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Abstract

Despite the popularity of auction theoretical thinking, it appears that no one has

presented an elementary equilibrium analysis of the �rst-price sealed-bid auction

mechanism under complete information. This paper aims to remedy that omission.

We show that the existence of pure strategy undominated Nash equilibria requires

that the bidding space is not �too divisible�(that is, a continuum). In fact, when

bids must form part of a �nite grid there always exists a �high price equilibrium�.

However, there might also be �low price equilibria� and when the bidding space

is very restrictive the revenue obtained in these �low price equilibria� might be

very low. We discuss the properties of the equilibria and an application of auction

theoretical thinking in which �low price equilibria�may be relevant.

Keywords: First-price auctions, undominated Nash equilibria.

JEL Classi�cation Numbers:

C72 (Noncooperative Games),

D44 (Auctions).
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�We restrict attention to the case of complete information and try to under-

stand this model more fully and provide a number of results in this area in

an elementary manner.�

Krishna and Tranaes (2002)

1. Introduction

Auction-theoretic ways of thinking have been successfully applied to the analysis of

broader economic questions, including price-setting behavior in markets, litigation sys-

tems or �nancial crashes (see Klemperer (2003)). Depending on the desired application,

the appropriate model uses the benchmark of complete information or an incomplete

information setting. For instance, Moldovanu and Sela (2003) use the �rst-price auc-

tion mechanism to model patent licensing. In their view the benchmark of complete

information is appropriate for mature industries, like the steel industry. For this in-

dustry they report that competitors �know each other well, and engineers often visit

competitors�plants�. However, they argue that emerging or very dynamic and secre-

tive industries, like the petrochemical industry, are better captured by an incomplete

information model.

Despite the popularity of auction theoretical thinking, it appears that no one has

presented an elementary equilibrium analysis of the �rst-price sealed-bid auction mech-
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anism under complete information. This paper aims to remedy that omission.1 As a

starting point we show that in the standard model with a continuous bidding space there

exists no undominated Nash equilibrium. This is due to the discontinuity of the payo¤

functions when two bidders tie at the highest bid and parallels a well-known result in

the related game of Bertrand competition.2

There are two prominent ways to restore existence of equilibrium. The �rst is to look

for mixed-strategy equilibria and the second�this is the approach we take in the present

paper�is to assume that bids must be chosen from a �nite grid.3 Another reason why a

careful analysis under the assumption of a �nite grid is important is the fact that this

model is often viewed as a better description of reality.4 Notice that in experimental

settings there is also a smallest monetary unit.

1Although complete information settings are often considered to be a useful starting point of the
analysis before moving to incomplete information models (see e.g. Baye et al. (1993) and (1996), Benoit
and Krishna (2001), Bernheim and Whinston (1986) or Krishna and Tranaes (2002)) or to be a useful
benchmark case (see e.g. Anton and Yao (1989), Grimm et al. (2003), Elmaghraby and Oren (1999),
or Moldovanu and Sela (2003)), we are not aware of any work on the �rst-price auction with complete
information that contains the elementary results that we derive in the present paper.

2A �rst-price auction and a Bertrand oligopoly market in which �rms produce a homogenous good
at constant marginal costs are in general not equivalent, as in the latter the winning �rm�s demand
decreases in the price. This corresponds to an auction in which the winning bidder�s valuation increases
in her bid.

3See Blume (2003) for a recent contribution to the analysis of mixed-strategy equilibria in Bertrand
competition and Vives (2001) for a discussion of a rationale for mixed-strategies in this model. Other
auction models using the assumption of a �nite grid are Shubik (1971), O�Neill (1986), Chwe (1989) or
Rapoport and Amaldoss (2004).

4Simon and Zame (1990, p. 863) state this view as follows. �Games with in�nitely many strategies
are sometimes viewed as proxies for games with a large �nite number of strategies. From this point of
view it is the equilibria ... of the �nite games which are of real interest; equilibria of the in�nite games
are merely convenient approximations.�Rapoport and Amaldoss (2004, p. 587) write �the assumption
of a discrete strategy space is appropriate as �rms typically consider their expenditures in discrete (e.g.,
thousands or millions of dollars) rather than continuous units. Indeed, continuous strategy spaces are
mostly introduced to achieve tractability, not to provide a more adequate description of reality�.
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The �rst contribution of the present paper is to o¤er an elementary analysis of pure

strategy undominated Nash equilibria in the �rst-price sealed-bid auction mechanism

under complete information. Our approach uses fairly general tie-breaking rules and

(possibly irregular) �nite grids on bidding spaces. We �nd that the existence of a �high

price equilibrium�in which

x the object will be awarded to the bidder with the highest valuation at a price close

to the second highest valuation and

x the outcome is e¢ cient

requires precise condition on the bidding space to be ful�lled. Namely, the bidding

space should not be too divisible (a continuum) on one hand and not be too indivisible

on the other.

Our second contribution is to show that there might also be �low price equilibria�

and that these do not automatically go away as the smallest monetary unit diminishes.

Moreover, when the bidding space is very restrictive the revenue obtained in these �low

price equilibria�might be very low.

Clearly the question of whether a restrictive bidding space is the appropriate assump-

tion to make depends on the application one has in mind.5 Consider several jurisdictions

5For instance, in Bertrand competition the smallest monetary unit is arguably small. So �low price
equilibria� should be less important. Moreover, as demand decreases with the price charged (in our
terminology, the winning bidder�s valuation increases in her bid) there is an additional incentive to
undercut (that is, outbid) the rivals and �low price equilibria�should be less stable.
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competing for the location of a new factory (see Menezes (2003) and Taylor (1992)).

Di¤erent types of competition can be modeled by di¤erent auction formats. Invest-

ments in infrastructure already incurred can be captured by an all-pay auction, while

a �rst-price auction might represent e.g. commitments to spend on infrastructure. In a

model of incomplete information Menezes (2003) shows that the expected total amount

paid to the �rm under a large family of auctions is the same.

However, if jurisdictions are neighbors or relatively similar in the characteristics de-

termining the value from the factory, the complete information setting is a reasonable

benchmark case.6 Moreover, in such a situation bids are di¤erent bundles containing

commitments to spend on infrastructure, tax incentives, etc. This implies that although

these bundles can be evaluated in US dollars, the bidding space may become irregular.

Either a jurisdiction commits to constructing a regional airport, an entrance to a motor-

way or to expand the harbor or not. It cannot provide just a fraction of an airport. Our

analysis implies that if the value of the infrastructure commitment is relatively high in

comparison to the value of the �rm to the jurisdictions, then there may be a �low price

equilibrium�without commitment to build this infrastructure. Therefore, the expected

total amount paid is not always the same but depends on the details of the competition.

6Alternatively one may think that the consultant�s reports that are the private information in
Menezes (2003) become publicly known.
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2. The Model

2.1. The Agents

Let us consider an (indivisible) object owned by an individual whom we will call the seller

(and index by 0). The object is likely to be purchased by a set B = fB1; : : : ; Bi; : : : ; Bng

of agents, to be called the buyers. Each agent has a valuation vi for the object. For the

sake of simplicity, we will assume that there are at least two buyers, i.e. n � 2, and

agents�valuations are increasingly ordered, i.e.

vi � vj for all 0 � i � j.

The seller decides to auction the object, using a �rst-price auction (to be speci�ed

later on). Therefore, if the object is sold at price p, each agent�s (indirect) utility is

(i) r0 = p� v0 for the seller,

(ii) ri = vi�p for the buyer who gets the object, and zero for all the other (potential)

buyers.

The informational setting that we will consider is that agents� valuations v =

(v0; v1; : : : ; vi; : : : ; vn) are commonly known by all the buyers, and that this is pub-

lic information. As in Bernheim and Whinston (1986) or Anton and Yao (1989) we also

assume that the seller only has information about her own valuation of the object.
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2.2. The Bidding Space

Let A be the (�xed) set of prices that each buyer can propose. Our analysis will

distinguish two scenarios:

We say that the bidding space is continuous when any non-negative amount of money

is a feasible bid. Formally, we suppose that A � R+.

We say that the bidding space is discrete when A has a �nite grid satisfying the

following property:

Assumption 1: There exist � > 0 such that, for all a; a0 2 A, a 6= a0, ja� a0j � �.

Let us observe that, if bids are expressed in US dollars, the set of possible bids

satis�es the Assumption 1: two di¤erent bids must di¤er in, at least, one cent! We

may then order the set A, and denote it by A = fa0; a1; :::; ak; :::g. Note that we do

not require all successive elements ak and ak+1 of the bidding space to be separated by

regular intervals. If this is the case we will say that the bidding space has a constant

grid of (at least) size �.

2.3. The First-Price Auction Mechanism

We formalize now the �rst-price auction mechanism analyzed in the present paper.

Loosely speaking, the object is assigned to the buyer with highest bid, and she pays

her bid. However, when two or more buyers propose the same bid there is a function

� establishing a probabilistic allocation rule in order to assign the object. This �xed
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monotonic (probabilistic) measure function

� : 2B ! Rn

satis�es:

(a) for all S � B,
Pn
i=1 �i (S) = 1,

(b) for all S � B and i 2 BnS, �i (S) = 0,

(c) for all S � B and i 2 S, �i (S) > 0; and

(d) for all S � S0 � B, and i 2 S, �i (S) � �i (S0).

For A and � given, the procedure describing how buyers compete for the object can

be formalized as a two-stage game. At the �rst stage, each buyer simultaneously sets the

price pi 2 A (i = 1; : : : ; n) that she will pay for the object if it is assigned to her. This

de�nes a vector p = (p1; : : : ; pn). Then, at the second stage the seller establishes her

reservation price, p0. Given these actions, the �rst-price auction mechanism proceeds

as follows:

(1) If pi < p0 for all i = 1; : : : ; n, the object is unassigned, i.e. the seller keeps it.

(2) Otherwise, denote by S (p) = fBi 2 B : pi � pj for all Bj 2 Bg the set of buyers

proposing the highest bid. Then the object is assigned with probability �i (S (p))

to buyer Bi who pays pi with this probability.
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2.4. The Equilibrium Concept

Let us observe that the only role of stage two is to guarantee that the seller avoids

losses (or negative utility). Note that the equilibrium concept that is most commonly

analyzed for this type of games is subgame perfect equilibrium (SPE). Let us observe

that the best strategy for the seller is to behave truthfully. More precisely, at any SPE,

the object will be sold whenever some buyer sets a price higher than v0. In fact this

is a dominant strategy for the seller. Therefore, we will concentrate on the analysis of

buyers�decisions at the �rst stage.

We will concentrate on the analysis of undominated Nash equilibria (in pure strate-

gies) in the bidding subgame. Note that for each buyer i, a strategy p̂i is undominated

if, and only if, 0 � p̂i < vi.7

3. Analysis of the First-Price Auction Mechanism

3.1. First-Price Auctions when the Bidding Space is a Continuum

Let us consider that A � R+. In this case we have the following result:

Theorem 3.1. Let A � R+. There is a Nash equilibrium for the �rst-price auction if,

and only if, vn = vn�1.

7The main reason for our focus on undominated Nash equilibria is to rule out �unreasonable�equi-
libria. Think of the discrete setting and suppose that only integer bids are feasible. Assume there are
two buyers valuing the object in v1 = 1 and v2 = 10, while the seller�s reserve price is zero. For instance,
b�1 = 7 and b

�
2 = 8 constitute a Nash equilibrium (as long as � is not too biased towards B2).



The Importance of Being Indivisible 9

Proof. First, it is straightforward to see that, when vn = vn�1 the strategy pro�le

p� in which each buyer Bi bids p�i = vi is a Nash equilibrium for this game.

Now, let us assume that vn > vn�1. We will proceed by contradiction. Let us

suppose that there is a Nash equilibrium. Let p� be such an equilibrium. Let us observe

that p� must satisfy that for each bidder Bi, p�i � vn. Denote (one of) the highest

bidders other than Bn by Bk, where Bk is such that

p�k = max
j 6=n

p�j :

Let us consider the following cases:

(a) �n (S (p
�)) = 0. This only happens if p�n < p�k. Note that, as vk < vn, Bk

only obtains a non-negative utility if p�k < vn. Notice that bidder Bn is not

employing a best response. This is because by setting ~pn = p�k we have that

�n
�
S
�
~pn; p

�
�n
��
> 0 and thus the (expected) utility of agent Bn is

�n
�
S
�
~pn; p

�
�n
��
[vn � ~pn] > 0 = �n

�
S
�
p�n; p

�
�n
��
[vn � p�n] .

(b) 0 < �n (S (p
�)) < 1. This only happens if p�n = p

�
k and thus, agent Bn�s utility is



The Importance of Being Indivisible 10

�n (S (p
�)) [vn � p�n] > 0.8 Let us consider

~pn = p
�
n +

1� �n (S (p�))
2

(vn � p�n) :

Since ~pn > p�n, we have that �n
�
S
�
~pn; p

�
�n
��
= 1, and thus agent Bn�s utility is

vn � ~pn = vn � p�n �
1� �n (S (p�))

2
(vn � p�n) =

=
1 + �n (S (p

�))

2
(vn � p�n) > �n (S (p�)) (vn � p�n) ;

which shows that p�n is not an optimal decision for buyer Bn.

(c) �n (S (p
�)) = 1. Let us observe that, in such a case, it holds that p�n > p�k.

Therefore, agent Bn can also obtain the object, with probability 1, by bidding

~pn =
p�n � p�k
2

since ~pn < p�n, we have that p
�
n is not an optimal strategy given others�bids.

Note that a Nash equilibrium only exists for very special pro�les of bidders�valua-

tions. Moreover, in every such equilibrium at least one Bj with vj = vn bids p�j = vj

and the seller extracts the full surplus vn � v0. Notice also that bidding p�i = vi is a

8Again, the strict inequality comes from the fact that agent Bk cannot obtain negative (expected)
utility at equilibrium.
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dominated strategy which implies the following Corollary.

Corollary 3.2. Let A � R+. There is no undominated Nash equilibrium for the �rst-

price auction.

3.2. First-Price Auctions when the Bidding Space is Discrete

Consider the case in which the bidding space satis�es Assumption 1. We �rst need some

additional notation. Denote by wi 2 A agent Bi�s largest (undominated) bid strictly

smaller than vi.

Consider ak 2 A. Denote the distance to the next element of the bidding space by

�ak = ak+1 � ak. For simplicity we also denote �wn�1 = �. It will turn out that if

a strategy pro�le is an equilibrium, then it belongs to the following class of strategy

pro�les.

De�nition 3.3. Given a 2 A, a � min fwn�1 + �; wng, we denote by P (a) the set of

strategy pro�les p̂ is such that:

1. Buyer Bn chooses p̂n = a.

2. There exists Bj 2 B n fBng such that wj = wn�1 bidding p̂j = minfa;wn�1g.

3. All other bidders Bi 2 B n fBj ; Bng choose p̂i � min fwi; ag.
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Notice that a 2 A just indicates the winning bid.9 Given a strategy pro�le p̂ 2 P (a),

we indicate the buyers bidding at least b 2 A by W (b) = fBi 2 B s.t. p̂i � bg. To

simplify notation we will omit a and b using � and W instead, whenever this notation

is clear from the context.

Given a winning bid a and a strategy pro�le p̂ 2 P (a), it might pay to raise or lower

an individual bid. De�ne the two threshold values

� = [1� �n (W (wn�1))] [vn � wn�1] and

� = max [1� �j (W (a))] [vj � a]

s:t Bj 2W (a):

Notice that the de�nition of � might not be determined by Bn when the probabilistic

measure function � is strongly biased in favor of this buyer.10

We are now in a position to characterize undominated Nash equilibria when the

bidding space has a �nite grid. There are three cases to be distinguished. Case (1) and

case (2.2) formalize the conventional wisdom that the strongest bidder just outbids the

others or ties with an equally strong bidder at their common valuation. However, case

(2.1) shows that even when valuations are di¤erent it might not pay to outbid others

because the required increase of the bid may be too large. Case (3) establishes that this

9We implicitly assume in what follows that v0 � a.
10The exact threshold for Bn not to determine � is that there exists Bi 2 WnBn such that �n >

1� (1� �i) (vi � a)=(vn � a).
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intuition might even apply to much lower bids.

Theorem 3.4. Let Assumption 1 hold. A pro�le of strategies p� is an undominated

Nash equilibrium for the �rst-price auction if, and only if, p� 2 P (a) for some a 2 A;

and one of the following is true:

(1) (High price equilibrium, unique winner) a = wn�1 + �, wn�1 < wn and � � �.

(2) (High price equilibrium, tie) a = wn�1 and either

(2.1) wn�1 < wn and � � � or

(2.2) wn�1 = wn.

(3) (Low price equilibrium, tie) a < wn�1 and �a � �.

Proof. (I) We show �rst that p� is an undominated Nash equilibrium for the �rst-

price auction whenever (1), (2) or (3) are true. Note that, since p�i � wi for all Bi 2 B,

no buyer employs a dominated strategy. We show now that p� is a Nash equilibrium.

Let us observe that the expected utility of buyers in B nW is zero. Moreover, given

agents�bids, no buyer in B nW can obtain a positive (expected) utility.

Suppose (1) holds. The fact that p� 2 P (a) implies that Bn wins, so

Un (p
�) = vn � a � 0, with a = wn�1 + �.
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Assume Bn changes p�n to ~pn. Given that she cannot gain from raising her bid, suppose

~pn � wn�1. Notice that there exists Bj 6= Bn bidding p̂j(a) = wn�1. We have

Un
�
~pn; p

�
�n
�
� �n (W (wn�1)) [vn � wn�1] = vn � wn�1 � � �

� vn � wn�1 � � = vn � a = Un (p�) .

And, thus, p�n is the best decision for agent Bn, given the others�bids.

Suppose (2) or (3) holds. For buyer Bj 2W , we have that her expected utility is

Uj (p
�) = �j (W )

�
vj � p�j

�
= �j (W ) [vj � a] > 0.

Assume Bj changes her strategy, by setting ~pj . If she lowers her bid, her expected utility

will be zero, since W is not a singleton. Thus, suppose ~pj > a, and note that Bj will get

the object with probability one. Notice that in case (2.2) Uj
�
~pj ; p

�
�j

�
< 0. Consider

case (3). Observe that

Uj
�
~pj ; p

�
�j
�
= vj � ~pj � vj � a� �a � vj � a� � �

� vj � a� [1� �j (W )] [vj � a] = Uj (p�) .

Again, p�j is the best decision for agent Bj , given the others�bids. The argument for

case (2.1) is similar replacing Bj , �a and � by Bn, � and � respectively.
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(II) We show now the converse. Suppose there is a Nash equilibrium p� in which all

agents employ undominated strategies. Denote the highest bid by

a0 = max p�i

s:t Bj 2 B

Notice that if a0 > minfwn�1 + �; wng, then a0 is either dominated or p�n = a0. In the

latter case Bn can improve by lowering her bid. Hence, suppose a0 � minfwn�1+�; wng.

Notice that p�n = a0 must hold because otherwise Bn can improve by making this

bid. Suppose a0 = wn�1 + � and that there does not exist Bj 2 B n fBng such that

wj = wn�1 bidding p�j = wn�1. Given that for bidders with lower valuations p
�
i = wn�1

is dominated, Bn could improve by lowering her bid. Assume a0 � wn�1 and that there

exists Bj 2 B n fBng such that wj � a0 bidding p�j < a0. In this case Bj can improve by

changing her bid to ~pj = a0 because

Uj (p
�) = 0 < �j

�
W (a0) [Bj

� �
vj � a0

�
= Uj

�
~pj ; p

�
�j
�

This proves that p� 2 P (a0). From part (I) it is clear p� cannot be a undominated Nash

equilibrium when the conditions in case (1), (2) or (3) are not ful�lled.

Observe that case (1) and case (2) of Theorem 3.4 imply the following.

Corollary 3.5. Under Assumption 1 there exists an undominated Nash equilibrium
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in the �rst-price auction. In this high price equilibrium the winning bid a ful�lls a 2

fwn�1; wn�1 + �g.

However, in addition to this equilibrium there might be further low price equilibria

as speci�ed in case (3) of Theorem 3.4. The intuition for the existence of the low price

equilibria is the following. A bidder can prevent a tie by outbidding the competitors

by the minimal increase. However, when the grid is restrictive the required increase is

large and does not pay. So a natural question to ask is, How small must a smallest

monetary unit be in order to make sure that low price equilibria do not exist? Assume

that the tie breaking rule assigns the object with equal probability and that there are

two bidders.11

Corollary 3.6. Assume that there are two bidders who get the object with equal prob-

ability in case of a tie and that the bidding space has a constant grid of size �. For any

� > 0 the following is true:

(1) If wn�1 < wn, the high price equilibrium is unique.

(2) If wn�1 = wn, in addition to the high price equilibrium, there exists a low price

equilibrium with strategy pro�le12 p̂(a) where a = wn�1 � �.

11Notice that because of the monotonicity of the tie breaking rule further bidders increase the incen-
tives to deviate from a low price equilibrium. For completeness we mention that case (1) of the next
Corollary assumes that � 6= �.
12Note that, for the two-bidder case, for any a 2 A such that a � min fwn�1 + �; wng, P (a) is a

singleton. Therefore, as we do throughout this corollary and its proof, we can denote by p̂ (a) such an
element.
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Proof. Suppose wn�1 < wn. The fact that vn > wn � wn�1 + � implies that

� < vn � wn�1. We show �rst that the pro�le p̂(a) with a = wn�1 � � is not an

equilibrium. For this � < � must hold. Since � = 1
2(vn�wn�1+�), � <

1
2(vn�wn�1+�)

must hold. Simplifying yields � < vn � wn�1, which we already have shown to be

true. Notice that no pro�le p̂(a0) with a0 < wn�1 � � can be an equilibrium because

�(a) = 1
2(vn � a) <

1
2(vn � a

0) = �(a0).

Suppose wn�1 = wn. Notice that vn�wn � �. This implies that � = 1
2(vn�wn�1+

�) � �.

This result implies, on one hand, that whenever vn�1 = vn, there are at least two

equilibria. Note also that for the second statement to hold it is not needed that the

grid is constant. It is su¢ cient that the discrete jump immediately before wn�1 is larger

or equal than the one after wn�1. On the other hand, when valuations are di¤erent

decreasing the size of the smallest monetary unit assures that up from a certain point

wn�1 > wn holds and the high price equilibrium is unique. We give now an example in

which increasing the restrictiveness of the bidding space creates multiple equilibria.

Example 3.7. There are two bidders with valuations v1 = 90 and v2 = 100. The

reservation price of the seller is zero. In the case that both bidders submit the same

bid, they obtain the object with equal probability. Suppose �rst that the bidding space

coincide with the set of uneven integers. In this case Theorem 3.4(1) and Corollary

3.6(1) imply that p� = (89; 91) is the unique undominated Nash equilibrium. However,
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if bidding space is A = f1; 51; 76; 89; 91; 99; 106; :::g, then apart from p� there are three

additional equilibria, namely, p�0 = (1; 1), p�00 = (51; 51) and p�000 = (76; 76). Notice

that, although A is restrictive, it still leaves the bidders a fairly rich set of options.

Several comments are in order. We have seen that in the �rst-price sealed-bid auction

mechanism under complete information there might be multiple equilibria. Example 3.7

has shown that whether a tie at a 2 A is an equilibrium depends on the local properties

of the bidding space at a, namely on the size of �a.13 Moreover, when vn�1 = vn there

are in many situations at least two equilibria.

The fact that in low price equilibria the revenue might be very low implies that the

seller has an incentive to prefer a second-price auction. This is so because if the seller

implements a second-price sealed-bid auction the usual dominance argument applies

and the seller can be certain to obtain a higher revenue.14

Low price equilibria may generate considerably lower revenues than high price equi-

libria. In this sense there is �collusion�. But, given that bidding strategies constitute an

equilibrium, they are also �self-enforcing�. This contrasts with the conventional wisdom

that �unlike in a second-price auction, the cartel agreement in a �rst-price auction is

not self-enforcing and, hence, is somewhat fragile�(Krishna (2002), pg. 160).

A last comment concerns e¢ ciency. In many instances the equilibrium is ine¢ cient

13Notice also that the de�nition of the equilibrium strategies implies that the undominated Nash
equilibrium is not unique, as a bidder with a low valuation may submit any undominated bid. Moreover,
when wn�1 = wn and � = � there are two high price equilibria.
14This is in line with the results in Milgrom and Weber (1982) but not with Landsberger et al. (2001).
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because the object is not awarded to the bidder with the highest valuation with positive

probability.15 Note that the intuition for this ine¢ ciency is di¤erent from Landsberger et

al. (2001). These authors obtain a similar result in the �rst-price sealed-bid auction with

two bidders when the ranking of valuations is common knowledge. In their framework

the ine¢ ciency results from the fact that the low valuation bidder always bids higher

(than a high valuation bidder with the same value).
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