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ABSTRACT 
Two data fusion strategies (high- and mid-level) combined with a multivariate 

classification approach (Soft Independent Modelling of Class Analogy, SIMCA) have 

been applied to take advantage of the synergistic effect of the information obtained from 

two spectroscopic techniques: FT-Raman and NIR. Mid-level data fusion consists of 

merging some of the previous selected variables from the spectra obtained from each 

spectroscopic technique and then applying the classification technique. High-level data 

fusion combines the SIMCA classification results obtained individually from each 

spectroscopic technique. Of the possible ways to make the necessary combinations, we 

decided to use fuzzy aggregation connective operators. As a case study, we considered 

the possible adulteration of hazelnut paste with almond. Using the two-class SIMCA 

approach, class 1 consisted of unadulterated hazelnut samples and class 2 of samples 

adulterated with almond. Models performance was also studied with samples adulterated 

with chickpea. The results show that data fusion is an effective strategy since the 

performance parameters are better than the individual ones: sensitivity and specificity 

values between 75 and 100% for the individual techniques and between 96-100% and 

88-100% for the mid- and high-level data fusion strategies, respectively. 

 

Keywords: Mid- and high-level data fusion, two-class SIMCA, FT-Raman, NIR, food 

adulteration, hazelnut adulteration 
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1. Introduction  
 

Food fraud is becoming increasingly sophisticated due to the use of unconventional or 

synthetic adulterants. To guarantee food safety and quality, most analytical strategies 

are based on the knowledge of the contaminants [1-2]. Because of the ever-increasing 

range of analytes that can be used in food fraud together with the impossibility of covering 

them all, there is a demand for the development of fast, easy-to-use and low-cost 

analytical methods to test for adulteration. Multivariate qualitative methodologies that 

combine multivariate data with classification techniques are used to detect anomalous 

samples in food fraud, both, adulteration and authentication [3-7] of a wide variety of 

foods. 

 

Spectroscopic instrumental techniques are the most commonly used because there is 

almost no need for sample pretreatments and they can be applied to a wide range of 

analytes. As is well known, food composition is complex and contains compounds with 

functional groups having nonselective spectral bands. Univariate analysis is based on 

selecting a discrete wavelength (i.e. absorbance at one wavelength), so the lack of 

selectivity is the main disadvantage when the selected wavelength does not respond 

only to a single compound. This is not a disadvantage in multivariate analysis as the 

whole spectra is used. Among other techniques, food has been analyzed by ultraviolet 

(UV) [8-9], fourier transform- infrared (FT-IR) [10-11], fluorescence [12-13], nuclear 

magnetic resonance (NMR) [14-15], Raman [16-17] and near-infrared (NIR) [18-19].  

 
Due to the increasing ease in which data can be obtained, data fusion is an expanding 

trend. The main goal is to optimize the information [20] obtained in order to exploit the 

synergies of individual information provided by different techniques [20]. There are 

various strategies for carrying out data fusion: low-, mid- and high- level data fusion. In 

low-level data fusion, raw data from more than one source are directly fused 

(concatenated), taking into account that data must be correctly balanced (all the 

variables must be on the same scale) before they are combined. In mid-level data fusion, 

some of the raw variables are selected and then fused. In both approaches (low- and 

mid-level), only one classification model is implemented over the fused variables. Finally, 

in high-level data fusion the classification results obtained from individual classification 

models are fused. In this case, a classification approach is implemented for each data 

source. 

Fusion techniques have proven to be useful in fields such as metabolomics [21-22], 

pigments in artworks [23-24], dye degradation processes [25] and food [26 -28]. 
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The aim of this study is to evaluate the performance of two types of data fusion: high- 

and mid-level data fusion. We propose to implement high-level data fusion because 

although it is not used too often, it has advantages: it is easy to use and easy to expand 

since when new data source becomes available, its classification results can be added 

to the classification decision rule, thus increasing the versatility of the decision process.  

 

We also used mid-level data fusion, which involves selecting or reducing variables before 

establishing the classification model. The most common approach for variable reduction 

is to fuse the information from a reduced number of latent variables obtained 

independently from the signals of each instrument. Usually scores from principal 

component analysis (PCA) or partial-least squares discriminant analysis (PLS-DA) are 

fused [20]. Of the various strategies available for selecting variables (iPLS, genetic 

algorithms, etc.) [29], in this study we use a variable selection strategy that identifies the 

most different variables between classes. It is based on a transformation of the original 

variables by means of a normalization calculation, xdiff [14, 30].  

 

As a case study, hazelnut adulteration problem is considered. Hazelnuts and their 

derivatives (oils and pastes) are widely used as ingredients in many desserts, ice creams 

and chocolates. The price of hazelnuts depends on parameters such as geographical 

origin, abundance of harvest, etc. In case of unfavorable economic conditions, the price 

can be reduced by adding such other ingredients as almond, because of its similarity. 

However, other more unexpected products might be added, for example chickpea. NIR 

and FT-Raman data are used to determine whether the synergism between them can be 

exploited. These data are processed through a SIMCA model, separately for each 

technique and after applying two data fusion strategies (mid- and high-level data fusion).  

  

2. Material and methods 

 

2.1. Samples 

 

The unadulterated set consists of 24 hazelnut pastes (Corylus avellana) from different 

geographical origins (Spain, Italy, Georgia and Azerbaijan). The two adulterated data 

sets consists of 26 hazelnut pastes adulterated with almond paste and 27 hazelnut 

pastes adulterated with chickpea flour, all of them at 7% (w/w), because experience 

indicates that it is the most common percentage of adulteration.  In previous studies [18] 

no trends related to level of adulteration were found in neither of adulterants. 
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Hazelnut and almond were provided by La Morella Nuts S.A.U. and the chickpea flour 

were an ecological product from a commercial supplier. Details about hazelnuts, 

adulterants and sample preparation can be found in our previous study [18].  

 

2.2 Instrumentation and software 

 

NIR spectra were recorded by a Bruker VECTOR 22/N spectrophotometer, working in 

diffuse reflectance conditions. The spectral profile of each sample was acquired as the 

mean of 32 scans recorded during rotation, and in the spectral range 3650-12000cm-1 at 

8 cm-1.  

 

FT-Raman measurements were obtained from a Thermo Nicolet 5700 FT-IR 

spectrometer equipped with a FT-Raman module NXR with an InGaAs detector, CaF2 

beamsplitter. A 1064 nm radiation from a Nd:YAG laser with a laser power of 0.5W was 

used for excitation. The spectral profile of each sample was acquired as the mean of 256 

scans in the spectral range 290-3200cm-1 at a resolution of 4cm-1.  

 

Both NIR and FT-Raman spectral data were exported to Matlab [31] and treated with 

PLS toolbox [32].  

 
 
3. Data Analysis 
 

3.1. Classification technique:  Soft Independent Modelling of Class Analogy (SIMCA) 

 

SIMCA is a modelling technique based on Principal Component Analysis (PCA) in which 

each class is modelled independently from all others [33]. Each sample is characterized 

by two scalar statistics, Hotelling T2 and Q, which measures the information from each 

sample included or not included in the model, respectively.  

 

Class frontiers (Hotelling T2
lim and Qlim) are calculated for each pre-defined class (class 

model), at a specific significance level (α), usually set at 0.05 [34]. For the sake of 

simplicity, samples are assigned by means of the reduced statistics values (Hotelling T2
r 

and Qr) which are the ratio between the statistic of sample i and the corresponding class 

limit. A sample must have values lower than 1 for both reduced statistics to be considered 

“within the class model”. Another criterion for sample assignation is the distance of a 
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sample i from class j (dij) which is defined as a combination of its reduced statistic 

(equation 1): 

𝑑𝑑𝑖𝑖 = �(𝑄𝑄𝑟𝑟,𝑖𝑖)2 + (𝑇𝑇𝑟𝑟,𝑖𝑖
2 )2         (eq. 1) 

 
In a two-class system, the assignment of a sample gives four types of output: sample 

belongs to class 1; sample belongs to class 2; sample belongs to both classes; sample 

does not belong to any class. From these results, the main performance parameters - 

sensitivity, specificity and inconclusive ration - are calculated for each class using 

equations 2 to 4. 

Sensitivityj = TPj / nºSj        (eq. 2) 

where j indicates the class under study, TPj means true positives (samples from class j 

that have been properly predicted by the model as belonging to class j), and nºSj is the 

total number of samples that really belong to class j. Therefore, sensitivity indicates the 

likelihood of recognizing truly positive samples.  

Specificityj = TNj / nºSnot j         (eq. 3) 

where TN means true negatives (samples that are not from class j and have been 

predicted as not belonging to class j), and nºSnot j means the total number of samples 

that really do not belong to class j. Therefore, specificity indicates the likelihood of 

recognizing samples that are truly different from the class. 

Inconclusive ratioj = (NAj + MA) / nºSj      (eq. 4) 

where NAj means unassigned samples (samples that are from class j that are not 

assigned either to class j or to any other class); MA means multiple assignation samples 

(samples from class j assigned to more than one class) and nºSj means the total number 

of samples that really belong to class j. 

 

3.2. Data fusion  

 

The two levels of data fusion architectures studied in this paper are summarized in Fig. 

1.  

 

---------------------------------- Fig. 1 ------------------------------------------ 

 

High-level data fusion: decision fusion [23,24,36] 
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Decision level data fusion combines the classification results obtained from each 

individual technique. (Fig. 1a). In this study, the SIMCA classification results obtained 

separately for each instrument data are fused. The parameters (results) considered were 

the individual distances (Eq. 1) of each sample from each model. Fusion was 

implemented using the fuzzy set theory. Among the several available operators, the 

Minimum, Maximum, Averange and Product fuzzy aggregation connective operators 

have been chosen because of its conceptual simplicity and ease implementation. The 

final decision (ensemble decision) was obtained by the majority vote provided by all the 

aggregation operators.  

 

Given the nature of the operators, the concordant results for both techniques give the 

same result after the fusion so, for practical purposes, only non-concordant results are 

fused. 

 

Mid-level data fusion: variable selection  

In mid-level fusion, a previous variable selection step was independently performed in 

over the data (spectra) obtained from each technique, so only the most relevant variables 

were fused. The original variables were transformed to give the normalized differences 

between the mean spectrum of a class considered the reference and the spectra of each 

sample (Xdiff). As we are dealing with an adulteration problem, we have set the 

unadulterated class as the reference class. The hypothesis is that variables with different 

intensities will have reinforced xdiff values, so only variables that differentiate between the 

classes are selected [14, 30]. 

For each data set, NIR and FT-Raman spectra, the raw variables are first transformed 

by calculating the corresponding xdiff values [29,35] in accordance with Eq. 5                                 

i

iij
ijdiff

xx
x

σ

−
=,           (eq.5) 

where xij is the ith variable (i.e. NIR intensity value at frequency i) for the jth sample and 

ix and σi are the mean and standard deviation, respectively, calculated from each ith 

variable of the reference class (unadulterated class).   

The Xdiff matrix was then obtained from all the samples and all variables for both NIR and  

FT-Raman spectra. Its magnitude is indicative of the variables characteristic of the 

adulterant. Then, a threshold value was defined from the xdiff values calculated for the 
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reference class and only those variables in the adulterated class with xdiff values higher 

than the set threshold were selected. 

 

The raw variables selected from each data source were then fused (concatenated), and 

SIMCA was performed for both classes (unadulterated and adulterated), as shown in 

Fig. 1b. 

 

4. Results and discussion 
 
NIR and FT-Raman data were pre-treated separately. A Savitzky-Golay smoothing was 

applied to FT-Raman data (1510 variables) using a 15 data point window and a first¬ 

order polynomial to suppress the instrumental noise. Then, a baseline correction was 

applied by using first-order polynomial. Fig. 2a shows the corrected FT-Raman spectra. 

It can be seen that the most intense bands appear in the range of 800-1800 cm-1 and 

2700-3100 cm-1. 

An offset correction was applied to the raw NIR data (2166 variables) to eliminate any 

vertical shift by subtracting the absorbance value at 10538 cm-1. Fig. 2b shows the 

corrected NIR spectra. In this case, the most intense bands appear in four regions: 3650-

4750 cm-1 (combination bands), 5600-5900 cm-1 (first overtone), 8000-9000 cm-1 

(second overtone) and 10000-11000 cm-1 (third overtone). 

 

---------------------------------- Fig. 2 ------------------------------------------ 

 
First, independent two-class models were built for each data source studied. In both 

cases, class 1 was built from unadulterated samples and class 2 from samples 

adulterated with almond. Model performance was also studied with samples adulterated 

with chickpea. NIR data were autoscaled and FT-Raman data were mean-center. Both 

models were validated by leave-one-out cross-validation and in both cases the optimal 

number of PC’s used to build the SIMCA models were selected on the basis of the 

RMSECV. For FT-Raman and NIR models, the first three PCs were considered for the 

unadulterated class and the first four PCs for the adulterated class.  

 
Table 1 shows the assignations using the SIMCA models built individually with NIR and 

FT-Raman data. Samples were assigned to one class (unadulterated or adulterated with 

almond), to both classes (multiple assignation) or to no class. Overall, both spectroscopic 

techniques have similar abilities to recognize their own samples (sensitivity) and different 
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samples (specificity). A closer look at the table shows that most of the NIR and FT-

Raman errors occur for unadulterated samples that were not properly recognized by their 

own model: 6 out of 24 for both, NIR and FT-Raman models. The adulterated models, 

on the other hand, were more able to recognize their own samples: two samples were 

not recognized by the NIR model and just one by the FT-Raman model.  

 

---------------------------------- Table 1 ------------------------------------------ 

 

It should be pointed out that most of the misclassifications were due to inconclusive 

assignations (multiple or not assigned). This means that a 13% of all analyzed samples 

needed to be submitted to a confirmatory analysis (inconclusive assignation) as they 

were assigned to both classes and just one unadulterated sample was not assigned to 

any class by the NIR data. The inconclusive assignations cannot be considered as “real 

true” errors, since from the practical point of view they will be submitted to a confirmatory 

analysis. So a screening strategy enables them to be identified and action can be taken. 

 

With FT-Raman models, unadulterated and adulterated with almond samples were not 

wrongly classified since there were not any unadulterated samples assigned as 

adulterated as well as vice versa. However, there were samples with multiple 

assignation. With the NIR models there were two wrong assignations. One unadulterated 

sample was wrongly assigned as adulterated, an error that represents an economic risk 

since it would have to be withdrawn from commercial markets since it was identified as 

adulterated even though it was not. And one adulterated sample was wrongly assigned 

as unadulterated. This type of error is a fraud since these samples will not be identified 

as adulterated even though they are. In this particular case, it has no health implications, 

but it does represent an economic fraud to the final consumer. Inconclusive outputs in 

both techniques, were mostly due to multiple assignations of unadulterated samples and 

just one adulterated sample. 

 

All of the samples adulterated with chickpea were recognized as not belonging to any 

class by the NIR models, while two out of the 27 samples were assigned as 

unadulterated by the FT-Raman models. As has been discussed this type of error is an 

economic fraud for the final consumer. 

 

The discussed miss-assignations (performance parameters) indicate that the 

classification results could be improved by a data fusion strategy. 
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In the high-level data fusion, the individual classification results provided by SIMCA were 

fused by the four fuzzy aggregation connective operators (minimum, maximum, product 

and average) and the majority vote rule, as described in the theory section. Each fuzzy 

operator was applied to the distances values of the sample from each class using 

equation 1. A sample was assigned to a class when the majority of its fuzzy values 

(ensemble decision) was lower than 1 (and not assigned for values higher than 1). Table 

2 shows the sample distances obtained from the individual models (NIR and FT-Raman) 

and the corresponding fuzzy numerical values when the different operators were used 

to classify the samples that had been wrongly or inconclusively assigned by the individual 

models.  

 

---------------------------------- Table 2 ------------------------------------------ 

 

Overall 9 out of the 11 non-concordant assignations were solved by the fusion. A closer 

look at the table shows that the two wrong NIR assignations were partly solved. Sample 

nº1(U), with multiple assignation by the RAMAN models and wrongly assigned by NIR, 

cannot be clarified and continues as double assigned (class 1 and 2). The same can be 

said for sample nº16(A): it was wrongly assigned as an unadulterated sample by the NIR 

and multiple assigned by the FT-Raman models, and the ensemble decision set it as 

multiply assigned. Although they were not properly assigned to their own classes 

(unadulterated and adulterated, respectively), the multiple assignation is much 

convenient than a wrong assignation. 

 

Sample nº25(U) had a distance value equal 1 for the unadulterated NIR model, so strictly 

it should not be considered to fit the unadulterated model, but the final ensemble decision 

of unadulterated is clear. The other two samples adulterated with chickpea (nº18 (C) and 

28 (C)) that were wrongly assigned by the FT-Raman model as unadulterated were not 

assigned to any model by the ensemble decision. The rest of the conflictive (multiple) 

assignations were solved after the decisions of all the fuzzy operators. 

 

These results are summarized in table 3, which shows the final performance parameters. 

It can be seen that the inconclusive assignations have been reduced to 12% for the 

unadulterated class while the percentage for the adulterated class is the same. The same 

can be stated regarding the sensitivity and specificity values, which have increased 

considerably in the unadulterated class and stays or slightly improve in the adulterated 

class.  
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---------------------------------- Table 3 ------------------------------------------ 

 

For the variable level data fusion, the Xdiff matrix is computed as described in the theory 

section. Figure 3 shows the Xdiff matrix representation for class 1 and class 2 for FT-

Raman and NIR data. It can be seen from the unadulterated samples (defined as the 

reference class) that xdiff values minimize the difference between the samples and 

variables, all of which are in a narrow interval. For the adulterated class, however, the 

Xdiff matrix had higher values in some of the zones. To select the optimal threshold value, 

several values were checked, no significant differences were observed in the prediction 

ability and finally a threshold of 1.25 and 1, respectively, for FT-Raman and NIR were 

selected. 

 

---------------------------------- Fig. 3 ------------------------------------------ 

 

Fig. 4 shows the 822 selected variables, 307 of which were from the 1510 FT-Raman 

spectra and 515 from the 2166 NIR spectra. This was a significant reduction in variables 

(around five times fewer). In the FT-Raman spectra, the selected variables are localized 

at 800-1800 cm-1 spectral band (mainly corresponding to simple bonds of C-X (X = Cl, 

S, O) and double bonds of C = X (X = S, C, O) and N=N. Variables are also selected in 

the 2700-3100 cm-1 range (corresponding to C-H and =C-H bonds). In the NIR spectra, 

the selected variables are localized in the combination bands region (3650-4750 cm-1, 

corresponding to the spectral bands of amine, alcohol, amide and generic carbon bonds), 

in the first overtone region (5900-5600 cm-1, simple bonds S-H and C-H) and in the third 

overtone region (10000-11000 cm-1, simple bonds C-H and O-H). No variables from the 

second overtone region were selected. The variables selected were concatenated and 

autoscaled before SIMCA was implemented. Two SIMCA models were built, the 

unadulterated class keeping the first four PCs and the adulterated class the first six PC’s. 

 

---------------------------------- Fig. 4 ------------------------------------------ 

 

The performance parameters of the mid-level data fusion are summarized in table 3. It 

can be seen they all increase significantly:  for the unadulterated class all values 

(sensitivity and specificity) were 100%, there were no inconclusive assignations. And for 

the adulterated class values were between 96-100% with 4% of inconclusive 

assignations, which corresponds to one sample adulterated with almond that was not 

assigned to any of the two models. From the practical point of view, this error has no real 
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implications since samples that are not assigned to any class should be confirmed by an 

alternative technique. This is preferable to assigning a sample wrongly. 

 

Overall, it can be seen that there is a great improvement in the results provided by the 

two fusion strategies, since there are fewer errors than when individual techniques are 

used, and there are significantly fewer inconclusive assignations. With the mid-level data 

fusion, results were slightly better than with the high-level data fusion, since no samples 

were wrongly assigned to another class. The fact that the variables are selected from 

both spectroscopic techniques is an indication of the synergy between them: they both 

provide information that is important for discriminating the classes considered. 

 

5. Conclusions 
 

Since laboratories of these days have a variety of analytical equipment, any data fusion 

strategy is a feasible way of dealing with multivariate approach. The advantages of 

applying data fusion strategies using complementary instrumental information has been 

demonstrated. On the other, it has to be consider that although spectroscopic 

measurements have a low cost, measuring by more than one technique represents an 

additional cost. 

 

The benefits of the data fusion methodology in the present study are clear because the 

classification results are better, especially with respect to unadulterated class, than those 

obtained individually with NIR and FT-Raman techniques, thus demonstrating that the 

information obtained from the two spectroscopic techniques has a synergistic effect.  
 

High (decision-level) data fusion has the extra-advantage that it can be applied to all 

types of measurements, since it combines individual multivariate results (assignations). 

Fuzzy aggregation connectives have proven to be a good and simple tool for 

classification analysis. 
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Figure Captions 
Fig 1. Scheme of the data fusion process: a) high- level data fusion and b) mid- level 

data fusion 

Fig 2. Raw spectra of hazelnut paste samples: a) FT-Raman spectra and b) NIR 

spectra  

Fig 3. xdiff values: a) unadulterated FT-Raman spectra, b) adulterated FT-Raman 

spectra, c) unadulterated NIR spectra and d) adulterated NIR spectra 

Fig 4. Variables selected by the xdiff criteria: a) FT-Raman variables and b) NIR 

variables 
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Figure 1. 

 
Figure 2. 
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Figure 3. 

 
 

Figure 4 
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Table 1. Number of samples classified by SIMCA models using FT-Raman and NIR 

individually 

 
 

 

Table 2. Class assignation by high-level data fusion for samples misclassified using 

FT-Raman and NIR techniques. The four fuzzy operators applied are minimum (min), 

maximum (max), product (prod) and average (avg) for samples unadulterated (U), 

adulterated with almond (A) and adulterated with chickpea (C). For each operator the 

majority votes (bold values) were chosen to obtain the ensemble decision

 
 

 

Table 3. Performance parameters (%) for samples unadulterated (U), adulterated 

with almond (A) and adulterated with chickpea (C), using individual techniques and 

data fusion strategies (high- and mid-level) 

 

 

 Assignation 

 
Unadulterated 

class 
Adulterated 

class 
Multiple None 

Data Number of samples  

 
FT-Raman 

 

24 Unadulterated 18 0 6 0 

26 Adulterated almond 0 25 1 0 

27 Adulterated chickpea 2 0 0 25 

 
NIR 

24 Unadulterated 18 1 4 1 

26 Adulterated almond 1 24 1 0 

27 Adulterated chickpea 0 0 0 27 

 
 Unadulterated (U)  Adulterated (A)  

Sample 
Real class 

Model distance Fusion operators  Model distance Fusion operators Ensemble 
decision FT-Raman  NIR Min Max Prod Avg  FT-Raman NIR  Min Max Prod Avg 

1 (U) 
10 (U) 
15 (U) 
16 (U) 
19 (U) 
25 (U) 
27 (U) 

 

0.71 
0.52 
0.69 
0.62 
0.71 
0.82 
0.75 

1.02 
0.48 
0.85 
0.76 
0.42 
1.00 
0.52 

0.71 
 
 
 
 

0.82 
 

1.02 
 
 
 
 

1.00 
 

0.72 
 
 
 
 

0.82 
 

0.88 
 
 
 
 

0.96 
 

 0.95 
0.95 
0.91 
0.87 
2.33 
1.63 
1.81 

0.78 
2.07 
2.49 
2.25 
0.94 
2.52 
0.94 

 
0.95 
0.91 
0.87 
0.94 

 
0.94 

 
2.07 
2.49 
2.25 
2.33 

 
1.81 

 
1.97 
2.27 
2.09 
2.19 

 
1.70 

 
1.51 
1.70 
1.47 
1.64 

 
1.38 

U, A 
U 
U 
U 
U 
U 
U 
 

6 (A) 
16 (A) 

 

2.20 
0.94 

0.85 
0.91 

0.85 
 

2.20 
 

1.87 
 

1.53 
 

 0.70 
0.70 

0.50 
1.29 

 
0.70 

 
1.29 

 
0.90 

 
0.99 

A 
A, U 

 
18 (C) 
28 (C) 

0.98 
0.91 

1.82 
1.52 

0.98 
0.91 

1.82 
1.52 

1.78 
1.38 

1.40 
1.22 

 1.77 
1.13 

1.87 
1.33 

    - 
- 

 
 Unadulterated (U)  Adulterated (A)  

 Sensitivity Specificity (A) Specificity (C) Inconclusive Sensitivity Specificity (U) Specificity (C) Inconclusive 

FT-Raman  75 100 93 25 96 100 100 
 

4 

NIR 75 96 100 21 92 96 100 4 
         

High Level  88 100 100 12 96 100 100 
 

4 

Mid Level 100 100 100 0 96 100 100 4 


