following assertions are equivalent.

• Sds(G,G
c) = n− 1.

• D(G) = D(Gc) = 2.

Proof. Let x, y ∈ V (G). If D(G) = D(Gc) = 2, then either x and y are diametral in G or
they are diametral in Gc. Hence, by Theorem 8 we obtain Sds(G,G

c) = n− 1.
Now, assume that D(G) ≥ 3. If x, u, v, y is a shortest path from x to y in G, then x and

v are not mutually maximally distant in G and, since they are adjacent in Gc and they are
not twins, they are not mutually maximally distant in Gc. Thus, by Theorem 8 we deduce
that Sds(G,G

c) ≤ n− 2.

The Petersen graph is an example of graphs where Sds(G,G
c) = n − 1 and the graphs

shown in Figure 2 are examples of graphs where Sds(G,G
c) = n− 2.

From Theorem 10 and Corollary 15 we derive the next result.

Theorem 16. For any graph G of order n and D(G) = 2 such that Gc is connected,

Sds(G,G
c) ≥ n−$(G).

Moreover, if D(Gc) ≥ 3 and $(G) = 2, then

Sds(G,G
c) = n− 2.

Given a graph G = (V,E), we say that a set S ⊂ V is a strong resolving cover for G if
S is a vertex cover and a strong metric generator for G.

Theorem 17. If G is a connected graph such that Gc is connected, then any strong resolving
cover of G is a simultaneous strong metric generator for {G,Gc}.
Proof. Let W be a strong resolving cover of G. We shall show that W is a strong metric
generator for Gc. We differentiate two cases for any pair x, y of mutually maximally distant
vertices in Gc.

Case 1. x and y are adjacent in Gc. In this case, x and y are false twins in G (true twins in
Gc) and so they are mutually maximally distant in G. Since W is a strong metric generator
for G, we conclude that x ∈ W or y ∈ W .

Case 2. x and y are not adjacent in Gc. In this case x and y are adjacent in G and, since W
is a vertex cover of G, we have that x ∈ W or y ∈ W .

According to the two cases above, W is a vertex cover of (Gc)SR and, as a consequence, W
is a strong metric generator for Gc. Therefore, W is a simultaneous strong metric generator
for {G,Gc}.
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a

b

c

d

e

G Gc

d

a

c

e

b

Figure 2: X1 = {a, c, d} is a strong resolving cover for G and X2 = {a, c, b} is a strong
resolving cover for Gc. Both X1 and X2 are simultaneous strong metric bases of {G,Gc}.

The strong resolving cover number, denoted by βs(G), is the minimum cardinality among
all the strong resolving covers for G. Obviously, for any connected graph of order n,

n− 1 ≥ βs(G) ≥ max{dims(G), β(G)}. (1)

Corollary 18. For any connected graph G such that Gc is connected,

Sds(G,G
c) ≤ min{βs(G), βs(G

c)}.

Figure 2 shows a graph G and its complement Gc. In this case, Sds(G,G
c) = βs(G) =

βs(G
c) = 3 > 2 = dims(G) = dims(G

c) = β(G) = β(Gc). The graph G shown in Figure 3
satisfies that dims(G

c) = 2 < 3 = βs(G
c) = Sds(G,G

c) = dims(G) < 4 = βs(G). In this
case, {2, 4} is a strong metric basis of Gc, {2, 3, 4} is a βs(G

c)-set which is a simultaneous
strong metric basis of {G,Gc} and, at the same time, it is a strong metric basis of G, while
{2, 4, 5, 6} is a βs(G)-set.

12

3

4 5

6

G

12

3

4 5

6

GSR

12

3

4 5

6

Gc

12

3

4 5

6

(Gc)SR

Figure 3: The βs(G
c)-set {2, 3, 4} is a simultaneous strong metric basis of {G,Gc}.

Theorem 19. Let G be a connected graph such that D(Gc) = 2 and let S ⊂ V (G). Then
the following assertions are equivalent.

(a) S is a simultaneous strong metric generator for {G,Gc}.

(b) S is a strong resolving cover for G.

Proof. Let G = (V,E). Since D(Gc) = 2, two vertices x, y ∈ V are mutually maximally
distant in Gc if and only if dGc(x, y) = 2 or NGc [x] = NGc [y]. Hence, (Gc)SR = (V,E ∪ E ′),
where E ′ = {{x, y} : NG(x) = NG(y)}.

Let S be a simultaneous strong metric generator for {G,Gc}. Since S is a strong metric
generator for Gc, we deduce that S is a vertex cover of (Gc)SR = (V,E ∪ E ′), and as a
consequence, for any edge {x, y} ∈ E, we have that x ∈ S or y ∈ S. Hence, S is a strong
metric generator for G and a vertex cover of G. By Theorem 17 we conclude the proof.

From Theorem 19 we deduce the following result.
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Corollary 20. For any connected graph G such that D(Gc) = 2,

Sds(G,G
c) = βs(G).

In order to present the next result, we need to introduce some new notation and termi-
nology. Given a graph G such that V (G) 6= ∂(G), we define the interior subgraph of G as
the subgraph G̊ induced by V (G)− ∂(G). The parameter β̊(G) is defined as follows.

β̊(G) =


0 if V (G) = ∂(G)

β(G̊) otherwise.

Corollary 21. For any connected graph G such that D(Gc) = 2,

Sds(G,G
c) ≥ max{dims(G) + β̊(G), β(G)}.

Proof. By Theorem 19 and Eq.(1) we have that Sds(G,G
c) ≥ β(G). It only remains to prove

that Sds(G,G
c) ≥ dims(G) + β̊(G). If V (G) = ∂(G), then β̊(G) = 0, and by Theorem 19

and Eq.(1) we have Sds(G,G
c) ≥ dims(G) = dims(G) + β̊(G). Assume that V (G) 6= ∂(G).

Let B be a simultaneous strong metric basis of {G,Gc}, and let B1 = B ∩ ∂(G) and B2 =
B − B1. Clearly, |B1| ≥ dims(G). Moreover, since no vertex of B1 covers edges of G̊, by
Theorem 19 we conclude that B2 is a vertex cover of G̊, so that |B2| ≥ β(G̊). Therefore,
Sds(G,G

c) = |B| = |B1|+ |B2| ≥ dims(G) + β̊(G).

To illustrate this result we take the graph G shown in Figure 4. In this case Sds(G,G
c) =

β(G) = 5 > 4 = dims(G) + β̊(G). In contrast, the equality Sds(G,G
c) = dims(G) + β̊(G)

is satisfied for any graph constructed as follows. Let r, s ≥ 2 and t ≥ 3 be three integers
and let G be the graph constructed from Kr, Ks and Pt by identifying one vertex of Kr with
one leaf of Pt and one vertex of Ks with the other leaf of Pt. In this case Sds(G,G

c) =
r+ s+ b t

2
c− 1, dims(G) = r+ s− 1, β(G) = r+ s+ b t

2
c− 2 and β̊(G) = β(G̊) = b t

2
c. Hence,

Sds(G,G
c) = dims(G) + β̊(G) > β(G).

1 3 6 9 11

4 7 10

2 5 8

Figure 4: The sets {1, 5, 6, 7} and {5, 6, 7, 11} are the only strong metric bases of G, while
{1, 5, 6, 7, 11} is the only β(G)-set which is a strong metric generator of G.

Corollary 22. Let G be a connected graph such that D(Gc) = 2. Then the following asser-
tions hold.

• Sds(G,G
c) = dims(G) if and only if there exists a strong metric basis of G which is a

vertex cover of G.

• Sds(G,G
c) = β(G) if and only if there exists a β(G)-set which is a strong metric

generator of G.
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1 2 3

4

7 6 5

Figure 5: The graph G satisfies that Sds(G,G
c) = dims(G) = 4 > 3 = β(G).

To illustrate the result above we take the graphs shown in Figures 4 and 5. In both
cases D(Gc) = 2. Now, in the case of Figure 4, the sets {1, 5, 6, 7} and {5, 6, 7, 11} are the
only strong metric bases of G. At the same time, the set {1, 5, 6, 7, 11} is the only β(G)-
set which is a strong metric generator of G, and so it is the only βs(G)-set. Therefore,
Sds(G,G

c) = βs(G) = β(G) = 5 > 4 = dims(G). In the case of Figure 5, Sds(G,G
c) =

βs(G) = dims(G) = 4 > 3 = β(G), as {2, 4, 6, 7} is a strong metric basis of G which is a
vertex cover of G and {2, 4, 6} is a β(G)-set.

The hypercube Qr, r ≥ 3, of order 2r is a 2-antipodal graph and so dims(Qr) = 2r−1.
Also, Qr is a bipartite graph and, for r odd, any colour class form a strong metric basis
which is a vertex cover of minimum cardinality. Since D(Qc

r) = 2, we conclude that for any
odd integer r ≥ 3,

Sds(Qr, Q
c
r) = dims(Qr) = β(Qr) = 2r−1. (2)

This is an example where Sds(G,G
c) = dims(G) = β(G) and it is a particular case of the

next result.

Proposition 23. For any bipartite 2-antipodal graph G of odd diameter and order n > 2,

Sds(G,G
c) =

n

2
.

Proof. Let G = (V1 ∪V2, E). Since the subgraph of Gc induced by Vi, i ∈ {1, 2}, is complete
and G is not a complete bipartite graph, we conclude that Gc is connected. Furthermore,
since G is 2-antipodal of odd diameter, each vertex x ∈ V1 is adjacent to a vertex x′ ∈ V2 in
Gc and, as a result, D(Gc) = 2.

On the other hand, V1 is a vertex cover of G and since G is a 2-antipodal graph and
D(G) is odd, for any x ∈ V1 there exists exactly one vertex x′ ∈ V2 which is antipodal to x,
which implies that V1 is a strong metric basis of G. Therefore, by Corollary 22 we conclude
the proof.

An even-order cycle C2k has odd diameter if k is odd, thus Sds(C2k, (C2k)
c) = k if k is

odd. Note that for k even, Sds(C2k, (C2k)
c) = k + 1.

IfG is a bipartite 2-antipodal graph, then the Cartesian product graphG�K2 is bipartite
and 2-antipodal. Moreover, D(G�K2) = D(G) + 1. Therefore, Proposition 23 immediately
leads to the following result.

Corollary 24. For any bipartite 2-antipodal graph G of even diameter and order n,

Sds(G�K2, (G�K2)
c) = n.

Theorem 25. Let G be a connected graph. Then GSR = Gc if and only if D(G) = 2 and G
is a true twin-free graph.
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Proof. (Necessity) Assume that GSR = Gc = (V,E), and let u, v ∈ V be two mutually
maximally distant vertices in G.

First consider that u and v are diametral vertices in G. Since u and v are mutually
maximally distant in G and GSR = Gc, we obtain that u and v are adjacent in Gc and, as a
result, D(G) = dG(u, v) ≥ 2. Now, suppose that dG(u, v) > 2. Then there exists w ∈ NG(v)−
NG(u) such that dG(u,w) = D(G) − 1 ≥ 2. Hence, w and u are not mutually maximally
distant in G and w ∈ NG(u), which contradicts the fact that GSR = Gc. Therefore, D(G) =
2.

Now assume that u and v are true twins in G. We have that u and v are false twins in
Gc and, as a result, they are not adjacent in Gc and they are mutually maximally distant in
G, which contradicts the fact that GSR = Gc. Therefore, G is a true twin-free graph.

(Sufficiency) If G = (V,E) is a true twin-free graph and D(G) = 2, then two vertices u, v
are mutually maximally distant in G if and only if dG(u, v) = 2. Therefore, GSR = Gc.

Odd-order cycles are an example of the previous result, as [(C2k+1)
c]SR = C2k+1. More-

over, it is not difficult to show that a simultaneous strong metric basis of {C2k+1, (C2k+1)
c}

is the minimum union of a strong metric basis and a minimum vertex cover of C2k+1, so

Sds(C2k+1, (C2k+1)
c) = k +

⌊
k

2

⌋
+ 1.

Corollary 26. Let G be a true twin-free graph such that D(G) = 2. Then the following
assertions hold.

• Sds(G,G
c) = dims(G) if and only if there exists a β(Gc)-set which is a strong metric

generator for Gc.

• Sds(G,G
c) = dims(G) = dims(G

c) if and only if there exists a β(Gc)-set which is a
strong metric basis of Gc.

The complement of the graph shown in Figure 4 has diameter two and {1, 5, 6, 7, 11} is
a β(G)-set which is a strong metric generator for G, so that Sds(G,G

c) = dims(G).
Given a graph G, it is well-known that D(G) ≥ 4 leads to D(Gc) = 2. Hence, D(G) 6= 2

and D(Gc) 6= 2 if and only if D(G) = D(Gc) = 3. In particular, for the case of trees we have
that D(T ) = 3 if and only if D(T c) = 3.

Proposition 27. Let T be a tree of order n. If D(T ) = 3, then

Sds(T, T
c) = n− 2.

Proof. Notice that T has l(T ) = n−2 leaves. Let u and v be the two interior vertices of T . We
have thatD(T c) = 3 and dT c(u, v) = 3. Any simultaneous strong metric basis of {T, T c}must
contain all leaves of T , except one, and one of u and v, so Sds(T, T

c) ≥ l(T )− 1 + 1 = n− 2.
Moreover, by Corollary 15 we have that Sds(T, T

c) ≤ n− 2 and so the equality holds.

Proposition 28. Let T be a tree of order n such that D(T ) ≥ 4, let l(T ) be the number
of leaves of T , let u be a leaf of T , and let T ′u be the tree obtained from T by removing all
leaves, except u. Then,

β(T̊ ) + l(T )− 1 ≤ Sds(T, T
c) ≤ β(T ′u) + l(T )− 1.
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Proof. Note that dims(T ) = l(T )−1 and β̊(T ) = β(T̊ ). Thus, by Corollary 21, Sds(T, T
c) ≥

max{l(T )− 1 + β(T̊ ), β(T )}, and as a consequence, Sds(T, T
c) ≥ β(T̊ ) + l(T )− 1.

To prove the upper bound, let X be a β(T ′u)-set and let Y ⊂ V (T ) be the set composed
by all leaves of T , except u. Notice that X∪Y is a strong resolving cover of T and X∩Y = ∅.
Now, since D(T c) = 2, by Corollary 19 we conclude that Sds(T, T

c) = βs(T ) ≤ |X|+ |Y | =
β(T ′u) + l(T )− 1.

A particular case of the previous result is that of caterpillar trees T such that T ′u
∼=

Pn−l(T )+1 for every leaf u of T . In this case, we have that Sds(T, T
c) = l(T ) +

⌈
n−l(T )

2

⌉
− 1.

Moreover, if D(T ) = 4, then T̊ is a star graph. On the other hand, if D(T ) = 5, then T̊ is
composed by exactly two interior vertices and l(T̊ ) = n− l(T )− 2 leaves. With these facts
in mind, the following two results are straightforward consequences of Proposition 28.

Corollary 29. Let T be a tree of order n such that D(T ) = 4. If the central vertex of T̊ is
a support vertex of T , then

Sds(T, T
c) = l(T ).

Otherwise,
Sds(T, T

c) = l(T ) + 1.

Corollary 30. Let T be a tree of order n such that D(T ) = 5. If an interior vertex of T̊ is
a support vertex of T , then

Sds(T, T
c) = l(T ) + 1.

Otherwise,
Sds(T, T

c) = l(T ) + 2.

In general, the bounds shown in Proposition 28 can be efficiently computed, as β(T ) can
be computed in O(n1.5) time for any tree T [26].

5 Computability of the Simultaneous Strong Metric

Dimension

It was shown in [22] that the problem of finding the strong metric dimension of a graph,
when stated as a decision problem, is NP -complete. This problem is formally stated as a
decision problem as follows:

Strong Metric Dimension (SDIM)
INSTANCE: A graph G = (V,E) and an integer p, 1 ≤ p ≤ |V (G)| − 1.
QUESTION: Is dims(G) ≤ p?

In an analogous manner, we define the decision problem associated to finding the simul-
taneous strong metric dimension of a graph family.

Simultaneous Strong Metric Dimension (SSD)
INSTANCE: A graph family G = {G1, G2, . . . , Gk} defined on a common vertex set V and
an integer p, 1 ≤ p ≤ |V | − 1.
QUESTION: Is Sds(G) ≤ p?

It is straightforward to see that SSD is NP -complete in the general case, as determining
whether a vertex set S ⊂ V , |S| ≤ p, is a simultaneous strong metric generator for a graph
family G can be done in polynomial time, and for any graph G = (V,E) and any integer
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1 ≤ p ≤ |V (G)|−1, the corresponding instance of SDIM can be transformed into an instance
of SSD in polynomial time by making G = {G}.

Here we will discuss how the requirement of simultaneity makes computing the simulta-
neous strong metric dimension difficult, even for families composed by graphs whose individ-
ual strong metric dimension is easily computable. In particular, we will analyse the case of
families composed by trees. As we have previously pointed out, the strong metric dimension
of any tree T equals the number of leaves minus one, and every set composed by all but one
of its leaves is a strong metric basis [27]. Thus, for any tree T , a postorder traversal allows
to compute dims(T ) in polynomial time. However, the problem of finding the simultaneous
strong metric dimension of a family of trees is NP -hard, as we will show. To this end, we
will use a reduction of a subcase of the Hitting Set Problem (HSP), which was shown to be
NP -complete by Karp [10]. HSP is defined as follows:

Hitting Set Problem (HSP)
INSTANCE: A collection C = {C1, C2, . . . , Ck} of non-empty subsets of a finite set S and a
positive integer p ≤ |S|.
QUESTION: Is there a subset S ′ ⊆ S with |S ′| ≤ p such that S ′ contains at least one element
from each subset in C?

Theorem 31. The SSD Problem is NP -complete for families of trees.

Proof. As we discussed previously, determining whether a vertex set S ⊂ V , |S| ≤ p, is a
simultaneous strong metric generator for a graph family G can be done in polynomial time,
so SSD is in NP .

It is known that HSP is NP -complete even if |Ci| ≤ 2 for every Ci ∈ C [6]. We will refer
to this subcase of HSP as HSP2, and will show a polynomial time transformation of HSP2
into SSD. Let S = {v1, v2, . . . , vn} be a finite set and let C = {C1, C2, . . . , Ck}, where every
Ci ∈ C satisfies 1 ≤ |Ci| ≤ 2 and Ci ⊆ S. Let p be a positive integer such that p ≤ |S|, and
let S ′ = {w1, w2, . . . , wn} such that S∩S ′ = ∅. We construct the family T = {T1, T2, . . . , Tk}
composed by trees on the common vertex set V = S∪S ′∪{u}, u /∈ S∪S ′, as follows. For every
r ∈ {1, . . . , k}, if Cr = {vir}, let Pr be a path on the vertices of (S−{vir})∪(S ′−{wir}), and
let Tr be the tree obtained from Pr by joining by an edge the vertex u to one end of Pr, and
joining the other end of Pr to the vertices vir and wir . On the other hand, if Cr = {vir , vjr},
Pr is a path on the vertices of (S − {vir , vjr}) ∪ S ′, and Tr is the tree obtained from Pr by
joining by an edge the vertex u to one end of Pr, and the other end of Pr to the vertices vir
and vjr . Figure 6 shows an example of this construction.

In order to prove the validity of this transformation, we claim that there exists a subset
S ′′ ⊆ S of cardinality |S ′′| ≤ p that contains at least one element from each Ci ∈ C if and
only if Sds(T ) ≤ p+ 1.

To prove this claim, we first assume that there exists a set S ′′ ⊆ S which contains at
least one element from each Ci ∈ C and satisfies |S ′′| ≤ p. The set of leaves of any tree Ti ∈ T
will be denoted by Ω(Ti). Since the set S ′′ ∪ {u} satisfies |(S ′′ ∪ {u}) ∩ Ω(Ti)| ≥ |Ω(Ti)| − 1
for every Ti ∈ T , it is a simultaneous strong metric generator for T . Thus, Sds(T ) ≤ p+ 1.

Now, assume that Sds(T ) ≤ p+ 1 and let W be a simultaneous strong metric generator
for T such that |W | = p + 1. Since u is a common leaf of all trees in T , we can assume
that u ∈ W , i.e., if u /∈ W , then for any Ti ∈ T and any leaf x ∈ W ∩ Ω(Ti), the set
(W −{x})∪{u} is also a simultaneous strong metric generator for T , and so we can change
W by (W −{x})∪ {u}. Moreover, for every set Cr ∈ C such that W ∩Cr = ∅, we have that

14



Cr = {vir} and wir ∈ W . Hence, the set

W ′ =
⋃

W∩Cr=∅

((W − {wir}) ∪ {vir})

is also a simultaneous strong metric generator for T of cardinality |W ′| = p+1 which satisfies
that u ∈ W ′ and (W ′−{u})∩Ci 6= ∅ for every Ci ∈ C. Thus the set S ′′ = W ′−{u} satisfies
|S ′′| ≤ p and contains at least one element from each Ci ∈ C.

To conclude our proof, it is simple to verify that the transformation of HSP2 into SSD
described above can be done in polynomial time.

u

v3

v4

w1

w2

w3

w4

v2

v1
u

v1

v2

v4

w1

w2

w4

w3

v3
u

v1

v3

w1

w2

w3

w4

v4

v2

T1 T2 T3

Figure 6: The family T = {T1, T2, T3} is constructed for transforming an instance of HSP2,
where S = {v1, v2, v3, v4} and C = {{v1, v2}, {v3}, {v2, v4}}, into an instance of SSD.

6 Concluding remarks

In this paper we obtained sharp upper and lower bounds on the simultaneous strong
metric dimension of graph families, as well as exact values for some specific cases. We
conducted a detailed analysis of families of the form {G,Gc} composed by a graph and its
complement. For the cases where one of the graphs has diameter two, we obtained exact
values or sharp bounds for Sds(G,G

c) in terms of some parameters ofG and/orGc. Moreover,
we show that the case where G is a tree and D(G) = D(Gc) = 3 is easy to solve. In general,
it is difficult to determine the exact value of the simultaneous strong metric dimension of a
graph family, as the problem is NP -hard even for families of trees, whose individual strong
metric dimensions are easily computable. It would be interesting to study the simultaneous
strong metric dimension of some specific families of graphs, for instance, those composed by
graphs obtained as the result of some operation on graphs, e.g. product graphs, in the line
of the results presented in [19] for the standard strong metric dimension.
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ing sets and the strong metric dimension of some convex polytopes, Applied Mathemat-
ics and Computation 218 (19) (2012) 9790–9801.
URL http://dx.doi.org/10.1016/j.amc.2012.03.047
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