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Abstract

The popularity of Web Search Engines (WSEs) enables them to generate a lot
of data in form of query logs. These files contain all search queries submitted
by users. Economical benefits could be earned by means of selling or releasing
those logs to third parties. Nevertheless, this data potentially expose sensi-
tive user information. Removing direct identifiers is not sufficient to preserve
the privacy of the users. Some existing privacy-preserving approaches use log
batch processing but, as logs are generated and consumed in a real-time en-
vironment, a continuous anonymization process would be more convenient.
In this way, in this paper we propose: i) a new method to anonymize query
logs, based on k-anonymity; and ii) some de-anonymization tools to deter-
mine possible privacy problems, in case that an attacker gains access to the
anonymized query logs. This approach preserves the original user interests,
but spreads possible semi-identifier information over many users, preventing
linkage attacks. To assess its performance, all the proposed algorithms are
implemented and an extensive set of experiments are conducted using real
data.

Keywords: Web search engines, Privacy, Query logs, Data stream, Data
monetization.

1. Introduction

Nowadays, surfing the Web usually requires using a Web Search Engine
(WSE) as main entry point. Individuals interact with WSEs by submitting
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search queries that contain certain keywords related to the topics they are
looking for. WSEs, then, retrieve and present, with a minimal response time,
an accurate list of web sites that tackle those topics. The popularity of WSEs
has grown with the number of websites present on the Internet. According
to a recent study (Netcraft, 2016), the number of websites is nearly doubling
every three year period; therefore, it can be assumed that WSEs such as
Google or Bing will continue to be essential players in the next years.

When a WSE looks for the requested information among its indexed
web pages, it also stores the submitted query (i.e., the keywords) and some
metadata (e.g., date of the query, some identifiers of the query issuer, which
specific search result was selected by the issuer, etc.). The files that contain
all the recorded queries and their related metadata are generally referred
as query logs (Chau et al., 2005). As a result, everyone who uses a WSE
is disclosing personal data, such as personal characteristics and preferences,
and enabling WSEs to compile those query logs, which are part of the huge
bunch of data that has been recently designated as Big Data.

Turning this data into knowledge is a main interest for many companies.
Knowledge is gathered using several techniques related to data mining and
machine learning. The result of these processes is the extraction of valuable
information that enable those companies to obtain economic benefits. This
process is known as data monetization (Saagar, 2014) and it was recently put
on the spotlight by the U.S. Federal Trade Commission when this organiza-
tion published a report about data collection and use practices of the most
relevant Data Brokers (U.S. Federal Trade Commission, 2014).

Once the query logs are generated, they are processed and analyzed in
order to build user profiles. In the literature, a user profile is generally
considered a set of well-defined categories of interests (e.g., science, health,
society, sports, etc.) with a certain weight assigned to each one according to
the evidences generated by the corresponding user and how they have been
classified under each category (Viejo et al., 2012). When focusing on WSEs,
search queries are the evidences, and the amount of queries from each user
classified under each category reflects the related weight.

WSEs process and analyze query logs and related user profiles in order
to perform the following services:

• Personalization: Providing relevant results to their users’ needs, where
relevant links are placed in the first positions of the returned results.
This is achieved by analyzing the past queries submitted by users; this
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knowledge allows WSEs to contextualize and disambiguate next queries
(Shen et al., 2007). In this way, if the user searches for “Mercury” and
her profile indicates that she is interested in “Astronomy”, the WSE
will put the results that correspond to the planet Mercury in the first
pages (instead of the chemical element).

• Improved web search: By knowing the frequencies of most formulated
queries and most selected results, WSEs are able to improve the ranking
algorithms (Agichtein et al., 2006) and to suggest reformulated queries
that can add specificity to the user’s initial query (Jones et al., 2006).
Suggestions can be offered while the user is typing her query or also
after retrieving poor search results for a query submission (Cooper,
2008). Following with the example of the term “Mercury”, if a user in-
puts just this term in the text-field of Google’s WSE, it will suggest as
better alternative queries: “Mercury - Planet”, “Mercury - Element”,
“mercury poisoning” and “mercury marine” among others. These al-
ternative keywords are expected to retrieve more accurate results to
the user.

• Marketing : Characterizing general user profiles, user behavior and user
search habits, it’s possible to improve keyword advertising campaigns
and extract market tendencies among others (Brenes & Gayo-Avello,
2009; Poblete et al., 2007; Korolova et al., 2009). More concretely,
search analytics is one of the cornerstones of the so-called Search En-
gine Marketing and it is in charge of using search data to investigate
particular interactions among Web searchers, the search engine, or the
content during searching episodes (Jansen, 2006). For example, Google
Trends1 is a service that exploits this kind of data. In particular, Google
Trends shows how often a particular term is searched according to the
total search-volume across various regions of the world.

• Research: As stated in (Richardson, 2008), query logs contain infor-
mation that would never be available to researchers using conventional
data-collection techniques. For example, a medical researcher might
discover that people with asthma tend to wear wool, or live in ar-
eas with coal power plants; a sociologist may study how ideas spread

1Google Trends. https://www.google.com/trends/

3



from one person to an entire community, or may investigate the dif-
ferences between the interests that individuals claim to have during
face-to-face interviews and the real interests that their search queries
reveal (Tancer, 2008); a political scientist might learn about democ-
racy by studying the evolution of political searches by users in a devel-
oping country; and a computer scientist may study and analyze new
Information Retrieval (IR) algorithms via a common benchmark query
log (Bar-Ilan, 2007). Last but not least, query logs also enable re-
searchers to ask questions that would normally require going backward
in time. For example, a medical researcher might study people diag-
nosed with diabetes today to find out what their primary symptoms
were six months ago. Asking them directly, once they learn they have
diabetes, may result in subjective bias (Richardson, 2008).

In addition to those benefits, building and exploiting query logs may lead
to serious privacy problems as well. More specifically, the keywords of each
query and the related metadata may provide to anyone who has access to
the logs with sensitive information from the users such as behaviors, habits,
interests, religious views, sexual orientation,etc. Even worse than that, some
query contents may contain identifiers and quasi-identifiers which may allow
to link a certain query with a real person. An example of this situation
happens with the so-called vanity searches (Soghoian, 2007) in which an
individual looks for its own name on the Internet.

Although query logs could be protected prior to their publication, there is
no absolute guarantee of anonymity, as the combination of modified data may
disclose enough information to re-identify some users (Poblete et al., 2007;
Jones et al., 2007). As an example, there is one well-known case, the AOL
scandal, in which around 36 million queries performed by AOL’s costumers
were publicly disclosed. Although records were previously de-identified, it
was possible to identify some users from the disclosed query logs and other
sensitive information was exposed (Barbaro & Zeller, 2006). This case ended
up with an important damage to AOL users privacy and to AOL itself, with
several lawsuits against the company (Mills, 2006).

Therefore, in order to get viable data monetization, better tools capable
of modifying query logs by limiting the privacy disclosure risk but preserving
as much data utility as possible should be provided. More specifically, in this
paper, we propose using a server side software capable of processing queries
in real time and building anonymized query logs that still retain enough
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data utility to allow its monetization. As a result, WSEs may then offer the
protected query logs to external organizations for data monetization purposes
while keeping the real query logs in a safe place; otherwise, WSEs may also
decide to only keep protected logs, getting in turn a lower risk of information
disclosure in case of a direct attack.

The rest of this paper is organized as follows: in Section 2, we summarize
the most relevant research published up to date. In Section 3, we define the
method used to implement the system. In Section 4, we analyze the results.
In Section 5, we conclude and point out some future lines of research.

2. Previous work

To avoid record-linkage attacks, the concept of k-anonymity is proposed in
(Samarati & Sweeney, 1998). A k-anonymized dataset has the property that
each record is indistinguishable from at least k−1 other records, no individual
can be re-identified with probability exceeding 1/k through linking attacks
alone. Currently there are two main approaches to protect users’ records:
batch or real-time processing.

2.1. Batch processing

Historically, these were the first proposed methods. Because all the logs
are stored, it’s possible to remove the queries that disclose the identities of
the individuals by means of basic statistic or semantic methods. We next
detail the different methods that belong to this category considering two
main subcategories: i) query removal; and ii) statistical disclosure control
(SDC) and semantics.

2.1.1. Query removal

As shown in (Cooper, 2008), several approaches dealing with the query
log anonymization problem based on query removal or hashing can be found
in the literature. More concretely, some protocols and methodologies simply
remove old query sets assuming that query logs will not be large enough
to enable identity disclosure, however, this assumption does not take into
account the existence of highly identifying queries (Barbaro & Zeller, 2006).

A more appropriate approach suggests deleting only infrequent queries
(Adar, 2007), assuming that those are more likely to refer to identifying or
quasi-identifying information. However, this is difficult to achieve due to the
fact that the vast majority of queries occur a small number of times and, in
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any case, it can be quite challenging to select the proper deletion threshold.
As a result, this method may result in eliminating a substantial amount of
non-identifying but useful queries (Beitzel et al., 2004).

Other removal-based methods focus on removing identifying data asso-
ciated to queries and private information found within the given keywords
(e.g. SS numbers, credit cards, addresses, etc.) (Center for Democracy and
Technology, 2007). However, as explained in the Introduction, the AOL in-
cident demonstrates that combining the remaining no-identifying data may
be enough to disclose the identities of the individuals.

More elaborated approaches in this field focuses on removing those queries
that end up with the user clicking common URLs, considering that those
queries may be dependent, i.e. quasi-identifiers (Poblete et al., 2007; Ko-
rolova et al., 2009). Generally, these methods represent query logs as a graph
in which queries are nodes and are connected by an edge if the intersection of
their clicked URLs sets is not empty. The anonymization process consist on
removing all queries that: i) return less than k documents; ii) contain part
of target URL; and iii) contribute to a non-zero density of the query graph.

2.1.2. Statistical disclosure control (SDC) & Semantics

More recent approaches rely on SDC methods to anonymize query logs
while retaining the maximum level of information by means of minimizing
the amount of query removal (Navarro-Arribas & Torra, 2009; Hong et al.,
2009). They group users with similar query logs together and, then, their
queries are replaced by a representative query. According to that, stored
queries are transformed in order to minimize the disclosure risk.

Due to the dimensionality and unbounded nature of query logs, some
authors such as (He & Naughton, 2009) have proposed to anonymize the
set of queries made by an user by means of generalizing her queries using
a knowledge base such as WordNet (Miller, 1995). The problem of this
approach is that a query can be meaningless in a generic dictionary, but
it might be dangerous according to a more specific one. Pioneer work on
this field such (Terrovitis et al., 2008) generalizes groups of input queries
to a common conceptual abstraction (e.g. sailing and swimming to water
sports), until users who performed those queries become k-anonymous.

2.2. Real-time processing

The approaches that have been introduced previously work only with
static data. This implies that, if applied to anonymize query logs, these
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sources of data must be “closed” before applying any procedure. According
to this, and depending on their size, two main options are considered: i) the
query logs to be anonymized contain all the queries received from time 0
until now; or ii) the query logs to be anonymized correspond just to a short
and limited period of time.

In the first option, the anonymization method in use will deal with a
huge quantity of data; even worse, query logs are expected to grow daily
and, hence, each anonymization process will be required to process bigger
amounts of data. In order to show the relevance of this problem, it has to
be noted that usual anonymization methods that provide k-anonymity in
databases have shown significant limitations when dealing with large quan-
tities of data. For example, well-known SDC techniques based on general-
ization or microaggregation suffer from a very high cost when performing
the partition of the database, in this way, authors have reported quadratic
costs in this steps that clearly disqualifies these techniques for the volume of
information that is considered in this case (Soria-Comas & Domingo-Ferrer,
2015). Being more specific, the authors in (Batet et al., 2013) apply semantic
microaggregation to anonymize WSE query logs and their conclusion is that
these techniques do not fit well with large sets of data that require a continu-
ous update of the anonymization due to new data being added continuously.

Regarding the second case, an organization that builds query logs can
work with “limited” sets of data by means of classifying received search
queries by month, trimester or semester; then, at the end of the chosen pe-
riod of time, just the corresponding and limited query log is anonymized and
disclosed. This option clearly alleviates the cost required by the anonymiza-
tion method in use; however, it only focus on a specific window of time,
which implies that a lot of queries are discarded and, hence, the accuracy
of the anonymized outputs is expected to be jeopardized due to the loss of
information.

In conclusion, “closing” query logs, which are a dynamic source of data
that is continuously growing with new search queries issued by the WSE’s
users, is contrary to their real nature and it has been acknowledged in the
literature that it is an ineffective strategy. As a consequence, we need to
study methods for real-time processing that may be applied to the considered
scenario.

This approach, while it has not been directly applied to WSE query logs,
is relevant for our research because it does not require to store a lot of data
before being able to start any anonymization process. Schemes belonging
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to this category consider data as a stream and they process information as
soon as it is generated, introducing a minimum delay (Gaber et al., 2005).
Data streams could be infinite and generate huge volumes of data. There-
fore, mining massive data streams that have privacy protection in a network
environment is a challenging task (Krempl et al., 2014).

Most approaches in the literature that try to address this field achieve
k-anonymity and try to reduce the delay when processing data streams (Guo
& Zhang, 2013; Zakerzadeh & Osborn, 2010; Yang et al., 2010; Li et al.,
2008; Zhang et al., 2010; Zhou et al., 2009; Mortazavi & Jalili, 2014). These
methods are mainly based on clustering incoming data streams and they all
need to wait for new tupples in order to build the anonymized clusters. In
order to avoid the problems inherent to accumulation-based methods, the au-
thors of (Kim et al., 2014; Navarro-Arribas & Torra, 2014) follow alternative
strategies that allow them to reduce delay.

Although the literature on this topic is rich, all the privacy-preserving
systems designed to deal with data streams focus only on structured data.
More specifically, the considered input data is mainly numerical, which is
main limitation when considering its possible application to the anonymiza-
tion of WSE query logs. Note that in the query logs of the WSEs it is usual to
find unstructured data made of both textual and numerical data. This strong
limitation shows that there is still room in the literature for new schemes spe-
cially designed to anonymize dynamic query logs while maximizing the data
usability.

3. Our proposal

Our proposal, in a nutshell, is based on a server-side architecture that
enables WSEs to anonymize query logs in a streaming environment. The
outputs of this system are two: i) a real-time stream of anonymized logs;
and ii) a database of user profiles. The main target is to allow WSEs to sell
or release both data sets to interested third parties without threatening the
privacy of the individuals who have filled the query logs with their issued
search queries. In order to achieve that, the resulting outputs must fulfill
certain requirements that are next detailed.
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3.1. Requirements

3.1.1. Privacy requirements

The main requirement for the proposed system is that it must preserve
the privacy of the individuals who contribute to the WSE query logs.

Privacy could be achieved by means of query de-identification, following
one of the following approaches:

• Full de-identification: it is achieved when all identifiers, direct and
indirect, are removed and there is no reasonable basis to believe that
remaining information can be used to identify an individual.

• Partial de-identification: it is achieved when only direct identifiers are
removed (indirect ones remain).

• Statistical de-identification: it is achieved by maintaining a trade-off
between keeping as much useful data as possible while guaranteeing
statistically acceptable data privacy.

Direct identifiers (e.g., full name, national id, etc.) can be easily removed
from query logs. However, the textual content of search queries may contain
any possible value of any domain; this is very likely to produce cases in
which may be very difficult to distinguish identifying queries from innocuous
ones. As a result, in the considered scenario full de-identification requirement
cannot be guaranteed.

Partial de-identification is easier to achieve and, additionally, more data
utility may also be preserved. However, it is prone to record-linkage attacks
(Samarati & Sweeney, 1998) that would allow to re-identify users by means
of certain apparently innocuous queries.

Statistical de-identification seems the more suitable approach. It is ob-
tained trough certain statistical criteria and anonymization techniques, be-
ing k-anonymity and its extension l-diversity the two most widely accepted
models. Those models were proposed for structured data (Zhang et al., 2010;
Zhou et al., 2009; Torra & Domingo-Ferrer, 2001). However, the current pro-
posal seeks to prove its usefulness also when anonymizing unstructured data
streams.

3.1.2. Functional requirements

To enable the use of current proposal in a real environment, it must also
fulfill a set of functional requirements:
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• Scalability: It is the capability of a system to handle a growing amount
of work, or its potential to be enlarged in order to accommodate that
growth (Bondi, 2000). Specifically we want to achieve load scalability,
that is the ability to easily expand or contract to accommodate heavier
or lighter loads. Scalability methods fall into two broad categories
(Michael et al., 2007): i) Horizontal scalability which is related to the
ability of a system to add more working nodes, such as a new computer;
and ii) Vertical scalability which is related to the ability of adding
resources to a single node in a system, typically involving the addition
of CPUs or memory. Both approaches have their own trade-offs, and
the proposed architecture should take advantage of all the available
resources. Configuring an existing idle system has always been the
less expensive alternative, regardless of the approach. So the proposed
architecture should be designed to take advantage of this fact and,
therefore, it should use the existing WSE infrastructure.

• Processing speed: In order to minimize delays generating anonymized
data stream, a high processing speed should be a main requirement.
It’s also fundamental in order to being able to process all requests re-
ceived by the WSE. A WSE receives every second thousands of queries.
For example, Google is processing in average 40000 queries per second
(Internet Live Stats, 2016). This fact implies that the new proposal
should be able to meet similar speed requirements as the ones met by
WSEs.

• Resource consumption: As an additional requirement, the resource con-
sumption of the system must be low, in order to facilitate its inclusion
in an existing WSE, minimizing overhead cost. Even though the sys-
tem is supposed to scale with added resources, it is important to not
increase unreasonably current WSEs resource consumption.

• Transparency: To ease the integration of the proposed system in ex-
isting WSEs architectures, it must be transparent. New modules can
hid internal details, making them invisible for the main architecture,
i.e. encapsulated. Mainly, they should adhere to previous external in-
terfaces without changing them, while changing its internal behavior,
i.e. generating anonymized query logs with the same structure than
original logs. The main purpose of providing a transparent system is
to avoid changing any existing part of the WSE to be integrated with.
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• Modularity: As explained above, the proposed solution should be easily
integrable in an existing WSE. According to this, functional scalability
should be achieved, i.e. being able to enhance the system by adding
new functionality at minimal cost. To do achieve this, the proposed
system should be designed to be modular and to have low coupling and
high cohesion.

3.1.3. Utility requirements

Although full de-identification is desirable from a privacy point of view,
ideally, preserving the privacy of the individuals should be compatible with
allowing WSEs to sell non-sensitive user information to third parties. Logi-
cally, the economical value of these privacy-safe data will directly depend on
its remaining quality from the utility point of view. As a result, there is a
clear trade-off between anonymizing logs and keeping them useful to extract
information through data mining processes. Therefore, the main challenge
related to data utility is to anonymize sensitive user data, removing as few
information as possible in order to have enough interesting information to be
analyzed.

To achieve this, the proposed system aims to build fake logs and user
profiles which should retain users’ interests (maximizing the data utility) and
eliminate any direct or quasi-identifier that could allow their re-identification
(maximizing the user privacy). It should be as difficult as possible to relocate
queries in order to build the original profile of a certain user.

3.2. Architecture

In Figure 1, three sub-systems that conform the proposed scheme are
depicted. Note that, from those sub-systems, only the WSE Anonymizer
should be integrated into the WSE environment. The other two are just
defined to evaluate proposed method.

3.2.1. Actors

The main actors considered in the proposed process are the following:

• WSE: The web search engine. It builds the original query logs and
it has the target of generating an anonymized version together with a
users’ profile database in order to sell or disclose them for economical
purposes.
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Figure 1: Main Architecture

• Customer: Represents a third party who wants to legitimately access
the anonymized query logs and the users’ profile database.

• Attacker: Represents a third party who wants to gain illegitimate access
to the original query logs using as input the anonymized query logs and
the users’ profile database.

3.2.2. Phases

Current study is divided into the following phases:

• Anonymization and profile creation: Main phase, which takes the orig-
inal query logs generated by the WSE as input and generates the
anonymized query logs and a database of user profiles as outputs.

• Anonymization analysis : Anonymization and performance benchmark-
ing, taking into account original data, anonymization time and resource
usage.

• De-anonymization: Using the anonymized query logs as input, an at-
tack is simulated, trying to link anonymized logs with the users that
issued them.
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• Analysis : De-Anonymization and performance benchmarking, taking
into account original and anonymized data, time and resource usage.

3.2.3. Interactions

As the system is designed to anonymize a stream of query logs in real
time, interactions are defined by production and consumption of streams of
logs. The main interaction is defined between a WSE as producer, and a
customer as consumer of the anonymized logs. An attacker will try to gain
access to the anonymized stream of logs, such as any legitimate client and,
then, it will try to de-anonymize them in order to recover the original query
logs.

3.3. Proposal description

In this section all sub-systems that compose the architecture are described
in more detail.

3.3.1. Anonymization and profile creation

In Figure 2, the main modules of the anonymization and profile creation
sub-systems are represented. Each of them is responsible of a single action.
All modules are described below.

Classi er

Query

logs

Categorized

logs

Anonymizer

Anonymized

logs

Pro ler
Pro les

MEM

Categories

Recomm

Entropies

Figure 2: Anonymization and profile creation
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Algorithm 1: Classifier

Input : query logs, entropies, recommendations, categories
Output: categorized logs

1 foreach log ∈ query logs do
2 SUs← lemmatize(log);
3 min entropy ←∞;
4 foreach SU ∈ SUs do
5 l← recommendation(SU);
6 e← entropy(SU);
7 if e < min entropy then
8 min entropy ← e;
9 main SU ← l;

10 end
11 log category ← category(main SU);
12 send log, log category;

13 end

Classifier. Represented in Algorithm 1, the classifier uses query logs gen-
erated on the WSE as main input. It also needs access to a database of
entropies, recommendations and categories for a given word. Once the clas-
sifier receives an user query, it’s processed and categorized in real time. Then
the categorized query is released. The process followed by the classifier is di-
vided into the following stages:

• Natural language processing: Which is applied to query’s text field to
extract its semantic units (SUs) (Sánchez et al., 2013). Only nouns or
adjectives are used. Then the HIPAA(U.S. Department of Health and
Human Services, 1996) Privacy Rule is applied, to remove all the SUs
that could be considered identifiers or quasi-identifiers, such as a name,
address, phone number etc.

• Recommendation: To correct possible misspellings, selected SUs are
validated against a recommendation database, which returns the cor-
rect term in case of a misspelled word.

• Entropies: The amount of information (entropies) are calculated for
each of the remaining SUs. To do so, a database of entropies is used,
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which should provide the number of references on the WSE for a given
term. The algorithm will chose as main SU the one which has less
references, which is assumed to be the most specific and, hence, infor-
mative term of the query (Sánchez et al., 2010).

• Categorization: The corresponding category for the query is then cal-
culated using main SU and a database of categories, obtaining the
most specific topic of the query.

As a representative example of how the Classifier works, let us assume an
input query whose keywords are: “european soccer barcelona players”. The
first step of this process extracts the SUs: “european soccer”, “barcelona”
and “players”. Next, entropies are calculated for each SU, getting the fol-
lowing results according to Google’s WSE: “european soccer”: 56,500,000
results; “barcelona”: 504,000,000 results; and “players”: 544,000,000 results.
According to these numbers, “european soccer” is selected as the main SU
of the input query. In the last step, “european soccer” (as main SU) is used
to assign a corresponding category of interest to the input query by means of
a knowledge base. In this way, if the Open Directory Project (ODP) 2 is used
as knowledge base and queried with “european soccer”, retrieving “Sports”
as the resulting category. Therefore, the input query is categorized as related
to “Sports”.

Anonymizer. Represented in Algorithm 2, it uses as input the categorized
logs that are generated in real time by the classifier (see the previous expla-
nation for more details about this). Those logs are split in two sets for each
category, one that stores the users, and another that stores the text of the
queries. When a category set reaches the maximum allowed value, defined
by k, the algorithm randomly takes an user and a query from that category
and builds with those the anonymized query with a minimum delay.

A special case occurs when all users stored in certain category set are the
same. In this case, the selected user would be the same than the original
one. In order to prevent this situation (which, in any case, it is very unlikely
to happen due to the huge quantity of queries that a WSE receives each
second), we impose an additional restriction, not shown in Algorithm 2 for
simplicity:

2Open Directory Project. http://www.dmoz.org/
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Algorithm 2: Anonymizer

Input : categorized logs, k, δ
Output: Anonymized logs

1 foreach log ∈ categorized logs do
2 user, query, category ← log;
3 users[category]← user;
4 query[category]← query;
5 if size(users[category]) = k then
6 if ∀u ∈ users[category], ∃u 6= user then
7 pop random u ∈ users[category];
8 pop random q ∈ query[category];
9 send u, q;

10 else k = k ∗ δ;
11 end

When all users in a certain category are the same, the anonymizer must
increment the corresponding k value. This is done by multiplying k by a δ
value. With this step, we ensure that the result is also l-diverse.

As an example of how the proposed Anonymizer works, let us assume
that the system works with parameter k = 4 and that in the data struc-
ture in charge of storing queries related to “Sports” there are already stored
three queries: i)“novak djokovic tennis titles”, sent by user A; ii)“monza for-
mula1 tickets”, sent by user B; and iii)“champions league final”, sent by user
C. The Anonymizer receives the query “european soccer barcelona players”
that has been categorized as “Sports” in the last phase by the Classifier.
The data structure “Sports” contains now four queries so, it is full, accord-
ing to k; therefore, one of the stored queries is selected at random and it is
assigned to a sender at random too. Following this example, let us assume
that “champions league final” and user A are randomly selected. As a result,
an anonymized log is outputted where user A is now linked to “champions
league final” instead of to her original query “novak djokovic tennis titles”.
It can be seen that, by doing this, the generality is kept (i.e., A is inter-
ested in “Sports”) while the specificity is eliminated (i.e., A was specifically
interested in “Tennis” instead of “Soccer”). As explained in works such as
(Viejo & Sánchez, 2014), keeping general interests improves the utility of
the anonymized data while hiding specific interests is useful to preserve the

16



privacy of the respondents.

Profiler. This element uses as input the anonymized record generated by the
anonymizer and the corresponding category. With this data a user profile is
created or updated in real-time. Therefore, the profiler is in charge of keeping
the profile database updated. As it has been explained in the Introduction,
in the literature, a user profile is generally considered a set of well-defined
categories of interests (e.g., science, health, society, sports, etc.) with a
certain weight assigned to each one according to the evidences generated by
the corresponding user and how they have been classified under each category
(Viejo et al., 2012).

As an example of how the proposed Profiler works, let us assume that the
system uses the following set of categories: Arts, Health, Shopping, Science,
Computers, Sports, Society and Business (note that the proposed system
is not bounded to this set of categories, this is only an example). Let us
assume also that a certain individual has already sent: 5 queries related to
Science; 10 queries related to Business; 20 queries related to Arts; 5 queries
related to Health and 10 queries related to Computers. As a result, the
current profile for that person stored in the profile database is: (Arts: 40%,
Health: 10%, Shopping: 0%, Science: 10%, Computers: 20%, Sports: 0%,
Society: 0%, Business: 20%). Now, let us assume that this person is assigned
to the new query “champions league final” by the Anonymizer, this query
has been categorized as “Sports” by the Classifier. The Profiler obtains the
new evidence and updates the corresponding user profile as follows: (Arts:
39.2%, Health: 9.8%, Shopping: 0%, Science: 9.8%, Computers: 19.6%,
Sports: 1.9%, Society: 0%, Business: 19.6%).

3.3.2. De-Anonymization

The purpose of this process is to try to link the anonymized logs with the
individuals who generated them. By this way, the system tries to evaluate
whether the anonymization process executed previously has been successful
or not and, therefore, whether the resulting protected query logs can be
disclosed or not.

As seen in Figure 3, the de-anonymization process is very similar to the
anonymization one. We assume that the attacker has already gained access
to the stream of anonymized logs generated by the WSE. Those logs are the
main input for the process.
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Figure 3: De-Anonymization

First of all, the input logs should be classified by the attacker. Best de-
anonymization could be achieved if the attacker manages to get the same
categorization used by the WSE (this is also the worst-case scenario form a
privacy point of view). As result, the attacker can use Algorithm 1 to cate-
gorize the anonymized logs prior to perform their de-anonymization. In this
way, the attacker also needs access to a database of entropies, recommenda-
tions and categories.

Then, each categorized log is send to the de-anonymizer algorithm, which
will try to recover the original query logs. Several de-anonymizer algorithms
are proposed and tested on next section. All of them share the same basic
structure, shown on Algorithm 3.

The de-anonymization algorithm also uses two additional parameters, k
and δ. Their function is the same than in Algorithm 2. An attacker will
always attempt to use similar values to the ones used in the anonymization
process.

Each de-anonymizer variation defines a different pop selected function,
and some specific data structures, represented with dashed lines on Figure
3. All those variations are detailed in Section 4.

Following the same example used to explain the work of the Anonymizer,
in this case, the De-anonymizer takes as input the anonymized query logs.
Let us assume that this is: i) “champions league final”, sent by A; ii) “monza
formula1 tickets”, sent by Z; iii) “novak djokovic tennis titles”, sent byB; and
iv) “european soccer barcelona players”, sent by C. The De-anonymizer first
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Algorithm 3: De-Anonymizer

Input : categorized logs, k, δ
Output: query logs

1 foreach log ∈ categorized logs do
2 user, query, category ← log;
3 users[category]← user;
4 query[category]← query;
5 if size(users[category]) = k then
6 if ∀u ∈ users[category], ∃u 6= user then
7 pop selected u ∈ users[category];
8 pop selected q ∈ query[category];
9 send u, q;

10 else k = k ∗ δ;
11 end

categorizes the anonymized query logs to ascertain the category of interest
linked to each query (as done in the anonymization process) and then tries
to link a certain query with its original sender. The process followed to do
that may vary and different approaches are explained in the Implementation
section. A simple approach would be to match sender and query keywords
at random (as done in the anonymization process). Using this method in
this example may lead to match B with “european soccer barcelona players”
which would get a failure in the de-anonymization process, or with “monza
formula1 tickets” which would get a success.

3.3.3. Analysis

Finally we also need a basic algorithm to verify that the proposed scheme
is working properly, this is a log matcher. More concretely, it gets two log
streams as input, and returns the number of matching logs, i.e. identical logs
appearing in the two input streams. A resource profiler is also needed for a
proper analysis, which at least should calculate amount of time and resources
used in each task.

4. Evaluation

In this section, the implementation used to test our proposal is described.
All the conducted tests are also detailed. Finally a discussion of system
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performance in terms of user’s privacy, functional requirements and data
utility is provided.

4.1. Implementation

All algorithms described in Section 3 were implemented in Python. Input
and output query logs are stored in plain text files preserving the original
format of logs. Communication between modules was also done via plain text
files, to enable posterior analysis, but all modules could also use a sockets
based communication. A No-SQL database, was used to store user profiles
as well as other persistent data. Beside those implementation decisions, all
other major changes that have been made to the initial algorithms during
the implementation process, are discussed below.

Classification is a complex task to achieve outside of a WSE context,
mainly because, besides the original logs, some additional information is re-
quired. As previously described, the proposed algorithm needs a database
of word entropies, a database of word recommendations and a database of
word categories. In a WSE, this information would be provided by the WSE
itself. It should be noted that a WSE already generates some of this in-
formation with each search, therefore it would not represent an extra cost.
Outside of a WSE, this information should be retrieved querying an exter-
nal WSE during the classification process but, by doing this, the obtained
results in terms of time and resource usage may differ significantly from the
ones that would be achieved in a real environment. In order to prevent this
situation, a web scrapper was implemented as a preparatory step. The web
scrapper retrieves information from remote sources and creates three local
No-SQL databases that are the ones used in the classification step, therefore
obtaining an environment similar to a real one.

Once classifying the data, we also need a way to lemmatize each query
text, which is a phrase written on natural language. As the system was
implemented in Python, the NLTK package (Natural Language Toolkit) 3.
This package provides interfaces to corpora and lexical resources such as
WordNet, along with text processing libraries. On preliminary tests, NLTK
was very slow for the requisites of our system, but due to the fact that it is a
very generic system prepared for a wide variety of texts, uses and situations, a
modified version of NLTK designed to fulfill our requirements was developed.

3Natural language toolkit. http://www.nltk.org/
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Table 1: AOL query log example
1887264 5424618 ninja turtles rap lyrics 2006-05-22 17:04:54 1 http://www.lyrics007.com
1887267 5424618 myspace.com 2006-05-22 17:55:28 2 http://music.myspace.com
1887549 5426574 rio hotel and casino 2006-03-20 18:36:01 5 http://www.destination360.com
1887552 5426574 orleans hotel casino 2006-03-21 16:06:02 3 http://www.tickco.com
2536798 9146863 invest in spring drinking water 2006-03-07 13:51:21 2 http://www.fool.com
2536814 9146863 spring water stocks to buy 2006-03-13 22:13:44 4 http://importer.alibaba.com

This modified NLTK showed the same utility as the original package when
dealing with query logs but it became hundreds orders of magnitude faster
due to their focus on a more specific duty.

4.2. Evaluation methodology

In order to evaluate the architecture proposed in Section 3 we have im-
plemented our system as described in Section 4.1. Only those systems which
would be used on a real environment are evaluated regarding privacy, func-
tional and utility requirements.

4.2.1. Data

We ran our experiments on logs released by AOL 4 stored on plain text
files, and on a database of word entropies, a database of word recommen-
dations and a database of word categories, stored in a NoSQL database.
Released AOL data contains 36389576 query logs, corresponding to a period
of three months of real activity. Table 1 provides a brief sample of the used
logs.

Databases of word entropies, recommendations and categories are created
using the web scrapper defined in Subsection 4.1. Since the database content
is generated based on logs content, databases only contain log related data,
which can slightly affect system performance measures. A first attempt of
data gathering was conducted using Google but it applies a very restrictive
limit to the number of search queries from a certain source that can be served;
as a result, our processes were blocked. Finally, Microsoft Bing was used to
fill word entropies and recommendations databases. To create database of
word categories, Open Directory Project (ODP) was used. ODP is a large,
categorized directory of websites and pages, which is managed by volunteers.

Once the databases were created, no other query was done to any WSE,
and all tests were conducted using those databases as the only data repos-

4AOL keyword searches. http://www.gregsadetsky.com/aol-data/
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itory. At the end of scrapping process, databases contained 1587451 word
categorizations, 1751632 word entropies and 258504 word recommendations.
Note that some query logs contain a query text with no understandable value.
Grammatical mistakes were resolved using a word recommendation database.
Other queries contain no query text, or it does not make any sense, being
just lots of consonants concatenated. As a category for those last logs cannot
be found, they were discarded.

4.2.2. Conducted tests

Only two parameters can be modified in the proposed system: k and δ.
Therefore, several test were conducted to determine the effects of different k
and δ values. It was also necessary some additional testing to determine the
accomplishment for the rest of the requirements defined on Section 3.

δ adjustments. Some preliminary test were conducted to determine the effect
of δ value. As explained on the algorithm definition, δ determines how fast
k value increases when all k-elements on a category are the same. With a
small δ the category size should be increased more times until we get different
elements in the category and, therefore, l-diversity. But with a small δ, the
final k value fits best the needs of the data. With a large δ, category size
should be increased less times, but the final k value should be bigger than
the needs of the data.

Figure 4 shows that the size of δ does not affect the running time of
the proposed system, hence, this is not a relevant factor to fix a certain
δ value. Regarding the effect of δ on k value during the execution of the
anonymization process, Figure 5 depicts that, even though bigger δ values
produce slightly bigger final k values reached by the system after multiple
iterations, the difference obtained is not significant enough. Due to the fact
that a small δ provides a more accurate final k value and smaller memory
consumption without affecting other parameters, we decided to fix δ to 1.2
for the following tests. This leaves k as the only adjustable parameter of the
proposal. As stated on following sections, the system performance, as well
as the user privacy, depend on k.

Classifier. The proposed classifier cannot be customized in any way; there-
fore, only some functional and utility tests were conducted.

Anonymizer. Privacy, functional and utility tests were conducted for the
anonymizer, all of them with various values of k.
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Figure 4: Effects of δ on time

Profiler. The proposed profiler cannot be customized in any way; therefore,
only some functional and utility tests were conducted.

De-anonymizer. In order to perform detailed privacy tests, some attacks were
simulated using different variations of the de-anonymizer algorithm. In all
these cases, the time field contained in the logs was used to consider the
proper order in which each search query was received. We next detail each
variation of the de-anonymizer element:

• De-anonymizer 1 : This approach tries to retrieve original logs choosing
one random log and one random user from the k-element sets, which
the de-anonymizer recreates, conducting the same operations than the
WSE.

• De-anonymizer 2 : This approach does the same than the first version,
but instead of selecting a random user, selects the user who appears
more times in the k-element set linked to a certain category.

• De-anonymizer 3 : This approach has access to the number of queries
related to each category that were sent by this user until that moment.
In this way, from the users who appear in the k-element set linked to
a certain category on a given time, the proposed algorithm selects the
user who has sent more queries related to this category. Therefore, this
method makes its decision taking into account the query history of the
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respondents instead of just their temporal appearance in the k-element
set linked to a certain category of interest.

• De-anonymizer 4 : Uses the same approach than in the third version,
but the number of queries related to each category that are obtained
from the query history are multiplied by the number of times that the
respondent appears in the k-element set linked to a certain category.
The respondent with the highest result is then assigned to the current
query. This approach considers the query history but tries to give more
weight to the fact that an individual has sent a certain type of queries
recently (which are those stored in the k-element set).

4.2.3. Test environment

All experiments were performed using a Dell notebook running Ubuntu
Linux 14.04 LTS, with a 1.8 GHz Intel CoreTMi7-4500U CPU and 8GB of
RAM. System hard disk was a Seagate ST1000LM014, which performance
profile is skewed strongly towards small file I/O, and a below average overall
performance. Much better results could be obtained with a faster hard disk or
Solid State Disks (SSD), that are already installed in many servers nowadays.
All algorithms were implemented and executed in Python 2.7.6. MongoDB
3.0.7 was used as No-SQL database, which was also installed and running on
the same computer.
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4.3. Privacy study

To test the privacy level provided by the new proposal, the original query
logs were compared to the anonymized query logs, counting the percentage
of matching records. Results can be seen on Figure 6.
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Figure 6: Matching records
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Figure 7: Matching records. De-anonymizer

In this figure, the case A(NR) represents what would happen if the
anonymizer does not increment the corresponding k value when all users
stored in certain category set are the same (this is a special case explained
in Section 3.3.1). In this case, the figure depicts that k remains constant
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but the output contains non-anonymized logs. When this special case is cov-
ered by means of incrementing k, better privacy is obtained. Data generated
by the anonymizer, A in the figure, do not contain any matching registers;
therefore, full privacy seems to be obtained.

However, all de-anonymizer algorithms described above were used with
the anonymized logs in order to try to reconstruct the original log stream.
Results can be seen in Figure 6 and, more concretely, Figure 7 focuses on
the four proposed de-anonymizers. The +T element means that those de-
anonymizers use logs sorted according to time field. In all the tests, all the
de-anonymizer versions performed in a similar way (some differences applies
but they are not significant) and they only were able to recover around 1.89%
of original logs with the lowest k value (best case for the de-anonymizers).
As a result of our tests, it can be concluded that it is quite difficult to link
the anonymized logs with their original users.

4.4. Functional study

We next discuss the level of achievement of the functional requirements
defined previously.

4.4.1. Modularity

The proposed system was developed as a set of independent services,
forming a micro-service architecture. It allows to accomplish a low coupling
and high cohesion system. This architecture makes the system more reliable
and easy to maintain. Some services could be changed by existing modules in
the WSE, e.g. a WSE classifier. Other services could optionally be deployed
or not depending on the needs of the WSE. For example, the profiler should
be used if the WSE is willing to create anonymous user profiles but, if the
WSE only desires to release an anonymized log stream, the proposed system
would also work without it.

4.4.2. Scalability

Thanks to the high modularity of the developed services, it is easy to
deploy them on available idle systems, using the existing WSE infrastructure.
Horizontal scalability could be achieved by deploying more than one instance
of each service, either at the same or at different systems. Vertical scalability
could be also achieved, since a faster CPU, disk or some memory dedicated to
cache data would increase significantly the amount of work the system could
handle. In lighter loads, modules will remain idle, consuming an insignificant
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amount of resources. Most modules could be closed completely if not used,
for example, the classifier and the profiler. So this system shows a high load
scalability.

4.4.3. Speed

Time consumption of WSE processes can be seen in Table 2. Even though
the computer used for the tests has 4 cores, only 1 was used in each test. All
algorithms support multi-threading, so better results could be obtained by
simply enabling it.

Table 2: Runtime cost
Time/log (µs)
Mean ± SD

Queries/second
(Threads Google)

Classifier 1503 ± 24.0 665 (60)
Anonymizer 22 ± 0.35 45454 (1)
Profiler 267 ± 4.73 3745 (11)

The classifier and the profiler do not use k values and, hence, they are
not affected by its variations. In the other hand, the anonymizer uses k, but
results do not change significantly with different k values, as it is reflected
by the small standard deviation.

The classifier was the slowest algorithm, because it has to search in several
databases. We must be aware of two factors that affect its performance: i)
the content of those databases was mainly generated using logs’ content,
therefore, databases only contain log related data; and ii) the majority of
the time used by the classifier corresponds to I/O from disk, hence, a faster
disk, or placing the data in the system’s memory would greatly improve the
performance of the classifier. The same idea could be applied to the profiler,
which creates users profiles on a disk database.

Using as reference the 40000 queries per second that Google processes on
average, one single thread of the anonymizer in the used test environment
can anonymize all Google queries in real-time. On the other hand, we need
60 classifier threads and 11 profiler threads to reach real-time performance in
our test environment, but with the discussed changes, those numbers could
be lower on a real setting.

For completeness, all de-anonymizer algorithms were also tested. Results
can be seen in Figure 8. As expected, algorithms that count the number of
times that a user appears on a category, are the slowest overall, and more
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affected when k increases. Using profiles and choosing the best fit on a
category was also affected by k.
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Figure 8: De-Anonymizer speed

4.4.4. Resource consumption

Table 3 shows the achieved results for maximum memory and disk us-
age at each process. It’s important to note that de-anonymizer-3 and de-
anonymizer-4 keep basic user profiles in memory, and that is the reason
because they consume more memory. Apart from those two algorithms, the
rest should not use more memory, whatever the amount of logs they deal
with.

Regarding the disk space, when output log streams are stored in the disk,
they use exactly the same amount of space than the original log streams.
Furthermore, if the profiler stores queries in a user profile, with 4GiB of test
data, it generated a 3GiB profiles database, with an average record size of
112 bytes. Note that, in any case, this will depend on the input data.

4.4.5. Transparency

This proposal only needs to read the stream of logs already generated by a
WSE, so it is no necessary to make changes at the existing WSE architecture.
The resulting anonymized log stream has exactly the same structure and size
than the original one. Therefore, this system can be plugged at the end of
the current process followed by the WSE and generate an anonymized output
without changing anything else.
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Table 3: Memory usage

Max. mem (KiB)
Mean ± SD

Classifier 111581 ± 145
Anonymizer 10347 ± 72
Profiler 12120 ± 94
De-anonymizer 1 9316 ± 640
De-anonymizer 2 9375 ± 687
De-anonymizer 3 312273 ± 4620
De-anonymizer 4 311782 ± 2945

4.5. Utility study

This section studies the classifier and the anonymizer in terms of utility.
Even though the classifier obtains a hierarchical categorization for each

query, the anonymizer sets are based only on very generic categories. When a
query cannot be classified into any category, the classifier uses Microsoft Bing
recommendations to find alternatives. As a result, the proposed classifier was
capable of categorizing 85% of the all the tested queries. In order to verify
that this automatic categorization was working properly, a sample of 1068
logs were manually classified and compared to the results of the algorithm.
This sample, in our population of 36389576 logs, provides a confidence level
of 95%, with a margin of error of 3%. Through this comparison we found
58.99% of logs in a correct category. In Table 4 all used categories can be
seen. Those categories correspond to the first hierarchical level of ODP.
Percentage of correctly classified logs for each category was also estimated.

It can be seen that this strategy works better in some categories. For
instance, with categories that contain very specific terms, such as Health,
the best results are obtained. In contrast, worse results are gathered in
categories with generic terms, such as News. This is because the proposed
algorithm only selects the word with lower entropy, which is expected to be
the most specific one. Categorization was solely based on this word. When a
combination of words changes the meaning of the query, this approach led to
errors. For example, in the query “artic monkeys”, the lowest entropy word
is “artic”. This word is categorized as “Regional: Polar Regions”. That is
correct for the word itself but using the whole context, category should be
“Arts: Music”. These results show that a better classifier should only be
obtained by means of applying more complex natural language processing
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Table 4: Classification utility

Classification
% Correct

Classification
% Correct

Arts 57.23% Recreation 55.22%
Business 77.39% Reference 69.23%
Computers 64.79% Regional 69.08%
Games 56.25% Science 47.22%
Health 88.10% Shopping 69.64%
Home 81.48% Society 56.76%
Kids and Teens 37.65% Sports 40.48%
News 16.67% World 30.77%

systems; however, this is outside of the scope of this proposal.
In addition to that, to check the anonymizer’s utility, two sets of user

profiles were created using the profiler. The first set contained profiles cre-
ated with original logs while the second set contained profiles created with
anonymized logs. Both sets were compared in order to check whether they
were equivalent. It was confirmed that, for a given user, both sets of profiles
contained the same number of queries for each category. We argue that if an
anonymized profile contains the same categories with the same weights than
an original profile, it implies that the anonymized profile retains the same
utility than the original one.

5. Conclusions and further research

This paper has presented a novel framework for anonymizing query logs
generated by WSEs. Privacy guarantee is defined in terms of set theory,
which relates sets of users to sets of query logs. Data could be released with-
out other modifications than removing direct identifiers from query text and
remapping between those two sets. This contrasts to existing approaches
that release heavily modified data, either distorted or generalized, to main-
tain anonymity.

In our evaluation, we have considered the worst-case scenario, in which
an attacker who is willing to use the anonymized query logs to retrieve the
original query logs has gained access to the same base information and algo-
rithms than the WSE. We conducted tests under this context and the best
attempt to recover the original logs only obtained a 1.89% of them. All the
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proposed methods were tested using the AOL released logs; therefore, we
argue that our solution is capable of dealing with real data in a real setup.
In this way, we have considered also the average Google’s load to study
the runtime cost and the memory usage. The query log’s utility after its
anonymization was also analyzed, and the results showed that original query
logs and anonymized query logs were equivalent in terms of categories being
reflected.

Regarding future work, the proposed classifier may be improved by means
of a more accurate natural language analysis in order to perform a semantic
analysis of queries. Regarding the runtime of the proposed algorithms, the
classifier was also the slowest and, therefore, there is room to develop more
efficient alternatives. Note that having a better categorization system should
also provide a better level of utility.
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Viejo, A., Sánchez, D., & Castellà-Roca, J. (2012). Preventing automatic
user profiling in web 2.0 applications. Knowledge-Based Systems , 36 , 191–
205.

Yang, G., Yang, J., & Chu, Y. (2010). Research on data streams publishing
of privacy preserving. In Proc. of the 2010 IEEE International Conference
on Information Theory and Information Security –ICITIS’10 .

Zakerzadeh, H., & Osborn, S. L. (2010). Faanst: fast anonymizing algorithm
for numerical streaming data. In Proc. of the 5th international Workshop
on data privacy management – DPM10 .

Zhang, J., Yang, J. C., Zhang, J., & Yuan, Y. (2010). Kids:k-anonymization
data stream base on sliding window. In Proc. of the 2010 2nd International
Conference on Future Computer and Communication.

Zhou, B., Han, Y., Pei, J., Jiang, B., Tao, Y., & Jia, Y. (2009). Contin-
uous privacy preserving publishing of data streams. In Proc. of the 12th
International Conference on Extending Database Technology: Advances in
Database Technology – EDBT’09 .

35


