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Abstract

Breast cancer is one of the most dangerous diseases for women. Detecting breast

cancer in its early stage may lead to a reduction in mortality. Although the

study of mammographies is the most common method to detect breast cancer,

it is outperformed by the analysis of thermographies in dense tissue (breasts

of young women). In the last two decades, several computer-aided diagnosis

(CAD) systems for the early detection of breast cancer have been proposed.

Breast cancer CAD systems consist of many steps, such as segmentation of

the region of interest, feature extraction, classification and nipple detection.

Indeed, the nipple is an important anatomical landmark in thermograms. The

location of the nipple is invaluable in the analysis of medical images because

it can be used in several applications, such as image registration and modality

fusion. This paper proposes an unsupervised, automatic, accurate, simple and

fast method to detect nipples in thermograms. The main stages of the proposed

method are: human body segmentation, determination of nipple candidates

using adaptive thresholding and detection of the nipples using a novel selection

algorithm. Experiments have been carried out on a thermograms dataset to

validate the proposed method, achieving accurate nipple detection results in

real-time. We also show an application of the proposed method—breast cancer

classification in dynamic images, where our method is used to segment the region

∗Corresponding author at: Lab. 142, Campus Sescelades, Universitat Rovira i Virgili, Av.
Paisos Catalans 26, Tarragona 43007, Spain. Tel.: +34 977 55 96 77

Email addresses: egnaser@gmail.com (Mohamed Abdel-Nasser),
adelsalehali1982@gmail.com (Adel Saleh), antonio.moreno@urv.cat (Antonio Moreno),
domenec.puig@urv.cat (Domenec Puig)

Preprint submitted to Expert Systems with Applications June 30, 2016



of the two breasts from the infrared image. A dynamic thermograms dataset

was used for validating this application, achieving good results.

Keywords: Breast cancer, Infrared, thermograms, nipple detection

1. Introduction

Current breast cancer studies show that detecting breast cancer in its early

stage may reduce mortality (Siegel et al., 2015). The study of mammographies

is the most common method for detecting breast cancer. Besides, the study of

breast thermographies has been considered as an adjunct breast cancer screen-5

ing procedure (Ng & Sudharsan, 2004). Thermograms are infrared images of the

human body that can be used to detect breast cancer in its early stage. They

can also reveal tumors in dense tissues, outperforming other modalities such

as mammographies. However, the accuracy of thermographies is dependent on

such factors as the symmetry of breast temperature and temperature stability.10

Infrared imaging can be used for breast cancer screening because the metabolic

activity and vascular circulation in pre-cancerous tissue and in the area sur-

rounding a developing breast cancer are always higher than in normal breast

tissue. Mammographies, sonographies and magnetic resonance images try to

find the physical tumor. In turn, thermograms detect the heat produced by15

increased blood vessel circulation and metabolic changes associated with a tu-

mor’s genesis and growth.

A number of computer-aided diagnosis (CAD) systems have been proposed for

analyzing thermograms. A basic step in the use of thermal images is the de-

sign of CAD systems because they help technicians to execute medical exams20

using specified routines and protocols (similar to mammography exams). CAD

systems give physicians good support in the analysis and interpretation of the

outcomes of thermograms.

In the literature, several studies have focused on analyzing thermograms. Bor-

chartt et al. (2013) presented a review of the literature on image processing25

and techniques related to the analysis of thermographies for the detection and
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diagnosis of breast diseases. In (Saniei et al., 2015), a computer method for

quantifying the bilateral differences between left and right breasts was proposed.

Ali et al. (2015) proposed a simple segmentation approach for extracting the re-

gion of interest (ROI) from breast thermograms. They extracted statistical and30

texture features from the segmented ROI and used a support vector machine

classifier to discriminate between normal and abnormal breasts. Krawczyk et al.

(2015) analyzed breast thermograms by extracting features describing bilateral

symmetries between the two breasts, and then classifying them into benign or

malignant. Schaefer et al. (2009) manually segmented the breast region from35

each thermogram and then extracted a set of statistical features from them.

Finally, they used a fuzzy rule-based algorithm to discriminate between benign

and malignant cases.

Motivations and contributions. The nipples are an important anatomi-40

cal landmark in thermograms. The location of the nipples is invaluable in tasks

such as image registration and modality fusion. Indeed, physicians use the lo-

cation of nipples to find the corresponding masses in breast images that were

acquired using different modalities (e.g., a thermogram and a mammogram).

For instance, Saniei et al. (2015) manually picked the nipples to register the45

images of breasts. When analyzing a large number of thermograms, manual

nipple detection may be time consuming; in addition, the precision of nipple

detection varies with users’ accuracy. Therefore, the design of an automatic

nipple detection method may be very useful in the analysis of thermograms.

Several methods have been proposed for detecting nipples in mammograms (Jas50

et al., 2013; Chakraborty et al., 2015) or in ultrasound images (Moghaddam

et al., 2014; Wang et al., 2014). However, few solutions have been proposed

for detecting nipples in thermograms. Koay et al. (2004) proposed a method

for classifying thermograms using an artificial neural network. They briefly

mentioned an abridged rule-based method for detecting nipples. However, they55

did not explain any parameter settings or present an evaluation of the method

because the main aim of their work was the classification of thermograms into
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normal, fibrocystic or cancerous. Unlike this study, in this paper we propose an

unsupervised, automatic, accurate, simple and fast method for detecting nipples

in thermograms using image processing operations and anatomical information.60

Moreover, we propose a novel selection algorithm that selects the nipples from

a set of candidates.

Nipple detection is an important step in CAD systems because the location of

the nipple can be used for several purposes. For example:

• The basic steps of classifying a thermogram into normal or abnormal are65

the extraction of the region of interest (ROI), feature extraction from the

ROI, and using a machine learning method for classification. The ROI can

be automatically extracted around the location of the nipple determined

using the proposed method.

• The distance from the location of nipple can be used to find the corre-70

sponding masses in images of the same patient (mono- or multi- modality

images).

• The location of the nipple can be used to register (align) the breast region

of two thermograms for the same patient. The work in (Saniei et al.,

2015) manually detected the nipples to register the breast regions in a75

sequence of dynamic thermograms. This process is time consuming and

sensitive to users accuracy. However, the proposed method can be used

to automatically detect the nipples in real-time.

Finally, we present an application of the proposed nipple detection method:

breast cancer classification in dynamic thermography, where the nipple detection80

method is used to segment the regions of interest (the two breasts) from the

whole infrared image. The rest of this paper is organized as follows. Section

2 explains the proposed method. Section 3 shows and discusses the results.

Section 4 presents an application of the proposed method. Section 5 includes

the conclusion and presents some lines of future work.85
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2. Proposed method

The stages of the proposed method are summarized in Fig. 1. As shown,

there are three sequential stages: human body segmentation, determination of

nipple candidates using adaptive thresholding and detection of the nipples using

a selection algorithm.

Human body 
  extraction

  Nipple 
candidates

  Selection
 algorithm

 Input 
thermogram

  

Detected 
nipples

 X X

Figure 1: Proposed system.

90

2.1. Human body segmentation

Thresholding is used to segment the human body from a given image by set-

ting all pixels whose intensity values are above a threshold to a foreground value

(one) and all the remaining pixels to a background value (zero). A threshold of

50 is used in this study to generate the human body mask (binary image), which95

is then smoothed by morphological operations. We applied morphological clos-

ing to the binary mask using a disk-shaped structuring element with a radius

of 3 to fill the gaps. We then used a morphological dilation with a disk-shaped

structuring element with a radius of 10. Fig. 2(a) shows an example of an input

thermogram and how the generated human body binary mask (Fig. 2(b)) is100

used to segment the human body image (Fig. 2(c)).

2.2. Determination of nipple candidates using an adaptive threshold

To determine nipple candidates, we process the image that contains the

human body by means of an adaptive thresholding algorithm. Adaptive thresh-
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(a) (b) (c)

Figure 2: Human body segmentation. (a) the input thermogram image, (b) the human body

mask, and (c) the segmented image.

olding typically takes an image as input and produces a segmented image and105

the labels of the segmented regions. It is a method that can separate the fore-

ground from the background with non-uniform illumination (He & Yung, 2004).

For each pixel in the image, a threshold has to be calculated. If the pixel value

is below the threshold it is set to the background value; otherwise, it is set to

the foreground value. To find the local threshold, the algorithm statistically110

examines the intensity values of the local neighborhood of each pixel. Functions

such as mean or median of the local intensity distribution can be used. In Al-

gorithm 1, we present the steps of the adaptive thresholding.

Algorithm 1 Adaptive thresholding algorithm

1: Input: a gray scale image

2: Output: a binary image

3: procedure Adaptive thresholding

4: Convolution of the image with a suitable statistical operator (the median

or mean).

5: Subtraction of the original image from the convolved one.

6: Thresholding the difference image with a constant C.

7: Invert the thresholded image.

8: end procedure

In this study we used the median operator with a local neighborhood of 15 pixels

and C was 0.03. Fig. 3 shows nipple candidates extracted from the human body115
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image using the adaptive thresholding algorithm. As shown, most candidates

are a long way from the real position of the nipples. Moreover, some regions

correspond to external objects, like necklaces, bracelets or wristwatches (e.g., in

Fig. 3 we can see a necklace on the upper part of the image). Thus, we need

a selection algorithm to pick the correct location of nipples. In the subsection120

below we explain the proposed nipple selection algorithm.

Figure 3: Determining nipple candidates using adaptive thresholding.

2.3. Nipple detection

To select the correct position of the nipples from a set of candidates we

applied several selection rules. We used our knowledge of the features of ther-

mograms to design these rules. Breast nipples have some unique anatomical125

and visual features that can be used to design the selection rules. We used the

following facts:

• Nipples lie inside the outer boundary of the human body.

• The human body has only two nipples, which occupy small regions.

• Nipples do not lie in the lowest or uppermost parts of thermograms.130

• A thermogram has only two nipples, one on the left and another on the

right.
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• A breast nipple is approximately circular.

Exploiting the first fact. The human body boundary is extracted by

defining the outermost edges in the human body mask. To do so, the rows and135

columns are scanned twice. Each row of the mask is scanned from the left to

determine the right most edge points, and then they are scanned from the right

to determine the left most edge points. Each column of the mask is scanned

from the top to determine the bottom most edge points and then scanned from

the bottom to determine the top most edge points.140

Exploiting the second fact. We count the number of pixels in the region of

each candidate. If the number of pixels in a given region is less than a predefined

threshold Np, we delete it from the nipple candidates list. In this study Np was

set to 20.

Exploiting the third fact. We generate a binary mask (maskUL) to exclude145

the regions that lie in the uppermost and lowermost parts of the image. Fig. 4

shows the upper region (regionup) and lower region (regionlw). Candidate

regions that lie in or touch the regionup or regionlw are excluded from the

nipple candidates list. The regions that correspond to regionup and regionlw in

maskUL are set to zero; the rest of the image is set to one. Assume that Him,150

Hup and Hlw are the height of the input thermogram, regionup and regionlw,

respectively. Hup and Hlw have been defined as follows.

• Hup was set to 0.35 ∗Him.

• Hlw was set to 0.3 ∗Him.

A similar setting was used in (Ali et al., 2015) to segment the breast region.

Exploiting the fourth fact. To determine the left and right regions of the

input thermogram, we determine the center-line (Lcnt) as shown in Fig. 4. Lcnt

divides the input image into two equal regions: one region includes the left

breast and the other includes the right breast.

Exploiting the fifth fact. As nipples are approximately circular, we also use

this feature to select the correct nipples from the candidates list (N). In this
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(a)

Figure 4: Determining the upper region (regionup), the lower region (regionlw) and the

center-line (Lcnt).

study we use the roundness measure to identify the candidates that are round

in shape. To measure the roundness (R) of a given region we used the following

metric (Crocker et al., 1983):

R = 4π.A/P 2 (1)

In this equation A and P are the area and the perimeter of the region of a given

candidate, respectively. As the value of R approaches 0, it indicates an oblong

(non-circular) object. A value of 1.0 indicates a perfect circle. The area of a

region is measured simply by counting the number of pixels. Given the locations

of the points of the boundary of a certain region {(x1, y1), (x2, y2), . . . , (xn, yn)},
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we estimate the region’s perimeter with the expression

P =

n∑
i=1

√
((xi+1 − xi)2 + (yi+1 − yi)2) (2)

in which n is the number of points of the boundary.155

After applying the above rules, we can detect the regions of the nipples. Fig. 5(a)

shows the regions that have a number of pixels greater than Np and that lie in-

side the boundary of the body (in this study Np was set to 20). Fig. 5(b) shows

the regions that do not lie in regionup or regionlw of the thermograms. This

step excludes the regions that lie away from the breasts. Fig. 5(c) shows the160

roundness measure of the regions selected in Fig. 5(b). As shown, the three

regions have a roundness measure of 0.72, 0.75 and 0.80. The regions that have

the two highest values correspond to the nipples.

(a) (b)

0.80 0.75

0.72

(c)

Figure 5: Applying the selection rules to detect the nipples. (a) regions having a number of

pixels greater than Np, (b) the regions that lay outside regionup and regionlw, and (c) the

roundness of the selected regions.
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Figure 6: Detected nipples.

In Algorithm 2, we present the steps of nipple selection from the given can-

didates. The algorithm receives the list of nipple candidates and outputs the165

location of the left and right nipples. To understand the proposed nipple selec-

tion algorithm, we summarize and explain the notations used in Algorithm 2 in

Table 1. The main steps of the algorithm are the following:

• Steps 4-8. The algorithm suppresses the regions that lie outside the

human body boundary (HBB) and that touch or lie regionup or regionlw170

from the list of candidates (N).

• Steps 9-18. The algorithm identifies a list containing the left nipple can-

didates (Lleft) and then finds the region that has the maximum roundness.

However, if two regions have the same maximum roundness, it selects the

region that has the biggest area. Note that, if Lleft includes one region,175

the algorithm directly identifies it as a left nipple.

• Steps 19-28. The algorithm repeats steps 9-18 to detect the right nipple.

Finally, we calculate the centroid of each region and plot it on the input ther-

mogram to highlight the location of the detected nipple. Fig. 6 shows the final

position of the nipples in the input thermogram.180
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Algorithm 2 Nipple selection algorithm

1: Inputs: The list of nipple candidates N , HBB and the center-line (Lcnt)

2: Outputs: Locations of the two nipples (nippleleft and nippleright)

3: procedure Nipple selection

4: for each candidate i ∈ N do

5: Delete i, if any element of i /∈ HBB

6: Delete i, if any element of i ∈ regionup

7: Delete i, if any element of i ∈ regionlw

8: end for

9: Find left nipple candidates Nleft that lay at the left of Lcnt

10: if length(Lleft) > 1 then

11: ml = max{R(Lleft)}

12: if length(ml) > 1 then

13: m′l = max{A(Lleft(ml))}

14: nippleleft = Lleft(m
′
l)

15: elsenippleleft = Lleft(ml)

16: end if

17: elsenippleleft = Lleft

18: end if

19: Find right nipple candidates (Lright) that lay at the right of (Lcnt)

20: if length(Lright) > 1 then

21: mr = max{R(Lright)}

22: if length(mr) > 1 then

23: m′r = max{A(Lright(mr))}

24: nippleright = Lright(m
′
r)

25: elsenippleright = Lright(mr)

26: end if

27: elsenippleright = Lright

28: end if

29: end procedure
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Table 1: Notation used in Algorithm 2.

Notation Meaning

N List of nipple candidates.

HBB Human body boundary.

A The area of a given region.

R The roundness of a given region.

Lcnt The center-line of the image.

regionup Indices of the upper region.

regionlw Indices of the lower region.

Lleft List of left nipple’s candidates.

Lright List of right nipple’s candidates.

max A function that finds the index of the region that has the

maximum roundness or biggest area.

ml Index of the region that has the maximum roundness in Lleft.

mr Index of the region that has the maximum roundness in Lright.

m′l Index of the region that has the biggest area in Nleft.

m′r Index of the region that has the biggest area in Nright.

nippleleft The left nipple.

nippleright The right nipple.

3. Experimental results and discussion

The proposed nipple detection method has been tested using a breast ther-

mography dataset that consists of 148 thermograms (for 148 healthy and sick

women). We collected the dataset from the Proeng database that is available

at http://visual.ic.uff.br/en/proeng/. In a thermogram each pixel corre-185

sponds to the temperature of the acquired scene. The range of temperatures is

associated with the range of gray values of the images. The size of the images

is 640 × 480 pixels. The thermograms were captured by a FLIR thermal cam-

era, model SC620, which has a sensitivity of less than 0.04o range and capture

temperatures from −40oC to 500oC (Silva et al., 2014).190
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3.1. Evaluation

We used a training set of 8 images to optimize the threshold value, the most

upper and lower limits (Hup and Hlw), and Np. We then used the optimized

values to test the proposed method using the rest of the images. We used the

Recall, Precision and F-score to evaluate the proposed method. If the centroid195

of the selected region is inside the region of the true nipple, then it is a true

positive (TP). On the other hand, if the centroid of the selected region is outside

the region of the true nipple, it is a false positive (FP). To calculate the recall,

precision and F-score, we determine the following identities:

• TP = correctly identified nipples.200

• FP= incorrectly identified nipples.

• Ppos=the number of positive instances (number of nipples).

Then, the Recall, Precision and F-score can be calculated as follows:

Recall = TP/Ppos (3)

Precision = TP/(TP + FP ) (4)

F-score =
2.precision.recall

(precision+ recall)
(5)

3.2. Results

Fig. 7 shows examples of correctly detected nipples on thermograms for

different women. We show the results of the proposed method with small breasts205

(Fig. 7(c,d,g)), medium breasts (Fig. 7(e,h,i)) and big breasts (Fig. 7(a,b,f,j−o)).

As shown, in all cases the proposed method correctly determines the location

of the nipples.

We evaluated the proposed method with the whole dataset. Note that the

thermograms used contain at least one nipple in their profile. Indeed, we have210

excluded the thermograms that do not include any nipples in their profiles.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7: Examples of correctly detected nipples using the proposed method.
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However, the dataset still contains very difficult cases, where nipple detection is

difficult even for humans. Table 2 shows the evaluation of the proposed method

with the whole dataset. The nipple detection results were outstanding (precision

close to 0.99). Note that the dataset used includes several cases in which it is215

difficult to identify the nipples even with the human eye.

Table 2: Evaluation of the performance of the proposed method.

Method Recall Precision F-score Time (s)

Proposed 0.930 0.989 0.958 0.30

(Koay et al., 2004) 0.500 0.652 0.566 0.91

Fig. 8 shows examples of false positive nipples. As shown, the algorithm fails

to detect some nipples in these cases. Indeed, the regions of undetected nipples

are not clear in the images, so detecting the nipples with the human eye is

also difficult. Consequently, the nipples can not be detected using the proposed220

method in these cases.

(a) (b) (c)

Figure 8: Examples of false positives.

3.3. The effect of hyper-parameters on the accuracy of the proposed method

The proposed method has few hyper-parameters to be tuned: the threshold

value, the most upper and lower limits (Hup and Hlw), and Np. Indeed, these225

parameters do not affect the accuracy of the proposed method. The threshold

value is used to segment the human body from the background, which is a
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very simple operation because we segment the human body region from a black

background. Even there is a segmentation error due to the threshold value or

Hup and Hlw, it will not affect the accuracy of the proposed method because230

this error is happening at the boundary of the human body, which is away of

the location of the nipples (at the middle of the human body). As we mentioned

above, we used a training set of 8 images to these hyper-parameters. We then

used the optimized values to test the proposed method using the rest of the

images.235

3.4. Comparison with related work

Indeed, very few methods have been proposed to detect nipples in thermo-

grams. In this subsection we compare our method with the approach suggested

in (Koay et al., 2004), in which the authors used an adaptive thresholding and

morphological operations to detect the nipples. They also removed big contour240

regions and regions in the upper breasts, and assumed that the nipples have

an eccentricity close to one. Indeed, they did not present any parameter set-

tings and made no evaluation of nipple detection because the main goal of their

work was to classify thermograms into normal, fibrocystic or cancerous. We

implemented the aforementioned rules and tuned the values of the parameters245

to obtain the best performance.

As can be seen in Table 2, the proposed method easily outperforms the method

of (Koay et al., 2004) in terms of recall, precision and F-score. Fig. 9(a-b)

shows the performance of the two methods in a thermogram containing two

nipples. The proposed method easily detects the two nipples in the cases pre-250

sented (Fig. 9 (a)) while (Koay et al., 2004) does not (Fig. 9 (b)). Fig. 9(c-d)

shows the performance of the two methods in a thermogram containing one

clear nipple (right nipple) in its profile (the left nipple is fuzzy). The proposed

method successfully detects the right nipple (Fig. 9 (c)) while (Koay et al., 2004)

does not (Fig. 9 (d)). These results demonstrate that the rules used in (Koay255

et al., 2004) produce poor detection results.

The two methods were implemented using MATLAB on an Intel processor core
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(a) (b)

(c) (d)

Figure 9: Comparing the performance of proposed method (a,c) and the approach proposed

in (Koay et al., 2004) (b,d).

2 Quad at 2.5GHz and 8 GB of RAM. As presented in Table 2, the proposed

method takes 0.3s to determine the nipples. This time is approximately one-

third of the execution time of (Koay et al., 2004), indicating that the proposed260

method is more suitable for working with real-time applications.

3.5. Limitations

Like any computer approach, the proposed method has some limitations:

• It does not work in thermograms in which nipples do not appear or are

not clearly visible.265

• It fails to detect nipples in thermograms that contain fuzzy regions, and

in which even the human eye would have trouble detecting them.

3.6. Possible applications of the proposed method

As we have shown above, our method accurately detects the nipples in real-

time (0.3s). Thus, it could be used in such applications as the following:270
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• It can be used to find two seed points to segment the breast region in

thermograms. Thus, we can integrate our method with the cancer detec-

tion approach suggested by Schaefer et al. (2009) where the breasts were

manually segmented. We suggest replacing this step by an automatic seg-

mentation method based on the method suggested in this paper. This275

makes the approach proposed in (Schaefer et al., 2009) fully automatic.

• Given two thermograms, the proposed method can be used to register one

breast to the coordinates of another. Thus, it can be used to improve the

registration step used in (Saniei et al., 2015).

• It can be used to find the correspondence location of masses in images that280

were acquired using different modalities (e.g., thermograms and mammo-

grams) for the same breast.

• It will be used to design a robust thermogram registration framework.

In (Abdel-Nasser et al., 2016) we used an optimization approach to find

the optimal location of the origin of the curvilinear coordinates to reg-285

ister mammograms; in turn, the nipples detected by our method will be

used as origins to establish the curvilinear coordinates in order to align

thermograms.

In the section below, we show the use of the nipple detection algorithm in

a breast cancer detection method (classification of the images into normal or290

abnormal).

4. Application: Breast cancer detection in dynamic thermography

Dynamic infrared may improve the performance of the conventional static

infrared thermography when an external stimulus is applied to enhance ther-295

mal contrast. Dynamic infrared produces a sequence of temperature matrices,

which can be converted into images. Each matrix is acquired at time t and

contains the temperatures of the middle area of women body (from the neck to
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the waist).

Figure 10: An application: breast cancer detection in dynamic thermograms.

Dataset: we used the dynamic thermography dataset of (Silva et al., 2014)300

to validate our application. The main step of the acquisition protocol is the

cooling of the regions of the breasts and armpits of the patient using an electric

fan for several minutes in an environment with controlled temperature (20oC to

22oC) (Silva et al., 2014). After the cooling process, 20 images were captured

during 5 minutes using a FLIR thermal camera (model SC620). The camera305

had a sensitivity smaller than 0.04oC, the detectable temperature range was

between -40oC and 500oC and the images have a dimension of 640× 480 pixels.

The dataset includes 37 sequences of cancer patients (histopathologically proven

cancer) and 19 sequences of healthy cases (each sequence contains 20 images, in

total, 1120 images).310

Fig. 10 shows the steps of the proposed application: nipple detection, ROI

extraction, feature extraction and classification. In this application, given a

sequence of dynamic images for a given patient, we extract a region of interest

(ROI) around the location of the detected nipples from each image. To extract

the regions of interest (ROIs), a region-based segmentation method can be used315

to roughly segment the breast area, then we determine the rectangular ROI

that contains the segmented area. We used Chan-Vese active contours for seg-

mentation (Chan et al., 2000; Chan & Vese, 2001). In general, active contour

methods requires a mask in order to initialize the segmentation process. Several

studies manually set the location of this mask. In contrast, we initialize a mask320

(n1 × n1 neighborhood) a round the detected nipple, then the active contour
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method uses this mask to segment the breast region. Fig. 11 shows an example

of ROI segmentation. The white region that is to the right of the ROI lies out-

side the human body boundary, therefore, we excluded it. Indeed, the location

of the nipple is a reasonable and accurate position for setting the mask.325

From each ROI, we extract a histogram of oriented gradients (HOG), and then

concatenate the HOG descriptors extracted from all ROIs in the sequence, thus

generating one feature vector describing the whole sequence. Finally, we input

the feature vectors into a multi-layer perceptron (MLP) to build a model that

discriminate a normal ROI from the abnormal one.

Figure 11: The extracted ROIs.

330

HOG is a robust texture analysis method because it produces distinctive features

in the case of illumination changes (Dalal & Triggs, 2005). In the HOG method,

the occurrences of edge orientations in a local image window are counted. The

image is divided into blocks (small groups of cells) and then a weighted his-
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Table 3: Breast cancer detection method based on the nipple detection algorithm

Method AUC

HOG2*2 0.974

HOG4*4 0.980

togram is computed for each of them. The frequencies in the histograms are335

normalized in the interval [0,1] to compensate changes of illumination. The final

HOG descriptor is formed by concatenating the histograms of all blocks.

The performance of the proposed method is measured in terms of the area

under the curve (AUC) of the receiver operating characteristic (ROC) curve.

Table 3 presents the results of the proposed cancer detection method with the340

MLP classifier (50 neurons) in terms of AUC with HOG2*2 (2 blocks, 2 cells)

and HOG4*4 (4 blocks, 4 cells). Fig. 12 shows the ROC curves of the pro-

posed breast cancer detection method with HOG2*2 and HOG4*4. As shown,

HOG4*4 gives an AUC value and accuracy better than the ones of HOG2*2.

The main reasons of the good performance of HOG are:345

• HOG descriptor is less sensitive to the noise.

• HOG accumulates the occurrence of the gradients of the input data into

different orientations, therefore it provides a good description of the gra-

dients of temperatures in the input images.

However, HOG gave good results, several feature extraction method can be used350

to do so. Determining the best feature extraction method is out of the scope of

this paper.

5. Conclusion

An unsupervised, automatic, accurate, simple and real-time method for de-

tecting nipples in thermograms is proposed in this paper. The main stages of355

the proposed method are: human body segmentation, determination of nipple

candidates using adaptive thresholding and finally detection of the nipples using

22



1-specificity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
n

si
ti

vi
ty

0

0.2

0.4

0.6

0.8

1

HOG2*2
HOG4*4

Figure 12: The ROC curve of the proposed breast cancer detection method with HOG2*2

and HOG4*4.

rules derived from the anatomical structure of the human body. The proposed

method takes 0.3s to detect the nipples. It gives very accurate results in real-

time. We also presented an application of the nipple detection algorithm: breast360

cancer classification in dynamic images, which gave good results.

Our future work will focus on integrating the proposed method with several ap-

plications, such as breast region segmentation and finding the correspondences

between the masses in mammograms and thermograms of the same patients.

In addition, we will use the proposed nipple detection method to find the opti-365

mal location of the origin of the curvilinear coordinates, which will be used to

register thermograms.
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