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Quantifying  the  level  of sustainability  attained  by  a system  is  a challenging  task  due to the  need  to consider
a wide  range  of  economic,  environmental  and  social  aspects  simultaneously.  This  work  explores  the
application  of  data  envelopment  analysis  (DEA)  to  evaluate  the  sustainability  ‘efficiency’  of  a system.  We
propose  an  enhanced  DEA  methodology  that uses  the  concept  of  ‘order  of  efficiency’  to compare  and  rank
alternatives  according  to the extent  to  which  they  adhere  to sustainability  principles.  The  capabilities  of
the  proposed  approach  are illustrated  through  a sustainability  assessment  of different  technologies  for
nhanced data envelopment analysis
rder of efficiency
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ife cycle sustainability assessment
ustainability targets
lectricity generation

electricity  generation  in  United  Kingdom.  In addition  to  screening  the  alternatives  based  on  sustainability
principles,  enhanced  DEA  provides  improvement  targets  for the  least  sustainable  alternatives  that,  if
achieved,  would  make  them  more  sustainable.  The enhanced  DEA  shows  clearly  the  ultimate  distance
to  sustainability,  helping  industry  and  policy  makers  to improve  the  efficiency  of technologies,  products
and  policies.

© 2016  The  Authors.  Published  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
. Introduction

Sustainable development plays a key role in modern societies
hat seek “to meet the needs of the present without compromising
he ability of future generations to meet their own needs” (WCED,
987). Promoting sustainable development requires implement-

ng concrete actions, projects, programs, plans and policies, which
nvolve the simultaneous pursuit and satisfaction of economic,
nvironmental, and social goals.

Setting sustainability goals and targets requires some knowl-
dge and understanding of the current level of sustainability. This
an be attained through sustainability assessments, by consider-
ng simultaneously all three ‘pillars of sustainability’—economic,

nvironmental and social (Azapagic and Perdan, 2000; Pope et al.,
004). A full characterization and evaluation of a system in these
imensions requires, therefore, the definition of a wide range of
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098-1354/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
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economic, environmental and social indicators, thereby leading to
complex multi-criteria decision-making problems. A possible way
to simplify the assessment is to define an aggregated sustainabil-
ity metric by expressing preferences and assigning the weights of
importance to the economic, environmental and social indicators
(Gerdessen and Pascucci, 2013; Martins et al., 2007; Sikdar, 2003).
However, while this approach is easy to implement, it is plagued
with difficulties at both the philosophical and conceptual levels.
This includes the fact that in many cases the value judgements
underlying the expression of preferences are incompletely formed
or do not exist so that their articulation prior to understanding the
trade-offs between different sustainability criteria could be mis-
leading and/or meaningless. This could impede the deliberative
process among different stakeholders, which is central to deci-
sion making: the discursive mediation of conflicting interests and
rival perspectives represents a process whereby the decision can
be delivered in an ethically acceptable way (Azapagic and Perdan,
2005). In addition, valuable information on the performance of a
system in a particular dimension might be lost during aggregation

which could rule out some good alternatives before the trade-offs
have been understood and explored by decision-makers.

One of the aims of sustainability assessment is to identify mea-
sures to be optimized in order to minimise or avoid adverse impacts

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Gibson, 2001). Most sustainability assessment approaches estab-
ish a ‘direction to target’ (Pope et al., 2004), that is, whether or
ot a proposed measure in one direction represents a positive,
eutral or negative contribution towards the sustainability target.
his approach is limited in scope, as it provides no quantitative
uidelines on how to improve the level of sustainability. ‘Distance
rom target’ approaches are more effective in practice because they

easure the extent of progress towards (or away from) sustainabil-
ty, making it possible to define quantitative targets that ensure a

ore sustainable development (Jaeger et al., 2011). Furthermore,
uantitative methods can be coupled with mathematical program-
ing techniques to automate the search for alternatives with

mproved environmental performance (Grossmann and Guillén-
osálbez, 2010).

This paper proposes a novel approach based on data envelop-
ent analysis (DEA) to quantify the level of sustainability attained

y a system and identify targets for improvements. DEA is a non-
arametric linear programming (LP) technique that measures the
fficiency of a set of entities, termed decision-making units (DMUs),
ach transforming multiple inputs into multiple outputs (Charnes
t al., 1978). In addition to calculating the efficiency scores, DEA
rovides specific guidelines, expressed as quantitative targets,
hich can be used to improve the efficiency level, in this context

elated to the level of sustainability.
There has been a substantial body of research on methodolog-

cal developments and applications of DEA, but these efforts have
rimarily focused on the assessment of DMUs in areas of science
nd engineering outside environmental science (Liu et al., 2013,
015). More recently, DEA was combined with life cycle assessment
LCA) to assess the environmental efficiency of different systems
Hoang and Alauddin, 2011; Iribarren et al., 2013; Lorenzo-Toja
t al., 2014; Mohammadi et al., 2014; Vázquez-Rowe and Iribarren,
014). These studies, however, covered only environmental and
conomic aspects but disregarded the social dimension of sustain-
bility. Other authors have used DEA to assess the overall level of
ustainability, but aggregated the multidimensional metrics into a
ingle indicator (Chang et al., 2013; Khodakarami et al., 2014; Reig-
artínez et al., 2011; Tajbakhsh and Hassini, 2014), an approach

hat exhibits the limitations of the aggregation discussed earlier.
Despite its advantages, DEA shows two major limitations that

re particularly critical when it is applied for sustainability assess-
ent. First, it answers the question of whether a unit is efficient or

ot, but makes no distinction between the units deemed efficient
i.e., no ranking of efficient units is provided). Hence, since all the
fficient units show the same efficiency score of 1, it is difficult to
elect a final alternative in the absence of a ranking scheme (Cook
nd Seiford, 2009). Secondly, efficiency scores are very sensitive
o the number of inputs and outputs (i.e. the number of sustain-
bility indicators in our context) as well as to the size of the sample
Bhagavath, 2006). For large sets of inputs and outputs with respect
o the number of units, a case that arises very often in sustainability
ssessments, the lack of ranking leads to a poor discrimination in
hich many units can be regarded as efficient (Avkiran, 2002).

Improving the discriminatory power of standard DEA with
o loss of information has become a major challenge that has
ttracted a significant research interest. Different approaches have
een proposed to deal with the issue of ranking of DMUs in
EA (Adler et al., 2002; Hosseinzadeh Lotfi et al., 2013a). One

mportant method for ranking the DMUs is based on the cross-
fficiency technique (Washio and Yamada, 2013; Wu  et al., 2012;
erafat Angiz et al., 2013), whereby the units are self- and peer-
valuated. Some authors have also used super-efficiency methods

Chen et al., 2011, 2013; Li et al., 2007), based on the idea of
xcluding the unit under evaluation to analyse the remaining
nits. Other methodologies are based on finding optimal common
eights to discriminate among the units, usually based on value
ical Engineering 90 (2016) 188–200 189

judgements (Jahanshahloo et al., 2005; Wang et al., 2011, 2009).
Other ways to rank the units are through benchmarking meth-
ods and statistical techniques (Chen and Deng, 2011; Lu and Lo,
2009). Some researchers have combined DEA with multiple-criteria
decision-making methodologies in which additional preferential
information is required (Hosseinzadeh Lotfi et al., 2013b; Jablonsky,
2011). However, despite the large number of approaches developed
to further discriminate among the DEA units, no single method-
ology can be considered as a complete solution to the ranking
problem.

To overcome the limitations of standard DEA, this work intro-
duces an enhanced DEA methodology that is tailored sustainability
assessments. This approach integrates standard DEA with the con-
cept of order of efficiency (optimality), as originally proposed by
Das (1999) and later used by Antipova et al. (2015) and Pozo et al.
(2012). In essence, the idea is to apply standard DEA repeatedly for
different combinations of metrics in each sustainability dimension
separately so as to determine an overall sustainability efficiency.
The capabilities of our methodology are illustrated through a sus-
tainability assessment of electricity-generation technologies in the
United Kingdom (UK), which are expected to play a major role
in its future electricity mix  (Stamford and Azapagic, 2014). The
main advantages of the proposed approach are that: (i) it considers
each sustainability dimension separately; (ii) it can handle a large
number of economic, environmental and social indicators without
compromising the discriminatory capabilities of the method; (iii) it
provides a clear ranking of units based on their overall performance
without the need to define explicit weights on the individual met-
rics; and (iv) it provides clear quantitative targets for the inefficient
systems to become efficient.

The rest of the article is organised as follows. A motivating exam-
ple is presented in Section 2, while in Section 3 we describe the
standard and the enhanced DEA methodologies, revisiting in both
cases the motivating example to illustrate the differences between
the two approaches. A real case study that evaluates the sustain-
ability of electricity technologies in the UK is introduced in Section
4 to demonstrate the capabilities of the proposed methodology.
Finally, the conclusions of the work are drawn in Section 5.

2. Motivating example

This section introduces a simple example that motivates our
methodological approach. Consider a set of units (e.g., technologies,
products, processes, etc.), each characterised by multiple economic,
environmental and social inputs, synonymous to sustainability
decision criteria, and required to produce one unit of output (e.g.,
1 kWh) As indicated in Table 1, seven technologies (A–G) are con-
sidered, each of which has three economic inputs (I-1, I-2 and I-3),
three environmental (I-4, I-5 and I-6), and three social inputs (I-7,
I-8 and I-9) to produce one unit of output (O-1). The table shows
the values of each input, which are dimensionless for the purposes
of this example, but otherwise would be expressed in appropri-
ate units. Lower input levels imply better performance in all of the
cases.

The goal of the analysis is to assess the level of sustainability
attained by each technology in Table 1, that is, we  aim to address
the following points:
• Which technologies are ‘more efficient’ in terms of sustainability
(i.e. perform better considering sustainability principles)?

• For the ones found to be inefficient, how could we  improve their
level of sustainability?
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Table  1
Motivating example: Seven technologies with nine inputs to produce one unit of output.

Technology Economic inputs Environmental inputs Social inputs Output

I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 O-1

A 4.0 5.0 2.9 1.0 2.5 3.0 4.2 2.1 1.3 1.0
B  2.5 1.0 3.7 2.0 5.0 2.0 3.1 3.4 4.0 1.0
C  2.0 1.3 1.0 4.5 4.3 1.0 1.3 5.0 2.7 1.0
D  4.5 7.0 8.0 2.0 7.0 8.0 0.5 7.0 7.0 1.0
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E  3.0 3.0 1.8 2.5 

F  6.5 2.0 2.1 1.3 

G  3.0 3.5 1.1 4.0 

DEA was not originally devised to assess the level of sustain-
bility, so an enhanced version is required for this purpose. Both
tandard and enhanced DEA are discussed in the next section.

. Methodology

The fundamentals of standard DEA are presented first before
escribing the improvements introduced in this work to tailor the
ethod for sustainability assessment.

.1. Data envelopment analysis

As mentioned earlier, DEA is a non-parametric LP technique that
uantifies the relative efficiency of a set of comparable DMUs taking

nto account several inputs and outputs simultaneously (Charnes
t al., 1978). DEA analyses each DMU  individually by solving an
P model to identify those with the best performance, i.e., the
nes deemed efficient, which form the “efficient frontier”. DEA also
easures in turn the level of efficiency of the non-frontier units

inefficient units), identifies sources of inefficiency, and provides
pecific guidelines on what changes are required to turn inefficient
nits into efficient.

The original input-oriented DEA model, known in the literature
s the Charnes, Cooper and Rhodes (CCR) model, first proposed by
hese authors (Charnes et al., 1978) based on Farrell’s work (Farrell,
957), is a nonlinear program that measures the efficiency of a unit
s the ratio of the weighted sum of their outputs and inputs. The
oal of this model is to find the optimal weights that maximise the
fficiency of a set of DMUs (i.e. for each such DMU, the best weights
re found that maximise the outputs/inputs ratio).

Let us consider a set of |J| DMUs j (j = 1,. . .,|J|),  each using |I| inputs
ij (i = 1,. . .,|I|)  to produce |R| outputs yrj (r = 1,. . .,|R|).  The CCR model
efined for each DMU  j, is stated as follows:

ax�j =
∑
r ∈ R

uryrj/
∑
i ∈ I

vixij (1)

.t.
∑
r ∈ R

uryrj −
∑
i ∈ I

vixij ≤ 0 ∀j ∈ J (2)

r , vi ≥ 0 ∀r ∈ R, i ∈ I (3)

here �j is the technical efficiency of the DMUj and ur and vi are
ree variables denoting the weights (multipliers) given to each out-
ut r and input i, respectively. Due to the flexibility in the weights,

f a DMUj satisfies �j = 1, it is deemed efficient, and it is considered
nefficient when �j < 1. The latter implies that the DMU  under eval-
ation is always inferior to other alternatives, even for the most
avourable choice of weights (it is possible to reduce any of its
nputs without reducing any output).
The previous CCR model is input-oriented, that is, an inefficient
nit is turned into efficient through a proportional reduction of

nputs and keeping the output constant. Moreover, the CCR model
onsiders constant returns to scale (CRS), as it assumes that DMUs
.5 5.0 3.0 1.8 3.3 1.0

.0 4.0 0.8 3.2 2.4 1.0

.1 3.0 2.0 2.7 1.9 1.0

operate at the same scale and their outputs change proportionally
when changes in the inputs are applied. The original input-oriented
CCR DEA model (Charnes et al., 1978), which is nonlinear and non-
convex, can be reformulated into the following LP model Eqs. (4–7),
where the denominator is set to one and the numerator is max-
imised:

Max�j′ =
∑
r ∈ R

uryrj’ (4)

s.t.
∑
i ∈ I

vixij’ (5)

∑
r ∈ R

uryrj −
∑
i ∈ I

vixij ≤ 0 ∀j ∈ J (6)

ur, vi ≥ 0 ∀r ∈ R, i ∈ I (7)

where the subscript j’ denotes the specific DMU  being assessed.
For this primal LP problem it is possible to formulate a part-

ner problem (dual), which provides the same information as the
primal (i.e., efficiency scores) and calculates in turn targets for the
inefficient DMUs so as to become efficient. The LP dual model is
formulated by assigning one dual variable to each constraint in the
primal model (Cooper et al., 2004) as follows:

Z = min  �o − ε

(∑
r ∈ R

S+
r +
∑
i ∈ I

S−
i

)
(8)

s.t.
∑
j ∈ J

�jx ij + S −
i = �ox io∀i ∈ I (9)

∑
j ∈ J

�jyrj − S+
r = yro ∀r ∈ R (10)

�j, S−
i

, S+
r ≥ 0 ∀j ∈ J, i ∈ I, r ∈ R (11)

where ε is a non-Archimedean infinitesimal value designed to
enforce strict positivity on variables. �o is unconstrained and
measures the efficiency of the DMUo under consideration and,
therefore, it is less than or equal to 1 (�o ≤ 1). S+

r and S−
i

are slack
variables denoting the extra amount by which an input (or output)
should be reduced (or increased) to be efficient. Note that the val-
ues of the slacks are all zero (S+

r and S−
i

= 0) in the efficient units
(�0 = 1), and strictly positive in the inefficient ones (�o < 1). �j is a
variable that represents the weight assigned to each efficient DMU
(belonging to the reference set of an inefficient unit) to form a com-
posite efficient unit that could be used as a benchmark to improve
the inefficient unit. This composite unit is obtained by projecting

radially the inefficient unit on the efficient frontier, which is the
piece-wise linear function connecting all the efficient DMUs  (those
with an efficiency score of 1). To illustrate this, we  use below a
simplified motivating example described in Section 2.
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ig. 1. Graphical representation of DEA results for the simplified motivating exam
mpact  (note that the output is constant for all of the decision-making units).

.1.1. An illustrative example for standard DEA
For simplicity, the analysis in the simplified example is

estricted to one environmental input (I-1) (environmental
mpact), one economic input (I-4) (cost), and one output (O-1),
s shown in Table 1. Fig. 1 provides a graphical representation of
he DEA results. The efficient technologies, denoted by the red cir-
les, determine the efficient frontier, which is the convex envelope
epicted in blue colour. Inefficient systems are represented by black
ircles, while their radial projections on the frontier are depicted
y green circles.

As can be observed in Fig. 1, technologies A, B and C have lower
nput values for the same output and are thus identified as efficient
i.e. their efficiency equals 1). The line connecting them determines
he piece-wise linear efficient frontier. On the other hand, D, E, F and

 are deemed inefficient because their efficiency score �jis lower
han 1 (they produce the same level of output with higher inputs,
hat is, they are more expensive and cause greater environmen-
al impact). DEA also quantifies the magnitude of inefficiency by
eferring to the efficient frontier. For instance, the efficiency of tech-
ology D is obtained from the ratio between two  segments, the one
hat goes from zero to the intersecting point between the efficient
rontier and the radial projection of D; and the one that connects
ero and D (i.e., the ratio between 0d and 0D is equal to 0.73 for
his case). The efficiency score represents the extent to which all
he inputs should be proportionally reduced to reach the frontier;
herefore, D should reduce its inputs to 73.33% of its current level
n order to be efficient. Point d (which represents the hypotheti-
al efficient unit for D) is generated by a linear combination of A
nd B, which is the reference set (peer group), using linear weights
qual to 0.53 and 0.47 respectively, which are provided by the DEA
odel.
Similarly, all inefficient DMUs can be projected onto the

fficiency frontier, but in doing so we may  sometimes obtain
eakly-efficient composite units, as it happens with unit f (efficient

nit for F), which shows a slack in the cost given by the distance fA.

n other words, unit F should reduce its inputs at least by 23.08%
efficiency equals to 76.92%) to be weakly-efficient. However, f
ould remain inferior since technology A has the same environ-
e figure shows the two inputs considered in the analysis, cost and environmental

mental impact but lower cost. Therefore, technology F presents a
slack or excess of 1 unit in the cost, which implies an input value of
61.5% of its current level to be strongly efficient. That is, a reduction
of 23.08% (from 6.5 to 5.0) in the cost for F is not enough to become
strongly efficient. For that, the unit needs to decrease the cost by a
further 38.5% (from 6.5 to 4.0), thereby reaching point f’ with the
same inputs and output than technology A.

Note that the criteria to be considered in DEA (i.e., the economic,
environmental and social indicators) might be treated as inputs or
outputs depending on whether they should be minimised or max-
imised, respectively (i.e., depending on whether lower or higher
values imply better performance, respectively). Furthermore, it is
possible to define all the indicators as inputs (whose value should
be minimised) by carrying out a proper data transformation. Note
also that if this transformation implies only scaling the input val-
ues, then it does not affect the results since the radial DEA  models
are unit invariant, that is, the efficiency scores are independent of
the measurement units of the inputs and outputs. Further informa-
tion on this topic can be found in Edelstein and Paradi (2013) and
Tone (2001), among others.

3.1.2. Standard DEA for sustainability assessment applied to the
motiviting example

To answer the questions posed in the motivating example,
we propose to assess the efficiency in each sustainability dimen-
sion separately (i.e. economic, environmental and social) and then
aggregate the results into an overall sustainability efficiency. There-
fore, a unit will have a sustainability efficiency of 1 if it is efficient
simultaneously in all three dimensions of sustainability.

Let �d
j

be the efficiency of DMU  j for the sustainability dimen-
sion d, that is, the efficiency calculated by DEA when only the inputs

belonging to this dimension are considered. We  define an overall
sustainability efficiency, denoted by �sust

j
and calculated by Eq. (12),

as the average of the efficiencies in each sustainability dimension
(reflecting a balanced integration of the three dimensions of sus-
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ainable development in which all of them are considered equally
mportant):

sust
j =

∑
d ∈ D�d

j

|D| ∀j ∈ J (12)

Note that the efficiency scores (�d
j

and �sust
j

) fall within the range
–1. As explained before, a DMU  j is considered efficient in a spe-
ific sustainability dimension if its efficiency score equals 1 (�d

j
= 1).

he higher the dimension’s efficiency score, the higher the level of
fficiency for that sustainability dimension. Similarly, a DMU  j is
onsidered efficient from the sustainability point of view if its over-
ll sustainability efficiency score equals 1 (�sust

j
= 1), that is, if it is

fficient for all three sustainability dimensions. The higher the sus-
ainability efficiency scores, the higher the level of sustainability.

We now revisit the motivating example by applying standard
EA. The results are presented in Fig. 2 which shows the effi-
iency scores for each sustainability dimension and the overall
ustainability efficiency for each technology. Each axis in the radar
hart corresponds to a technology and the outermost ring repre-
ents an efficiency score of 1. The dashed orange, green and blue
ines represent the economic, environmental and social efficiency,
espectively, while the purple line represents the overall sustain-
bility efficiency. Moreover, Fig. 2 displays the efficiency for each
echnology calculated considering simultaneously all of the inputs
iven in Table 1 (black dotted line) without classifying them accord-
ng to the sustainability dimension they refer to.

As can be seen in Fig. 2, when considering all inputs simultane-
usly regardless of the dimension they belong to (black dotted line),
ll the technologies are deemed efficient (efficiency scores equal 1),
hereby leading to a very poor discrimination and loss of informa-
ion. This is because each technology performs well in at least one
ndicator, a situation that typically arises in sustainability studies.
or example, an analysis of the input data shows that D is deemed
fficient despite performing well for a single social indicator (I-7)
nd very poorly for the remaining economic and environmental
etrics. Thus, the outcome of standard DEA in this case provides

ittle insight into which technologies are more sustainable across
he three sustainability dimensions.

By considering each sustainability dimension separately (i.e.,
pplying DEA to each sustainability dimension at a time and then
ggregating the results into the overall sustainability efficiency
core), we can generate more insightful results. In this case, no
ingle technology is found sustainable overall, since none is effi-
ient simultaneously in all three dimensions. The technology with
he highest overall sustainability efficiency is C (sustainability effi-
iency score of 0.95), followed by G (0.93), while D is the least
ustainable (0.65). As observed in the efficiencies attained in each
imension, the discrimination can still be poor even after apply-

ng standard DEA to each of them separately. This is because some
imensions require the evaluation of many metrics, and because
f this several technologies performing well only in a very small
umber of them can be deemed efficient within a specific dimen-
ion. For instance, technology B and C are both found economically
fficient and it is not possible with standard DEA to discriminate
etween them. The same happens in the environmental and social
imensions, in which several technologies are found efficient, leav-

ng open the question of which one is globally better still. Therefore,
here is a need for enhancing standard DEA to overcome these
imitations; this is discussed next.

.2. Enhanced data envelopment analysis: order of efficiency
This section introduces an enhanced DEA method tailored for
ustainability assessment that integrates the concept of ‘order of
fficiency’. The fundamentals of enhanced DEA are presented first,
ical Engineering 90 (2016) 188–200

followed by revisiting the motivating example to demonstrate the
capabilities of the approach.

In essence, our method ranks DMUs according to how they per-
form globally, without the need to define explicit weights for the
inputs and outputs. This has at least two advantages: it removes
the subjectivity associated with the weighting of decision criteria
and eases the burden on decision-makers by avoiding the need for
elicitation of preferences. This is achieved by integrating into stan-
dard DEA the concept of ‘order of efficiency’, originally introduced
to rank Pareto optimal solutions from a set of many (Das, 1999). A
solution is said to be efficient of order k if it is not dominated by any
other solution in any of the possible k-elements subsets of objec-
tives. This approach is well suited for cases with a large number of
criteria (objectives) (Das, 1999), in which a large number of points
might be regarded as Pareto optimal, even if they perform well in
only one criterion out of a large number of objectives and poorly
in the rest. The order of efficiency determines preferences among
optimal solutions by ranking them according to their order of effi-
ciency, whereby lower orders imply higher degrees of efficiency
(Das, 1999) and, therefore, higher preferences for those solutions.

On the basis of the original concept, here we adopt the order
of efficiency in the context of DEA, so that a DMU  is identified
as efficient of order k, if and only if, it is found efficient in any
of the possible k-elements subsets of inputs. Following this pro-
posed enhanced DEA approach, the calculations of standard DEA are
repeated iteratively for all possible combinations of inputs/outputs
and then aggregated into an overall efficiency metric (note that in
this work, without loss of generality, we  only consider combina-
tions of inputs since it is possible to define all the indicators as
inputs through a proper data transformation and a single output
of 1 for all the DMUs). The enhanced DEA based methodology is
summarised in Fig. 3 and explained in more detail below.

Let J be the set of DMUs to be analysed by DEA (j = 1,. . .,|J|)
according to a set T of sustainability criteria or indicators. Con-
sidering the set D of sustainability dimensions (i.e., economic,
environmental and social), the first step requires categorizing the
indicators within the sustainability dimension d they belong to,
such that each dimension comprises |Id| sustainability criteria or
indicators. These are defined as inputs whose values need to be
minimised to produce a unit of output (fixing the output to 1 and
transforming the inputs accordingly). In the second step (Fig. 3),
within each sustainability dimension d, each and every of the pos-
sible combination t of inputs are identified, each containing k inputs

out of |Id|, with the total number of combinations given by

(
|Id|
k

)
.

In the third step, the DEA model is solved to determine the efficiency
score for every DMU  j in each combination of inputs tk (denoted by
�d

jkt
).

Then, in step 4, the efficiency of order k (denoted by �d
jk

) can be
determined for each DMU  j using Eq. (13) as the average efficiency
in all possible combinations t containing elements of size k belong-
ing to dimension d (note that each and every of the possible subset
of inputs needs to be considered).

� d
jk =

∑
t ∈ Tkd

� d
jkt(

|I d|
k

) ∀d ∈ D, j ∈ J, k ∈ Kd (13)

A DMU  j is said to be efficient of order k in a specific sustainability
dimension d, if and only if, the efficiency for any subset of inputs t of

cardinality k is equal to 1, that is, �d

jkt
= 1 for all t ∈ Tk, where Tk is

the set of possible combinations of |I| inputs of size k. Note that if a
DMU  is efficient of order k, it is also efficient of order k’ > k. Note also
that the utopia point (if attainable) is efficient of order 1, that is, it is
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Fig. 2. Standard DEA results for

Fig. 3. Algorithm of the proposed enhanced DEA methodology to assess the sus-
tainability efficiency in the economic, environmental and social dimensions.
 the motivating example.

the best in every input individually. Therefore, as mentioned earlier,
lower orders of efficiency reflect a better overall performance, since
that implies a more balanced performance in all inputs.

To compute the efficiency of order k, we run the DEA calculations
for each and every possible combination of inputs. This approach
is equivalent to imposing bounds on the weights (multipliers) in
the DEA model, so that inputs i’ not included in a specific sub-
set are given a fixed weight equal to 0 (vi ′ = 0), while the weights
for the other included inputs are considered as free variables. The
advantage of our approach is that there is no need to define explicit
weights for inputs/outputs. Instead, we solve the DEA models for
every combination of inputs.

Furthermore, we define an overall efficiency score in each
dimension (i.e., dimension efficiency denoted by �d

j
) for each DMU

j as the average of all of the efficiency scores obtained for all of the
orders of efficiency. That is, in the fifth step in Fig. 3,  the dimen-
sion efficiency is determined as the average of all of the efficiency
scores computed by DEA for all of the possible combinations of
inputs within each sustainability dimension d, as given in Eq. (14):

� d
j =

∑
k ∈ K d

∑
t ∈ Tkd

� d
jkt∑

k ∈ K d

(
|I d|
k

) ∀d ∈ D, j ∈ J (14)

where d represents the sustainability dimension (i.e., economic,
environmental and social) to which the efficiency refers, Id is the
set of inputs (i.e., sustainability criteria or metrics) that quantify
different aspects of that dimension, Tkd is the set of combinations
of order k of these inputs covered by dimension d, and Kd is the set
of allowable orders in dimension d (note that |Kd| = |Id|).

The dimension efficiency (�d
j
) takes values between 0 and 1,

where a score of 1 means that the DMU  j under consideration is
efficient in the sustainability dimension d, that is, efficient in all
of the possible subsets of inputs—a situation that will take place
only if DMU  j is the best in all of the inputs simultaneously. In this
context, DMUs with greater efficiency scores are considered more
efficient within a sustainability dimension.

Finally, with the values of the dimension efficiencies in hand, we
can determine in step 6 the overall sustainability efficiency �sust

j

using Eq. (12). The overall sustainability efficiency allows rank-
ing of all the DMUs in terms of their sustainability performance,
since greater sustainability efficiency scores reflect better level of
sustainability for a given DMU. It should be noted, however, that
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Fig. 4. Illustrative example of efficiency of order 3. The vertical axis shows the effi-
94 Á. Galán-Martín et al. / Computers an

e refer to sustainability in the context of efficiency so that the
olutions found efficient may  not necessarily be fully sustainable
ccording to the original Brundtland definition of sustainability
WCED, 1987).

One of the advantages of the DEA model is that it can be imple-
ented in standard software packages and solved very efficiently

sing LP methods, which can potentially encourage a widespread
doption of the methodology proposed herein. In this work, with-
ut loss of generality, we employ the input-oriented CCR DEA
odel, which considers CRS. However, the methodology could

e extended to output-orientation and be formulated using the
CC DEA model (named after Banker, Chames and Cooper (1984)),
hich considers variable returns to scale by adding an additional

onvexity constraint on �j (
∑

j�j=1). The choice between the two
odels depends on the application being addressed; for further

iscussion on this topic, see Lozano et al. (2009). Note, however,
hat when all the indicators are treated as inputs (by fixing the out-
ut to 1), the selection of either a CCR or BCC model may  become

rrelevant since all units produce the same output levels.
The inefficiency assessment for every combination of inputs

rovides a large number of improvement targets that are difficult to
nterpret. Hence, we propose to establish improvement targets for
very unit deemed inefficient in each individual dimension, con-
idering all of the inputs in that dimension simultaneously (i.e.
igher order of efficiency), rather than all of the possible combi-
ations of inputs. More precisely, let us denote by E the reference
et of efficient DMUs j for an inefficient DMU  j’. For each DMU  j’
ound inefficient in a specific dimension d’ considering all the inputs
ithin that dimension (i.e., k equals to |I|), the corresponding tar-

ets that its inputs i (xij’) should achieve to make the unit efficient
re given in Eq. (15). Note that xij is a parameter representing the
nput values of the DMUs in the reference set, while variables �j′ ,
j and S−

i
are computed by solving the dual DEA model Eqs. (8–11).

ence, the target value for input i in dimension d’ that DMU  j’ should
ttain is computed as follows:

arget inputd′j′i =
∑
j ∈ E

�jxij = �j′ xij’ − S−
i

∀i ∈ I, d
′ ∈ D, j

′ ∈ J(15)

here�j are the linear combination coefficients that multiply the
embers of the peer group of j’,�j′ is the efficiency score of the inef-

cient unit j’ and S−
i

is a slack variable denoting the extra amount
y which the input i should be reduced to be strongly efficient.

.2.1. An illustrative example for enhanced DEA
To illustrate the enhanced DEA methodology that integrates the

oncept of order of efficiency, the example in Table 1 is revisited
ext considering only the economic inputs (i.e., I-1, I-2 and I-3).
ig. 4 illustrates graphically the concept of efficiency of order k
in this case, efficiency of order 3, as three inputs are considered),
here technologies A–G are represented by coloured lines. The ver-

ical axis shows the efficiency score for each technology when three
nputs are considered, while the other axes display the value of each
nput for each technology.

As can be seen in Fig. 4, technologies B and C are found to be
fficient of order 3 as their efficiency score is equal to 1, while
he other technologies are inefficient of order 3 (i.e., efficiency
cores are below 1). For the latter, an inefficiency assessment can
e performed to set targets for reaching the efficiency frontier, as
xplained in Section 3.2.

The efficiency calculations are repeated next for each possible
ubset of inputs (one subset of order 3, three subsets of order 2

nd three subsets of order 1). Fig. 5 summarises the results for each
rder of efficiency (i.e., orders 3, 2 and 1), with Fig. 5a showing the
esults for the original order of efficiency (order 3), Fig. 5b and c
ive the efficiency scores for each subset of inputs of order 2 and
ciency score of every technology considering the 3 inputs simultaneously, while the
remaining axes show the amount of inputs consumed by every technology.

1, respectively, and Fig. 5d shows the overall economic efficiency
score (orange dotted line) for each technology, determined by Eq.
(14).

As can be observed in Fig. 5a, technologies B and C are identified
as efficient of order 3. Technology C is in turn efficient of order 2,
since it is efficient for any combination of two inputs (Fig. 5b). That
is, when input 3 is removed and we consider only {input1, input 2},
technologies B and C are efficient. The same happens when input
1 is removed from the analysis, to consider only {input1, input 2}.
On the contrary, when input 2 is removed, giving rise to the space
{input1, input 2}, C remains efficient, while B is found inefficient.
Hence, B is efficient of order 3, but not of order 2. Furthermore, C is
inefficient of order 1 (Fig. 5c), since it shows the best performance
in inputs 1 and 3 but not in input 2. Thus, this analysis reveals that
technologies A, D, E–G are inefficient of orders 3 to 1, technology B
is efficient of order 3, and technology C is efficient of order 2 (and,
therefore, of order 3 as well). In addittion, in terms of the overall
economic efficiency (Fig. 5d), C is the most economically efficient
(score of 0.97) and D the least (0.35).

Therefore, as this simplified example demonstrates, the com-
bined use of DEA and the concept of order of efficiency enables a
further discrimination of alternatives. For example, B and C were
indistinguishable for the original three inputs considered because
they both showed an efficiency of 1. However, after estimating the
order of efficiency they could be ranked easily according to the
overall economic efficiency scores, which for B is 0.87 and for C
0.97.

3.2.2. Enhanced DEA for sustainability assessment applied to the
motivating example

We now revisit the motivating example by applying the
enhanced DEA approach. Fig. 6 displays the efficiency in each
sustainability dimension along with the overall sustainability effi-
ciency for each technology. Technology A is the best in the
environmental and social dimensions (with the efficiency of 0.88
and 0.87, respectively), while technology C is the best for the eco-

nomic aspect (0.97). After aggregating all the efficiency values,
technology C emerges as the most sustainable option, with the
highest sustainability efficiency score of 0.78; technology D is the
least sustainable, scoring only 0.5.
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Fig. 5. Graphic representation of efficiency of order of k (for a given set of economic inputs) and economic efficiency (when all the subsets of economic inputs are considered
simultaneously).
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Fig. 6. Enhanced DEA resu

Comparing the results of enhanced DEA (Fig. 6) with those
btained with standard DEA (Fig. 2), it is clear that the former
mproves the discriminatory capabilities between the technologies,
ince no single technology now has the same efficiency score as any
f the others, thereby enabling their ranking according to the effi-
iency in each dimension and the overall sustainability efficiency.

. Application of the enhanced DEA method to a real case
tudy

The capabilities of the proposed methodology are illustrated

ext through its application to a real case study that assesses several
lectricity-generation technologies expected to play a major role in

 future UK electricity mix. The data are sourced from Stamford and
zapagic (2014). Each of these technologies is defined as a DMU  that
 the motivating example.

uses a given amount of economic, environmental and social inputs
to produce 1 kWh  of electricity as an output. The specific tech-
nologies studied are: nuclear (pressurised water reactor, PWR), gas
(combined cycle gas turbine, CCGT), coal with and without carbon
capture and storage (CCS), wind (offshore), solar photovoltaics (PV)
and biomass (wood and Miscanthus pellets). Stamford and Azapagic
(2014) assessed 36 inputs (sustainability criteria) for these tech-
nologies following a life cycle approach. To simplify the analysis, we
consider 18 inputs here: three economic, nine environmental and
six social life cycle sustainability indicators (Table 2). For further
details on these metrics, see Stamford and Azapagic (2014).
Note that we  treat all sustainability indicators as inputs while
holding the output equal to 1 kWh. For all sustainability indi-
cators, lower values mean better performance, except the direct
employment for which a higher value is preferred. The values of
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Table  2
Sustainability indicators considered as inputs in the enhanced DEA methodology.

Sustainability dimensionSustainability indicatorsa Unitsb

Economic Capital cost £ kWh−1

Operation and maintenance cost£ kWh−1

Fuel cost £ kWh−1

Environmental Freshwater eco-toxicity kg DCB-eq kWh−1

Marine eco-toxicity kg DCB-eq kWh−1

Global warming kg CO2-eq kWh−1

Ozone depletion kg CFC-11-eq kWh−1

Acidification kg SO2-eq kWh−1

Eutrophication kg PO43-eq kWh−1

Photochemical smog kg C2H4-eq kWh−1

Land occupation m2year kWh−1

Land eco-toxicity kg DCB-eq kWh−1

Social Direct employment person-years kWh−1

Worker injuries injuries kWh−1

Human toxicity potential kg DCB-eq kWh−1

Radiation: total DALY kWh−1

Depletion of elements kg Sb-eq kWh−1

Depletion of fossil fuels MJ kWh−1

a For all the indicators except direct employment, the lower the value, the higher
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he  level of sustainability.
b DCB: dichlorobenzene. DALY: disability-adjusted lost years.

he inputs were normalised to a common interval [0, 1] so that 0
orresponds to the minimum and 1 to the maximum value (oppo-
ite for the direct employment indicator). Zero values in the inputs
ere avoided by adding a small epsilon value to them.

The DEA dual model Eqs. (8–11) combined with the order of
fficiency concept (see the algorithm in Fig. 3) were both imple-
ented in the General Algebraic Modelling System (GAMS) version

4.4.1, solving the LP formulations with the solver CPLEX 12.6.1.0
n an AMD A8-5500 APU with Raedon 3.20 GHz and 8.0 GB RAM.
he efficiency of each technology was optimized in each of the 581
ossible subset of inputs (7 in the economic dimension, 511 in the
nvironmental dimension and 63 in the social dimension), giving
ise to a total of 4648 runs. The CPU time was below one second for
ll of the instances.

Fig. 7 outlines the steps followed to assess the sustainability of
he electricity technologies based on the algorithm in Fig. 3. The first
tep requires categorizing the indicators as inputs or outputs within
he sustainability dimension d they belong to—the indicators are

odelled as economic, environmental or social inputs required to
roduce a certain amount of output. In the second step, each and
very of the possible subsets of inputs t for each order of efficiency

 are identified (tk) within each category. In the third step, the DEA
odel is applied to determine the efficiency score of each elec-

ricity technology for each combination of inputs tk (�d
jkt

). Then,
ithin each dimension d and for each DMU  j, the efficiency of each

rder k (�d
jk

) and the overall dimension efficiency are determined

�d
j
) in steps 4 and 5, respectively. Finally, the overall sustainability

fficiency score (�sust
j

) for each DMU  j is computed in step 6.

.1. Efficiency of different sustainability dimensions

The results are summarised in Figs. 8–10 with each line cor-
esponding to a different order of efficiency. The darkest line
epresents the overall efficiency in each sustainability dimension
alculated by Eq. (14).

The economic efficiency assessment (Fig. 8) shows that all the
echnologies except for coal CCS are efficient of order 3. Among

hem, only gas electricity is efficient of order 2 (and also of order
), but no technology is efficient of order 1. The biomass options
how the highest overall economic efficiency (0.80), while coal CCS
s the least economically efficient technology (with an overall eco-
ical Engineering 90 (2016) 188–200

nomic efficiency score of 0.38). Note that the technology with the
largest efficiency score might not have the lowest efficiency order.
This is the case with biomass which has the highest economic effi-
ciency score, while gas shows the best (lowest) efficiency order.
This is because gas performs poorly for the fuel cost indicator, while
biomass performs well in all of the economic indicators simultane-
ously. Nevertheless, biomass is economically the most sustainable
option, for the economic indicators considered here.

The results of the environmental efficiency assessment in Fig. 9
suggest that coal, solar PV and biomass are environmentally inef-
ficient. Offshore wind and coal CCS are efficient of order 9, gas of
order 7 (and also of orders 8 and 9), while nuclear is efficient of
order 5 (and also of orders 6 to 9). No single technology has an
order of efficiency below 5. Nuclear has the best overall environ-
mental efficiency score (0.94), followed by gas, wind and coal CCS
(0.89, 0.87, and 0.66, respectively). On the other hand, biomass with
wood pellets, solar PV, biomass with Miscanthus pellets and coal
are the least environmentally efficient technologies, with the effi-
ciency scores of 0.47, 0.35, 0.32, and 0.22, respectively. Note that,
as opposed to the previous case, here the technology with the best
overall environmental efficiency score (nuclear) also has the best
(lowest) order of efficiency. Thus, based on the inputs (indicators)
considered in this case study, nuclear electricity is environmentally
the most sustainable option.

The social efficiency assessment in Fig. 10 indicates that all of the
technologies, except coal and biomass with Miscanthus pellets, are
socially efficient of order 6. Nuclear and wind are in turn socially
efficient of order 5 while gas is socially efficient of order 2 (and,
therefore, also of orders 3 to 6). Moreover, the overall social effi-
ciency score of gas is the largest by far (0.9). Again, the technology
with the best efficiency score (i.e. gas) has the best efficiency order.
Hence, this technology is clearly the best from a social sustainability
perspective.

4.2. Overall sustainability efficiency

Fig. 11 provides the overall sustainability efficiency scores along
with the dimension efficiency score for each technology. Gas  elec-
tricity has the highest overall sustainability efficiency score (0.86),
followed by nuclear (0.78) and wind (0.76). Biomass with wood
pellets, coal CCS, and biomass with Miscanthus pellets have the
sustainability efficiency values of 0.64, 0.58 and 0.57, respectively.
Finally, solar PV and coal show the worst scores of 0.54 and 0.45,
respectively.

4.3. Inefficiency assessment

For each technology found inefficient (when all the inputs
within each sustainability dimension are considered), the cor-
responding targets that its inputs should achieve to make the
technology efficient were determined using Eq. (15). The improve-
ment targets for each technology are summarised in Fig. 12. The
figure shows the percentage reductions in the form of a heat map
that should be attained in each current indicator value to make
the technology efficient in a given dimension. Each cell is coloured
according to the reduction value assigned to each input—the darker
the shade, the higher the reduction needed. Note that in the case of
the indicator direct employment, the target is a positive increment
rather than a reduction.

In the economic dimension, coal CCS is the only inefficient tech-
nology. To become efficient, it should reduce its capital and fuel

costs by 34%, and its operation and maintenance cost by 62%. These
targets can be seen as either pure targets to reach the economic
efficiency, or as the level of financial subsidies necessary to make
the technology efficient.
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Fig. 7. Graphical summary of the enhanced DEA method applied to assess the sustainability of the electricity generation technologies.

Fig. 8. Economic efficiency of electricity generation technologies.

iency 

a
i
c

Fig. 9. Environmental effic
As mentioned earlier, coal, solar PV and both biomass options
re inefficient in the environmental dimension. The correspond-
ng improvement targets are also shown in Fig. 12. Among them,
oal has the largest improvement targets. One-third of the total
of electricity technologies.
UK electricity consumption is generated from coal (DECC, 2015,
2014) and coal is expected to remain in the future UK energy mix
to some extent. Hence, minimising its environmental impact may
contribute significantly to reducing the environmental footprint
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Fig. 10. Social efficiency of electricity generation technologies.
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Fig. 11. Overall sustainability efficiency

f energy generation in the UK. For solar PV the environmental
mpacts that require largest reductions are land occupation (89%),

arine ecotoxicity (90%), eutrophication (84%) and acidification
77%), which are mainly caused during the manufacture of the
olar facilities. Regarding the biomass options, the most critical
ategories are land occupation (99%), acidification (97%), photo-
hemical smog (95%) and eutrophication (93%). These impacts
re primarily driven by biomass cultivation; therefore, the use
f second-generation biomass, such as agricultural and forestry
esidues or waste, could help to achieve the reductions required.

Finally, for the social dimension, coal and biomass with Mis-
anthus pellets are found inefficient. The highest improvements are
equired for coal in the categories human toxicity potential, work-
rs injuries and depletion of fossil fuels, which should be reduced
y 89%, 77% and 62%, respectively. By comparison, the improve-
ents needed for the biomass option are relatively small: radiation,

uman toxicity potential and worker injures should be reduced
espectively by 36%, 23% and 19% to become socially efficient.

. Conclusions

In this work, we have proposed an enhanced DEA methodol-
gy for the assessment of the level of sustainability attained by a

ystem. Our approach improves the discriminatory capabilities of
tandard DEA by grouping the inputs into economic, environmen-
al and social indicators and by integrating the concept of order of
fficiency. The latter allows dealing with a large number of eco-
 technologies for electricity generation.

nomic, environmental and social indicators simultaneously. The
main advantages of enhanced DEA are: (i) it considers each sus-
tainability dimension separately; (ii) it can handle a large number
of economic, environmental and social criteria; (iii) it enables rank-
ing of alternatives according to the extent to which they adhere to
defined sustainability principles without the need to elicit prefer-
ence weights for the criteria; and (iv) it provides clear quantitative
targets for the inefficient systems to become efficient, i.e. sustain-
able.

The capabilities of the methodology have been illustrated by
application to a real case study assessing the level of sustainabil-
ity of different electricity generation technologies. Gas, nuclear and
wind electricity have been found efficient in all three dimensions of
sustainability simultaneously when all the indicators within each
dimension were considered. Gas electricity has the highest overall
sustainability efficiency (mainly because of its very good perfor-
mance in the social dimension), followed by nuclear and wind. Gas
is also the most economically and socially efficient (highest eco-
nomic and social efficiency scores), while nuclear is the best in the
environmental dimension.

The proposed methodology can facilitate transition towards
a more sustainable society by identifying the most sustainable
options. Furthermore, it helps to pinpoint in a systematic manner
the main sources of inefficiency and set improvement targets. This

information can be useful for industry as an aid for improving tech-
nologies and products and for policy makers when designing future
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Fig. 12. Heat map of inputs reductions for the electricity generation techn
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