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Abstract

In the literature the outcome of contests is either interpreted as win probabilities or

as shares of the prize. With this in mind, we examine two approaches to contest success

functions. In the �rst we analyze the implications of contestants� incomplete information

concerning the �type� of the contest administrator. While in the case of two contestants

this approach can rationalize prominent contest success functions, we show that it runs into

di¢ culties when there are more agents. Our second approach interprets contest success

functions as sharing rules and establishes a connection to bargaining and claims problems

which is independent of the number of contestants. Both approaches provide foundations for

popular contest success functions and guidelines for the de�nition of new ones.

Keywords: Endogenous Contests, Contest Success Function.
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�The strategic approach also seeks to combine axiomatic cooperative solutions and non-

cooperative solutions. Roger Myerson recently named this task the �Nash program�.�(Rubinstein

(1985), p. 1151)

1 Introduction

A contest is a game in which players exert e¤ort in order to win a certain prize. Contests have

been used to analyze a variety of situations including lobbying, rent-seeking and rent-defending

contests, advertising, litigation, political campaigns, con�ict, patent races, arms races, sports

events or R&D competition. A crucial determinant for the equilibrium predictions of contests is

the speci�cation of the so-called contest success function (CSF) which relates the players�e¤orts

and win probabilities. Justi�cations for a particular CSF can be twofold. A justi�cation can

be on normative grounds, because it is the unique CSF ful�lling certain axioms, or essential

properties. A justi�cation can also be positive when it can be shown that the CSF arises from

the strategic interaction of players, thereby yielding a description of situations when it can be

expected to be realistic. The purpose of the present paper is to contribute to our understanding

of CSFs in both dimensions.

Formally, a contest success function associates, to each vector of e¤ortsG, a lottery specifying

for each agent a probability pi of getting the object. That is, pi = pi(G) is such that, for each

contestant i 2 N := f1; :::; ng, pi(G) � 0, and
Pn
i=1 pi (G) = 1.

The canonical example of a contest situation is rent-seeking. In a pioneering paper, Tullock

(1980) proposed a special form of the contest success function, namely, given a positive scalar

R,

pi =
GRiPn
j=1G

R
j

; for i = 1; :::; n. (1)

Gradstein (1995, 1998) postulated the following variation of this form where, given qi > 0 for

all i 2 N ,
pi =

GiqiPn
j=1Gjqj

; for i = 1; :::; n. (2)

A generalization that comprises both previous functional forms is, given ai � 0 for all i 2 N ,

pi =
GRi qi + aiPn

j=1(G
R
j qj + aj)

; for i = 1; :::; n. (3)

A di¤erent functional form, the logit model, was proposed by Hirshleifer (1989) where, given a

positive scalar k,

pi =
ekGiPn
j=1 e

kGj
; for i = 1; :::; n. (4)

Note that the four expressions (1) �(4) are speci�c instances of the following functional form

pi =
fi(Gi)Pn
j=1 fj(Gj)

; for i = 1; :::; n. (5)
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The so-called e¤ectivity functions fi are usually interpreted as determining how �e¤ective�agent

i�s e¤ort is in a¤ecting the win probability of agent i. Most papers dealing with contest models

in the literature analyze a CSF which is a special case of the form in (5) (Nitzan (1994), Konrad

(2007)). Consequently, the present paper will be mainly concerned with deriving foundations for

CSFs of this form. Notice, for later reference, that in (5) the win probability of any contestant

is responsive to changes in the e¤orts of all other contenders, if the fi are strictly increasing.

However, there are also some CSFs in the literature which are not special cases of the form in

(5). The �rst two consider the case of two contestants and build on the idea that only di¤erences

in e¤ort should matter � an idea introduced by Hirshleifer in (4). Baik (1998) proposed the

following form, given a positive scalar �,

p1 = p1(�G1 �G2) and p2 = 1� p1. (6)

Che and Gale (2000) postulate the following piece-wise linear di¤erence-form

p1 = max

�
min

�
1

2
+ �(G1 �G2); 1

�
; 0

�
and p2 = 1� p1. (7)

Recently, Alcalde and Dahm (2007) proposed a CSF in which relative di¤erences matter. Given

an ordered vector of e¤orts such that G1 � G2 � ::: � Gn and a positive scalar R, the serial

contest success function is de�ned as

pi =
nX
j=i

GRj �GRj+1
j �GR1

, for i = 1; :::; n with Gn+1 = 0. (8)

In the literature the outcome of contests has been interpreted to capture two di¤erent sit-

uations: as win probabilities or as shares of the prize.1 With this in mind, we examine two

approaches to contest success functions.

In the �rst we postulate the existence of a contest administrator who allocates the prize to

one of the contestants. However, contestants have incomplete information about the type of

the contest administrator. We show that this approach can generate CSFs for any number of

contestants. However, while in the case of two contestants this approach can rationalize a large

class of contest success functions, we show that it runs into di¢ culties when there are more

agents.

Our second approach interprets contest success functions as sharing rules and establishes a

connection to bargaining and claims problems which is independent of the number of contestants.

The analysis exploits the observation that these problems are mathematically related �but not

equivalent �to the problem of assigning win probabilities in contests. A main result here follows

Dagan and Volij (1993) and shows that the class of contest success functions given in (5) can be

understood as the weighted Nash bargaining solution where e¤orts represent the weights of the

agents. We turn then to the framework of bargaining with claims (Chun and Thomson (1992))

1A prominent example for the latter is Wärneryd (1998). He analyzes a contest among jurisdictions for shares

of the GNP and compares di¤erent types of jurisdictional organization.
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to incorporate explicitly the contestants�e¤orts in the description of the problem. This allows

to associate prominent solution concepts in this framework to the previously mentioned class of

contest success functions and to a generalized version of Che and Gale�s di¤erence-form contest

(7).

Both approaches provide foundations for popular contest success functions and guidelines for

the de�nition of new ones. In our view both types of foundations complement each other nicely.

For instance, we show that (7) can be understood, on one hand, as contestants trying to sway

away the contest administrator�s decision in a setting analogous to the model of a circular city

by Salop (1979). On the other, we show that this CSF is also related to the claim-egalitarian

solution (Bossert (1993)). Both approaches lend support to an extension of this CSF to three

contestants of the following form. Let G1 � G2 � G3 and a and b be positive scalars. If

G1�G3 � a then p3 = 0 and the other contestants obtain win probabilities as in (7). Otherwise

let

pi =
1

3
+ b (2Gi �Gj �Gk) , for i = 1; 2; 3 and i 6= j; k. (9)

However, the requirement that for n = 2 the CSF reduces to (7) implies that (a; b) = ((3�)�1; �=2)

in the �rst and (a; b) = ((2�)�1; 2�=3) in the second approach. This underlines that the ap-

propriate extension depends on the application and institutional details the contest model is

intended to capture.

Foundations for contest success functions have been reviewed by Gar�nkel and Skaperdas

(2007) and Konrad (2007). The most systematic approach has been normative and the seminal

paper is Skaperdas (1996). He proposed �ve axioms and showed that they are equivalent to

assuming a CSF of the form given in (5) with fi(�) = f(�) for all i 2 N , where f(�) is a positive
increasing function of its argument. Therefore, for simplicity, we refer in the sequel to (5) as

Skaperdas�class of CSFs. Skaperdas also showed that if in addition to the other �ve axioms

the CSF is assumed to be homogeneous of degree zero in G then we obtain (1).2 Our paper

contributes to this literature indirectly by making connections to related problems which are well

understood from a normative point of view. For instance, we establish a relationship between

Che and Gale�s di¤erence-form CSF (7) and the principle of equal sacri�ce.

As for the positive approach, we are not aware of any work understanding CSFs as sharing

rules as our second approach does.3 However, our �rst approach is related to other works.

Assume that e¤orts are a noisy predictor of performance in the contest. When noise enters

additively in performance and is distributed as the extreme value distribution, we obtain the

logit speci�cation, McFadden (1974). This procedure was generalized by Lazear and Rosen

(1981) and Dixit (1987) to general distributions. When noise enters multiplicatively, Hillman

2An extension of Skaperdas�result to non-anonymous CSFs is given by Clark and Riis (1998). Skaperdas also

axiomatized the logit model (4).
3Anbarci, Skaperdas and Syropoulos (2002) present a model in which a two party con�ict over a resource can

either be settled through bargaining over the resource or through a contest. The contest de�nes the disagreement

point of the bargaining problem to which three di¤erent bargaining solutions are applied. See also Esteban and

Sákovics (2006). In contrast, in our framework we interpret bargaining to be over win probabilities and derive

contest success functions as bargaining rules.
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and Riley (1988) derived (1) for the case of two contestants when noise follows an exponential

distribution (see also Hirshleifer and Riley (1992)). This was generalized by Jia (2007) to n > 2.4

Our approach di¤ers from these papers by changing performance to the broader concept of utility

and using a uniformly distributed and one dimensional random variable.

Epstein and Nitzan (2006) partially rationalize CSFs by analyzing how a contest adminis-

trator rationally decides whether to have a contest and if a contest takes place how he chooses

among a �xed set of CSFs. In contrast, in our approach the administrator chooses determin-

istically but the contestants face a CSF because of their uncertainty about the type of the

administrator.

2 External Decider

2.1 Two Contenders

Assume that one person has to decide to award a prize to one of two contestants. In the situation

we have in mind contestants are uncertain about a characteristic of the decider that is relevant

for his decision. So contenders exert e¤ort without knowing the realization of the characteristic

and then the decision-maker decides whom to give the prize based both on the contestants�

e¤orts and his type.

Let � be the set of states of the world. Let � be an arbitrary element of �. We assume

that � = [0; 1] and that � is uniformly distributed. Let Vi be the decider�s payo¤ if the prize is

awarded to contestant i = 1; 2. Vi is assumed to depend on the state of the world, i.e. Vi = Vi(�).

This may re�ect the uncertainty in the contestants�minds about the preferences of the decider.

We will assume the following single-crossing property.

(SC) V1(�) is decreasing in � and V2(�) is strictly increasing in �.

Taking into account e¤orts, let Ui(Vi(�); Gi) be the decider�s payo¤ if the prize is awarded

to contestant i = 1; 2. This function is assumed to be increasing in both arguments and for

simplicity we will write Ui(�;Gi). For the sake of interpretation let Gi be interpreted as the

level of advertisement (resp. quality) made (resp. provided) by contestant i = 1; 2. Let

�0 =

8><>:
1 if U1(�;G1) > U2(�;G2);8� 2 �
0 if U1(�;G1) < U2(�;G2);8� 2 �
f�jU1(�;G1) = U2(�;G2)g otherwise.

(10)

Under our assumptions �0 is well-de�ned and unique. Moreover, �0 equals p1, the probability

that contestant 1 gets the prize. We now provide several examples in which we solve for p1 as

a function of G1 and G2. This way we obtain the contest success function as arising from the

maximization of the payo¤ function of the decider.
4 In related work Fullerton and McAfee (1999) and Baye and Hoppe (2003) o¤er micro-foundations for a subset

of CSFs of the form in (1) in the context of innovation tournaments and patent races following an analogous

procedure.
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In these examples Vi(�) enters either additively (in the spirit of McFadden (1974)) or mul-

tiplicatively (as in Hillman and Riley (1988)). In Examples 1 and 2 the e¤ect of a contestant�s

advertisement is completely separated from the decider�s bias. The function Ui(�;Gi) is addi-

tively separable in both arguments. Here, the merit of an alternative in the decider�s eyes might

be positive even when advertising is zero, and vice versa. Moreover, the marginal product of

advertising is independent of the decider�s bias. This contrasts with the multiplicative form of

Example 3 in which (i) a prerequisite for the merit of an alternative is both that the decider

likes it (at least a little) and that advertising is positive; and (ii) an increase of the decider�s bias

raises the marginal product of advertising. Example 4 is a combination of these two extreme

cases in the sense that for one contestant the relationship is multiplicative, while for the other

the e¤ect of advertising is independent of the bias.

Example 1 Let U1(�;G1) = V1(�)+a1G1 and U2(�;G2) = V2(�)+a2G2, where a1; a2 > 0. Thus,

a1G1�a2G2 = V2(�)�V1(�) � z(�), say. Since z(�) is invertible we get, p1 = z�1(a1G1�a2G2)
which is the form in (6) considered by Baik (1998).5 Notice that this procedure is identical to

the one used in models of spatial di¤erentiation in order to obtain the demand function (see

Hotelling (1929)).

Example 2 Let U1(�;G1) = � + 2�G1 � 1=2 and U2(�;G2) = �� + 2�G2 + 1=2, where � is a
positive scalar. In this case, it is easily calculated that p1 = max fmin f1=2 + �(G1 �G2); 1g ; 0g.
We obtain (7) the family of di¤erence-form contest success functions analyzed by Che and Gale

(2000).

Example 3 Let U1(�;G1) = (1 � �)f1(G1) and U2(�;G2) = �f2(G2). Here we obtain p1 =

f1(G1)=(f1(G1) + f2(G2)). This is Skaperdas�class of CSFs (5) for n = 2.

Example 4 Let U1(�;G1) = f1(G1) and U2(�;G2) = 2�f2(G2) if � � 1=2 and U2(�;G2) =

f2(G2)=(2(1� �)) if 1=2 � � < 1. Analogous reasoning as before yields p1 = f1(G1)=(2f2(G2)) if

f1(G1) � f2(G2) and p1 = 1� f2(G2)=(2f1(G1)) otherwise. This expression is a generalization

of the family of serial contests in (8) analyzed in Alcalde and Dahm (2007).

In order to derive a general result concerning what kind of CSFs can be derived from the

maximization of the payo¤s of the decider we will now consider the class of CSF which are C1

in Rn++. This leaves outside our study CSFs like (7) but includes (8) when n = 2.
A di¢ culty in our study is that many well-known CSFs fail to be continuous when Gi = 0 all

i and constant in its own e¤ort when Gj = 0 all j 6= i, e.g. (1). A way to solve these problems

is to stay away from the troublesome boundaries of Rn+ as we do in De�nitions 2.1 and 2.2.

De�nition 2.1 pi = pi(G) is regular if for all G 2 Rn++, @pi(G)=@Gi > 0 and @pi(G)=@Gj < 0
for all j 6= i.

5Alternatively, we may assume that the payo¤ function of the decider is Ui = Vi(�) � ajGj , i 6= j, re�ecting

the disutility received from the e¤ort made by contestant 2, if the prize is awarded to contender 1. The same

applies to Example 2 and to Example 3 by taking U1 = (1� �)=f2(G2) and U2 = �=f1(G1).
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Notice that the CSFs in (1) �(4) and (6) are regular. The one in (5) is regular if we assume,

as in Szidarovsky and Okuguchi (1997), that f
0
i (Gi) > 0 and fi(0) = 0 for all i 2 N . The CSF

given in (8) is regular if n = 2.

De�nition 2.2 The contest success function fp1(G); p2(G); :::; pn(G)g is rationalizable if there
is a list of payo¤ functions Ui(�;Gi) strictly increasing on Gi; i = 1; 2; :::; n such that for any

Ĝ 2 Rn++;

pi(Ĝ) = probabilityfUi(�; Ĝi) > Uj(�; Ĝj);8j 6= ig; for i = 1; :::; n.

We need the following assumption:

Assumption 1: pi ! 1 when Gi !1 and pi ! 0 when Gi ! 0.

It is easy to check that Tullock�s CSF (1) satis�es Assumption 1 (A.1 in the sequel). Also

Skaperdas�class of CSFs (5) satis�es A.1 when fi(Gi) are strictly positive for strictly positive

values of e¤orts, fi ! 1 when Gi ! 1 and fi ! 0 when Gi ! 0. It is ful�lled by the serial

CSF in (8) and the form in (6) includes cases where A.1 is satis�ed. Now we can prove the

following:

Proposition 2.1 If A.1 holds and p1(G1; G2) is regular, it is rationalizable by a pair of payo¤
functions ful�lling the single crossing condition. If p1(G1; G2) is rationalizable by a pair of payo¤

functions ful�lling the single crossing condition and @pi(G)=@Gj 6= 0 for all i; j, it is regular.

Proof. Suppose p1(G1; G2) is regular. Notice that this implies that for any G 2 R2++,
pi 2 (0; 1). Let f(p1; G1; G2) � p1 � p1(G1; G2). Fix p1 and G2, say �p1 and �G2. By A.1 we

have that f(�p1; G1; �G2) < 0 for G1 su¢ ciently large and f(�p1; G1; �G2) > 0 for G1 su¢ ciently

close to zero. By the intermediate value theorem, there is a G1 such that f(�p1; G1; �G2) = 0. By

the de�nition of a regular CSF this value of G1, say �G1, is unique. This means that there is a

unique function H such that G1 = H(p1; G2). Since @f(p1; G1; G2)=@G1 < 0, by the implicit

function theorem H is continuous in a neighborhood of (�p1; �G2). Since this point is arbitrary, H

is continuous for all (p1; G2). Let U1 = G1 and U2 = H(�;G2). Because p1(G1; G2) is regular,

H is strictly increasing on � and G2. Also U1 is strictly increasing on G1 and constant on �,

so the SC assumption holds. By construction, �0 (as de�ned in equation (10)) equals p1, thus

p1(G1; G2) is rationalizable.

Assume now that p1(G1; G2) is rationalizable by a list of payo¤ functions ful�lling the single

crossing condition (SC). Rationalizability implies that for any (Ĝ1; Ĝ2) we have p1(Ĝ1; Ĝ2) = �0

(as de�ned in equation (10)). Moreover, as U1 is strictly increasing on G1 and by the single

crossing condition (SC) U2 is strictly increasing on �, we have that p1 is strictly increasing in

G1. The opposite holds when G2 is increased, so the result follows from @pi(G)=@Gj 6= 0.

We show now that the condition that the partial derivatives do not vanish cannot be dis-

pensed with.
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Example 5 Consider the following smooth di¤erence-form contest between two contenders:

p1 =

8>>>>>><>>>>>>:

1 if G1 �G2 � 1

1
2 +

1
2e

�
�(G1�G2�1)

2

1�(G1�G2�1)2

�
if 1 > G1 �G2 � 0

1
2e

�
�(G1�G2)

2

1�(G1�G2)2

�
if 0 � G1 �G2 > �1

0 if �1 � G1 �G2

and p2 = 1� p1. (11)

As in (7), the win probability might be zero�even for positive e¤ort. Contrary to (7) it is C1.
Notice that for jG1 �G2j � 1, p1 is strictly monotonic. However, when G1 = G2 the derivative

vanishes. So, this CSF is not regular. De�ne U1 = G1 +
p
(� lnx)=(1� lnx) � a, where

(x; a) = (2�; 0) if 0 < � � 1=2 and (x; a) = (2�� 1; 1) if 1=2 < � � 1.6 Let U2 = G2. Notice that

SC holds. Straightforward manipulations show that this pair of utility functions rationalizes the

smooth di¤erence-form contest in (11).

2.2 More than Two Contenders

In the case of three contenders the previous argument does not yield microfoundations for the

class of contest success functions axiomatized by Skaperdas. There are two reasons for that which

are explained in Propositions 2.2 and 2.3 below. The �rst result shows that it might be impossible

to partition � in n non-empty intervals which is what is implied by the SC assumption. The

second result shows that even if such a partition is assumed, the win probability of a given

contestant might not be responsive to changes in the e¤orts of all other contenders, as in (5).

First, we need the following assumption:

Assumption 2: Ui(�;Gi) are continuous and Ui(�;Gi)!1 when Gi !1, i = 1; 2; :::; n.

This assumption (A.2 in the sequel) is ful�lled in the payo¤ functions used in Examples 1

and 2 above. In the case of Example 3 and 4 this assumption is ful�lled if fi(Gi) ! 1 when

Gi ! 1 which is the case in (1). Thus, it looks like a pretty harmless assumption. However,

its consequences are not.

Proposition 2.2 Under Assumption A.2, and when n = 3, Skaperdas�class of CSFs (5) cannot
be obtained from payo¤ maximization when SC holds for players 1 and 2.

Proof. Let U 03(G3) = maxU3(�;G3), � 2 �. The maximum exists and varies continuously

with G3 (by Berge�s maximum theorem). By taking G1 and G2 large enough, say G01 and G
0
2,

the property (SC) and A.2 imply that there is a ��, such that

U1(�;G
0
1) > U

0
3(G3);8� 2 [0; ��)

U2(�;G
0
2) > U 03(G3);8� 2 (��; 1]:

6One might also de�ne U1 = G1 + 1, when � = 0.
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Thus, player 3 never obtains the prize. Moreover, because U 03(�) is continuous in G3, small

variations in G3 do not a¤ect neither p1 nor p2, thus the result.

Similar results can be obtained for n > 3 by extending suitably the SC condition. However, as

the next result shows, even weak generalizations of the SC condition cause lack of rationalizability

of Skaperdas�class of CSFs (5) even if Assumption A.2 is not postulated. First let us consider

the following generalization of SC.

De�nition 2.3 A collection of payo¤ functions Ui(�;Gi) i = 1; 2; :::; n satis�es the Generalized
Single Crossing (GSC) condition when for all G, there is a permutation in the set of agents

i; j; :::; k and a partition of �, (�i;�ij ;�j ; ::::�r;�rk;�k) such that �s = f� j Us(�;Gs) >
Ur(�;Gr), 8r 6= sg, s = i; j; :::; k, �sh = f� j Us(�;Gs) = Uh(�;Gh)g, with all �sh singletons for
s; h = i; j; :::; k.

Notice that, when n = 2, GSC is implied by SC.

Proposition 2.3 When the utility functions satisfy the GSC and are continuous, Skaperdas�

class of CSFs (5) cannot be obtained from payo¤ maximization.

Proof. We will prove the result for n = 3. The extension to n > 3 is straightforward.

Without loss of generality let the permutation of N be 1; 2; 3: Then,

U1(�;G1) > Uj(�;Gj); j = 2; 3;8� 2 �1
U2(�;G2) > Uj(�;Gj); j = 1; 3;8� 2 �2
U3(�;G3) > Uj(�;Gj); j = 1; 2;8� 2 �3:

Thus, p1 = length �1, p2 = length �2 and p3 = length �3. It is clear that p1 (resp. p3) does

not depend on G3 (resp. G1) for small variations of this variable. Thus, the required functional

form can not be obtained in this case.

Notice that the results in Propositions 2.2 and 2.3 do not depend on F (�) being uniform.

The reason is that given an interval [a; b] di¤erent distributions assign di¤erent probability mass

F (b) � F (a). However, in these results it is crucial that the delimiters a and b do not depend

on the e¤ort of one contender.

Albeit this di¢ culty in deriving the class of functions axiomatized by Skaperdas for more

than three contestants, contestants� uncertainty about the type of the contest administrator

seems to be a reasonable approach to CSFs. Therefore, it is an important research program to

�nd contest success functions that are rationalizable according to De�nition 2.2 above and to

work out the consequences of these new functional forms on equilibrium, comparative statics, etc.

We show now that although this route appears to be promising, it is not free from di¢ culties.

We will work out two examples and we will show that in both cases:7

7This may also happen for n = 2, see Che and Gale (2000).
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� Contest success functions are neither di¤erentiable nor concave.

� Despite the symmetric nature of basic data, no symmetric Nash equilibrium exists.

Example 6 Let U1(�;G1) = (1 � �)G1, U2(�;G2) = G22=3 and U3(�;G3) = �G3. Notice that

if G1 = G2 = G3, p1 = p2 = p3 = 1=3. We will compute the best reply of contestant 1.

If G22=3 < G3 we have two cases: First, if G1 < G22=3, then p1 = 0. Second, if G1 � G22=3,

then

p1 =

(
(G1 �G22=3) =G1 if G1 < (G3G22=3) = (G3 �G22=3)
G1=(G1 +G3) otherwise.

If G22=3 � G3 we have again two cases

p1 =

(
0 if G1 < G22=3

(G1 �G22=3) =G1 otherwise.

In a symmetric equilibrium Ĝ we have G1 � G22=3 and G1 < (G3G22=3) = (G1 �G22=3).
Thus, contender 1 maximizes V (G1�G22=3)=G1�G1, where V is the value of the prize. If the

equilibrium is symmetric it must be at positive level of e¤ort. Thus, the maximum is interior

and the �rst order condition yields the best reply, namely G1 = (V G22=3)1=2.

For Ĝ1 = Ĝ2 this yields Ĝ1 = V 2=3. We now have to make sure that this payo¤ is larger than

the payo¤ associated to G1 = 0 (yielding a p1 and a payo¤ equal to 0). This is equivalent to

Ĝ2 � V 27=100, which contradicts Ĝ1 = Ĝ2 = V 2=3.

Example 6 can be criticized because the existence of endpoints (0 and 1) makes contenders

non-symmetric. For instance, if G1 = G2 = G3, a variation of G2 a¤ects p1 and p3, but a

variation of G1 only a¤ects p2. Thus, we now adapt the model of Salop (1979) of a circular city

to our framework. Here symmetry of the e¤ects of e¤orts is restored since each contender a¤ects

the win probability of all other contenders.

Example 7 Suppose that three contenders are symmetrically distributed at locations (l1; l2; l3) =
(0; 1=3; 2=3) on the unit circle, which is now our set of states of the world. Assume that

Ui(�;Gi) = u � k jli � �j + G�i , where u, k and � are positive scalars and � � 1. Notice

that when e¤ort levels are similar, the relevant competition is pairwise: 1 competes only with

2 (resp. 3) for � 2 [0; 1=3] (resp. � 2 [2=3; 1]), while only 2 and 3 compete for � 2 [1=3; 2=3].
Thus, the state of the world for which, given e¤orts, the decider is indi¤erent between candidates

1 and 2 is

�12 =
1

6
+
1

2k
(G�1 �G�2 ) :

A similar reasoning in the case of 1 and 3 yields

�13 =
5

6
+
1

2k
(G�3 �G�1 ) :

This implies that p1 = �12+1� �13. In order to determine the CSF in general, suppose without
loss of generality that G1 � G2 � G3. If G�1 �G�3 � k=3, then we obtain a generalized version
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of Che and Gale�s 2-player contest (given in (7))

p1 = min

�
1

2
+
1

k
(G�1 �G�2 ); 1

�
, p2 = 1� p1 and p3 = 0;

and otherwise

pi =
1

3
+
1

2k

�
2G�i �G�j �G�k

�
, for i = 1; 2; 3 and i 6= j; k.

Assume � < 1. A symmetric equilibrium Ĝ requires that Ĝ1 maximizes 1�s payo¤s, given Ĝ2
and Ĝ3 and that Ĝ1 = Ĝ2 = Ĝ3. Thus, Ĝ1 maximizes p1V � G1, where V is the value of the

prize. If the maximum is interior, Ĝ1 = (�V=k)
1=(1��). Thus if payo¤s for 1 for this value of

e¤orts are negative, 0 e¤ort is the best reply and no symmetric equilibrium exists.

Note that it is straightforward to extend the last example to more than three contestants.

The so derived CSF can be seen as an extension of Che and Gale�s linear di¤erence-form (given

in (7)) to more than two contestants (see (9)).

2.3 An Alternative Notion of Rationalizability

The simple setting considered so far might be adapted in several ways in order to yield Skaperdas�

class of CSFs (5) when there are more than three contestants: (i) The type of the contest

administrator might be multidimensional; (ii) the distribution function might be non-uniform;

(iii) the rationalizability notion might be di¤erent. Given that (i) and (ii) have already be

explored (e.g. in Hillman and Riley (1988)), we pursue now (iii).

Consider a situation where a contest administrator cares not only about the e¤ort of the

winner of the contest but also about the e¤ort of others. One might think of the promotion of

workers in a �rm based on their performance or of �rms competing for a research prize based

on R&D investment which generates new knowledge. In such a situation the type of the decider

represents how much he values the e¤ort of a particular contestant relative to the others. We

present an example yielding a special case of Skaperdas�class of CSFs (5) for three contestants.

This example can easily be extended to more agents and to more general e¤ectivity functions.

Example 8 Let U1 = (1 � �)G1 � �(G2 + G3), U3 = �G3 � (1 � �)(G1 + G2) and normalize

U2 = 0. We have that

U1 � U2 , � � �12 �
G1

G1 +G2 +G3
;

U1 � U3 , � � �13 �
2G1 +G2

2(G1 +G2 +G3)
;

U3 � U2 , � � �23 �
G1 +G2

G1 +G2 +G3
:

This yields

p1 = �12 =
G1

G1 +G2 +G3
, p2 = �23 � �12 =

G2
G1 +G2 +G3

and p3 = 1� �23 =
G3

G1 +G2 +G3
.
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3 Contest Success Functions as Sharing Rules

Inspired by the second interpretation of the outcome of a contest as shares of the prize we

establish now a connection to bargaining and claims problems. This can be interpreted as

contestants bargaining over all possible assignments of win probabilities or over shares. If no

agreement is reached, all win probabilities are zero. In our approach, a variation in e¤ort only

a¤ects the share of the prize. A more complete theory might consider that the size of the prize

is also a¤ected. This allows taking into account the opportunity cost of e¤ort (see Anbarci,

Skaperdas and Syropoulos (2002) and Gar�nkel and Skaperdas (2007)).

3.1 �Classical�Bargaining

A contest problem is a vector f(G) = (f1(G1); :::; fn(Gn)) with at least two entries each of

which strictly positive.8 Since we consider a �xed vector of e¤orts G, we will simply use the

notation fi instead of fi(Gi) and f instead of f(G). An allocation in a contest problem is a

n-tuple p = (p1; :::; pn) 2 Rn with 0 � pi � 1 and
Pn
i=1 pi = 1. A contest success function is a

function that assigns a unique allocation to each contest problem.

We de�ne now a bargaining problem associated with each contest problem. A bargaining

problem is a pair (S;d) where S � Rn is a compact convex set, d 2 S and there exists s 2 S such
that si > di; i = 1; :::; n. The set S, the feasible set, consists of all utility vectors attainable by

the n contestants through unanimous agreement. The disagreement point d is the utility vector

obtained if there is no agreement. In our context it seems natural to de�ne

S =

(
p 2 Rn

�����0 � pi � 1 and
nX
i=1

pi � 1
)
and d = 0.

A bargaining solution is a function  assigning to each bargaining problem (S;d) a unique

element in S. We are interested in the weighted Nash solution with weights �.

De�nition 3.1 Let �i > 0 for all i = 1; :::; n. The �-asymmetric Nash solution is de�ned as

 � = argmax
p2S

�ni=1 (pi � di)
�i :

In this framework it is natural that the e¤ort of a contestant determines his bargaining

position. Suppose that e¤orts a¤ect the exponents of the weighted Nash bargaining solution as

de�ned above. For simplicity, let � = f . The next result is parallel to one obtained by Dagan

and Volij (1993) in a di¤erent framework.9

Proposition 3.1 The �-asymmetric Nash solution for � = f induces Skaperdas�class of CSFs
(5).

8 If fi(Gi) = 0 for some contestant i, assign zero win probability to this agent and consider the reduced vector

in which the entry corresponding to agent i is missing.
9 In the literature the weighted Nash solution has also been interpreted as a decider maximizing a payo¤

function. This is another example of the connections between the approaches taken in Section 2 and here.
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Proof. Let f be a contest problem, consider the associated bargaining problem and let

 � = p�. The �rst-order conditions of the maximization problem de�ning the asymmetric Nash

solution with d = 0 imply that

p�j =
�j
�i
p�i ; for all i; j 2 N .

Given the Pareto optimality of the asymmetric Nash solution we have that
Pn
j=1 pj = 1. This

implies p�i = �i=
Pn
j=1 �j .

Since the preceding result sheets light on the class of contest success functions axiomatized

by Skaperdas from a very di¤erent angle than the approach of the previous section, it is of

interest in its own right. However, it also opens the door to understand CSFs as the outcome

of strategic bargaining models based on Rubinstein�s alternating o¤ers game. Since it is well

known that under certain conditions the asymmetric Nash solution can be supported by such a

game, it follows that alternative conditions thought to re�ect reasonable properties of underlying

institutional details can yield alternative CSFs.

3.2 Bargaining with Claims

It might seem odd that, while the e¤ort vector f de�nes a contest problem, this information

is not used in the description of the associated bargaining problem (S;d). If we want to incor-

porate this information in the description of the problem, the relevant framework is the one of

bargaining problems with claims (Chun and Thomson (1992)).10 A contest bargaining problem

is then a triple (S;d;f) with the following interpretation: Contestants bargain over all possible

assignments of win probabilities. The contestants�e¤ectivity functions translate individual e¤ort

into an �aspiration point�f . Thus, f(G) measures the social merit that society or the decider

awards to the vector of e¤orts G.

If no unanimous agreement is reached, all win probabilities are zero. A contest bargaining

solution � assigns to each such triple a unique element in S. A maximal point p of S is a point

such that
Pn
j=1 pj = 1. The proportional solution is de�ned as follows.

De�nition 3.2 The proportional solution �P is de�ned as the maximal point p of S on the

segment connecting the disagreement point d and the aspiration point f .

Proposition 3.2 The proportional solution induces Skaperdas�class of CSFs (5).

Proof. Let f be a contest problem, consider the associated bargaining problem with claims

and let �P = p�. The line which passes through the two points d and f is the set of vectors x

of the form x = (1 � t)d + tf , with t 2 R. Since d = 0, x = tf . Given that p� is a maximal

point, we have that t = 1=
Pn
j=1 fj . This implies p

�
i = fi=

Pn
j=1 fj .

10Notice that a contest problem is not equivalent to a bargaining problem with claims. One important di¤erence

is that in contest problems there is no upper bound on individual e¤ort levels, that is, f .
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The richer description of bargaining problems with claims has allowed to de�ne an alternative

solution that also explicitly builds on the aspiration point f . Bossert (1993) analyzes the claim-

egalitarian solution. For the purpose of the next proposition it su¢ ces to consider the case of

two contestants. The following de�nition is adapted to our context because in contest problems

there is no upper bound on individual e¤ort levels, that is, f .

De�nition 3.3 Let n = 2 and fh � fl, h; l = 1; 2. The claim-egalitarian solution �E is de�ned

as the maximal point p of S such that fh � ph = fl � pl if fh � fl � 1. Otherwise ph = 1 and
pl = 0.

The claim-egalitarian solution selects a point on the Pareto frontier of S such that the loss

of each contestant compared with his aspiration level is the same for all agents (if such a point

exists). This is an egalitarian solution in the sense that the absolute amount each agent has to

give up is equalized across contestants. The next proposition says that this idea is the same as

saying that only di¤erences in e¤ort matter.

Proposition 3.3 For n = 2, the claim-egalitarian solution induces a generalization of Che and
Gale�s di¤erence-form contest success function, that is,

�Ei = pCG
0

i (G) = max

�
min

�
1

2
+
1

2
(fi � fj) ; 1

�
; 0

�
for i = 1; 2.

Proof. The fact that if jfi � fj j � 1 then �Ei = pCG
0

i (G) is obvious. Suppose jfi � fj j � 1.
Since pj = 1� pi, we have fi � pi = fj � (1� pi). Rearranging yields the desired expression.

Notice that when fi(Gi) = 2�Gi for i = 1; 2 where � is a positive scalar, we obtain (7),

the class of linear di¤erence-form functions analyzed in Che and Gale (2000). Notice that it is

straightforward to extend the last result to more than three contestants (see (9)).11 Interestingly,

this recommendation di¤ers in the minimal e¤ort necessary to obtain a non-zero share and in

the marginal e¤ect of e¤ort from the one based on Example 7.

De�nition 3.3 equalizes losses based on absolute claims. This creates the �kink� and the

non-responsiveness of Che and Gale�s CSF to e¤ort when the di¤erence in aspiration levels is

high enough. Considering relative claims this can be avoided. Notice that fi=fh (for i = 1; :::; n)

indicates the percentage contestant i�s aspiration level fi constitutes of the highest level fh.

De�nition 3.4 Let n = 2 and w.l.o.g. denote fh = maxff1; f2g. The relative claim-egalitarian
solution �RE is de�ned as the maximal point p of S such that f1=fh � p1 = f2=fh � p2.
11For n = 3 and f1 � f2 � f3, it is natural to require the following. If f1�f2 � 1, then p1 = 1 and p2 = p3 = 0.

If f1 � f3 � 1 > f1 � f2, then �E is the maximal point p of S such that p3 = 0 and f1 � p1 = f2 � p2. Lastly,
when f1 � f3 < 1, then �E is the maximal point p of S such that f1 � p1 = f2 � p2 = f3 � p3.
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The relative claim-egalitarian solution selects a point on the Pareto frontier of S such that

the loss of each contestant compared with this �relative claim point�is the same for all agents.

The next proposition relates this idea to the serial CSF.12

Proposition 3.4 For n = 2 and f1 � f2, the relative claim-egalitarian solution induces a

generalization of the serial contest success function, that is,

�REi = pS
0
i (G) =

2X
j=i

fj � fj+1
j � fh

for i = 1; 2 and f3 = 0.

Proof. W.l.o.g. assume f1 � f2. We have that 1� p1 = f2=f1 � p2 = f2=f1 � 1 + p1. This

can be rewritten as p1 = 1� f2=(2f1) = (f1 � f2)=f1 + f2=(2f1). Since �RE must be a maximal
point, we obtain p2 = f2=(2f1).

4 Concluding Remarks

In line with two prominent interpretations of the outcome of contests, this paper has investigated

foundations for prominent contest success functions based on two di¤erent approaches. The �rst

analyzes the implications of contestants� incomplete information concerning the �type� of the

contest administrator. The second understands CSFs as sharing rules and makes a connection

to bargaining and claims problems. Both approaches provide foundations for popular contest

success functions and guidelines for the de�nition of new ones. The results of this paper suggest

two lines for future research on contest success functions.

On the normative side, the implications of linking the problem of assigning win probabilities

in contests to bargaining, claims and taxation problems are twofold. On one hand, this connec-

tion might yield an improved understanding of existing contest success functions, while, on the

other hand, it suggests guidelines for the de�nition of new ones. As for the former, for instance,

proportionality principles have been defended at least since the philosophers of ancient Greece.

Therefore, it seems possible to obtain di¤erent characterizations of the class of contest success

functions axiomatized by Skaperdas using ideas of characterizations of proportionality stressed

in these related problems.13 As for the latter, di¤erent normative principles might lead to the

formulation of di¤erent classes of contest success functions. A case in point here is the claim-

egalitarian solution that gives a recommendation how to extend the di¤erence-form functions

analyzed in Che and Gale (2000) to more than two contestants.

12This reasoning can easily be extended to more contestants. However, the requirement that fi=fh � pi =
fi+1=fh � pi+1 for all i = 1; :::; n � 1 does not always yield well de�ned win probabilities. A way out is the

following. Consider an ordered vector f1 � f2 � ::: � fn and rescale the �relative claim point�in order to make

the pairwise comparisons fi=(i �fh)�pi = fi+1=(i �fh)�pi+1 for all i = 1; :::; n�1. This coincides with De�nition
3.4 when there are two agents and yields a generalization of the serial contest success function for any number of

contestants.
13Note that the class of problems in which win probabilities are assigned has a particularly simple structure.

This implies that a characterization of a solution for a larger class of problems does not need to characterize a

solution for contests.
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On the positive side, the implications for future research parallel the normative ones. On

one hand, strategic foundations of solution concepts in bargaining, claims and taxation problems

that can be related to popular contest success functions might yield rationales for the latter.

An example is to link contests with the Bilateral Principle that has proved a fruitful way to

incorporate Luce�s Choice Axiom into game theory. Dagan et al. (1997) have provided a game

form capturing the non-cooperative dimension of the consistency property of bankruptcy rules.14

An adaptation of their result in our framework shows that Skaperdas�class of CSFs (5), can be

supported by a pure strategy subgame perfect equilibrium of a certain non-cooperative game.

On the other hand, by incorporating realistic details of contest situations novel contest

success functions can be derived. Examples are the recommendation of the circular model in

Example 7 how to extend Che and Gale�s di¤erence-form function to more than two contestants

or the e¤ects of modifying Rubinstein�s alternating o¤ers bargaining game.
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